An introduction to free probability

2. Noncrossing partitions and free cumulants

Wojtek Młotkowski (Wrocław)

Villetaneuse, 11.03.2014

WM () Free probability 03.03.2014 1 / 19

Definition. A **partition** of a set X is a family π of subsets of X such that $\bigcup \pi = X$ and if $U, V \in \pi$ then either U = V or $U \cap V = \emptyset$. Elements of π are called *blocks* of π .

The class of partitions of the set $\{1, 2, ..., n\}$ will be denoted P(n). The cardinality of P(n) is counted by **Bell numbers** B_n :

 $1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, \dots \quad \text{(sequence A000110 in OEIS)}.$

Recurrence relation: $B_0 = 1$,

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

The exponential generating function:

$$B(z) = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n = \exp(e^z - 1).$$

The number of partitions in P(n) consisting on k blocks: **Stirling** numbers of the second kind: $\binom{n}{k}$.

WM () Free probability 03.03.2014 2 / 19

Definition. A partition $\pi \in P(n)$ is called **noncrossing** if for every $1 \le k_1 < k_2 < k_3 < k_4 \le n$ we have implication:

$$k_1, k_3 \in U \in \pi, \ k_2, k_4 \in V \in \pi \implies U = V.$$

NC(n)-the class of noncrossing partitions of the set $\{1, 2, \ldots, n\}$. The number of elements in NC(n): the **Catalan numbers**: $\binom{2n+1}{n} \frac{1}{2n+1}$:

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, \dots$ (sequence A000108 in OEIS).

They satisfy recurrence: $C_0 = 1$ and

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$
 for $n \ge 0$.

4□ > 4□ > 4 = > 4 = > = 90

WM () Free probability 03.03.2014 3 / 19

The generating function:

$$C(z) = \sum_{n=0}^{\infty} C_n z^n = \frac{2}{1 + \sqrt{1 - 4z}}.$$

The number of $\pi \in NC(n)$ having k blocks: the **Narayana numbers**:

$$\frac{1}{n} \binom{n}{k} \binom{n}{k-1}.$$

For $\pi \in NC(n)$ define sequence $\Lambda(\pi) = (x_1, x_2, \dots, x_n)$ as follows:

$$\mathbf{x_k} = \left\{ egin{array}{ll} |U|-1 & ext{if } k ext{ is the first element of a block } U \in \pi, \\ -1 & ext{otherwise}. \end{array}
ight.$$

Note that the sequence $\Lambda(\pi)$ has the following properties:

- 1. $x_k \in \{-1, 0, 1, 2, 3, \ldots\}$,
- 2. $x_1 + x_2 + \ldots + x_k \ge 0$ for $1 \le k \le n$,
- 3. $x_1 + x_2 + \ldots + x_n = 0$.

Proposition. The map Λ is a bijection of NC(n) onto the class of sequences satisfying (1-2-3).

WM () Free probability 03.03.2014 4 / 19

Classical cumulants

Let X be a random variable, μ its distribution, a probability measure on \mathbb{R} . We assume that X is bounded. Moments of X, μ :

$$\mathbf{m}_n(X) = \mathbf{m}_n(\mu) := E(X^n) = \int_{\mathbb{R}} t^n d\mu(t).$$

Cumulants $\kappa_n(\mu) = \kappa_n$ of X and μ are defined as

$$\log(\mathsf{E}(e^{tX})) = \sum_{n=1}^{\infty} \kappa_n \frac{t^n}{n!}$$

Then for independent random variables $X \sim \mu$, $Y \sim \nu$ we have

$$\kappa_n(X+Y) = \kappa_n(X) + \kappa_n(Y) \tag{1}$$

or

$$\kappa_n(\mu * \nu) = \kappa_n(\mu) + \kappa_n(\nu).$$

WM () Free probability 03.03.2014 5 / 19

Relation between moments and cumulants:

$$\mathbf{m}_{n}(\mu) = \sum_{\pi \in P(n)} \prod_{V \in \pi} \kappa_{|V|}(\mu). \tag{2}$$

Examples:

The **normal distribution** $\mathcal{N}(a, \sigma^2)$, with density

$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$$

we have $\kappa_1 = a, \kappa_2 = \sigma^2$ and $\kappa_n = 0$ for $n \ge 3$.

The Poisson distribution

$$\sum_{k=0}^{\infty} \frac{\lambda^k \exp(-\lambda)}{k!} \delta_k,$$

so that $\Pr(X = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$, we have $\kappa_n = \lambda$ for all $n \ge 1$.

WM () Free probability 03.03.2014 6 / 19

Definition. A (noncommutative) probability space is a pair (\mathcal{A}, ϕ) , where \mathcal{A} is a complex unital *-algebra and ϕ is a state on \mathcal{A} , i.e. a linear map $\mathcal{A} \to \mathbb{C}$ such that $\phi(\mathbf{1}) = 1$ and $\phi(a^*a) \geq 0$ for all $a \in \mathcal{A}$.

Definition: A family $\{A_i\}_{i\in I}$ of unital (i.e. $\mathbf{1}\in\mathcal{A}_i$) subalgebras is called *free* if

$$\phi(a_1a_2\ldots a_m)=0$$

whenever $m \geq 1$, $a_1 \in A_{i_1}, \ldots, a_m \in A_{i_m}$, $i_1, \ldots, i_m \in I$, $i_1 \neq i_2 \neq \ldots \neq i_m$ and $\phi(a_1) = \ldots = \phi(a_m) = 0$.

Main example: Unital free product. Let (A_i, ϕ_i) , $i \in I$, noncommutative probability spaces. Put $A_i^0 := \operatorname{Ker} \phi_i$. Then the unital free product $A = *_{i \in I} A_i$ can be represented as

$$\mathcal{A} := \mathbb{C}\mathbf{1} \oplus \bigoplus_{\substack{m \geq 1 \\ i_1, \dots, i_m \in I \\ i_1 \neq i_m \neq i_m \neq i_m}} \mathcal{A}^0_{i_1} \otimes \mathcal{A}^0_{i_2} \otimes \dots \otimes \mathcal{A}^0_{i_m} = \mathbb{C}\mathbf{1} \oplus \mathcal{A}^0. \tag{3}$$

with the state defined by $\phi(\mathbf{1}) = 1$ and $\phi(a) = 0$ for $a \in \mathcal{A}_0$. Then $\{\mathcal{A}_i\}_{i \in I}$ is a free family in (\mathcal{A}, ϕ)

WM () Free probability 03.03.2014 7 / 19

Suppose $a_k \in \mathcal{A}_1$, $b_k \in \mathcal{A}_2$. We write $a_k = \alpha_k \mathbf{1} + a_k^0$, where $\alpha_k = \phi(a_k)$, $\phi(a_k^0) = 0$, $b_k = \beta_k \mathbf{1} + b_k^0$ where $\beta_k = \phi(b_k)$, $\phi(b_k^0) = 0$, Then

$$\phi(a_1b_1) = \phi\left((\alpha_1\mathbf{1} + a_1^0)(\beta_k\mathbf{1} + b_k^0)\right)$$

$$= \alpha_1 \beta_1 + \alpha_1 \phi(b_1^0) + \beta_1 \phi(a_1^0) + \phi(a_1^0 b_k^0) = \alpha_1 \beta_1 = \phi(a_1) \phi(b_1).$$

In a similar way:

$$\phi(\mathsf{a}_1\mathsf{b}_1\mathsf{a}_2) = \phi(\mathsf{a}_1\mathsf{a}_2)\phi(\mathsf{b}_1)$$

and

$$\phi(a_1b_1a_2b_2) = \phi(a_1a_2)\phi(b_1)\phi(b_2) + \phi(a_1)\phi(a_2)\phi(b_1b_2) -\phi(a_1)\phi(a_2)\phi(b_1)\phi(b_2).$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

WM () Free probability 03.03.2014 8 / 19

Proposition. Assume, that $a \in \mathcal{A}_1$, $b \in \mathcal{A}_2$, and $\mathcal{A}_1, \mathcal{A}_2$ are free. Then the moments $\phi((a+b)^n)$ of a+b depend only on the moments $\phi(a^n)$ of a and the moments $\phi(b^n)$ of b.

Distribution of a self-adjoint element $a=a^*\in\mathcal{A}$

is the probability measure μ on $\mathbb R$ satisfying:

$$\phi(a^n) = \int_{\mathbb{R}} t^n d\mu(t), \qquad n = 1, 2, \dots,$$

so that $\phi(a^n)$ are moments of μ .

If a, b are free and the distribution of a, b is μ, ν respectively then the distribution of a + b will be denoted $\mu \boxplus \nu$ - the additive free convolution.

We want to compute the moments $\phi((a+b)^n)$ from $\phi(a^n)$ and $\phi(b^n)$.

WM () Free probability 03.03.2014 9 / 19

For $a \in \mathcal{A}$ we define its free cumulants $r_n(a)$ by the relation:

$$\phi(a^n) = \sum_{\pi \in NC(n)} \prod_{V \in \pi} r_{|V|}(a). \tag{4}$$

In particular

$$\phi(a) = r_1(a),$$

$$\phi(a^2) = r_1(a)^2 + r_2(a),$$

$$\phi(a^3) = r_1(a)^3 + 3r_1(a)r_2(a) + r_3(a),$$

The moment sequence $\phi(a^n)$ and the cumulant sequence $r_n(a)$ determine each other. We are going to prove

Theorem. If $a, b \in \mathcal{A}$ are free (i.e. belong to free subalgebras) then

$$r_n(a+b) = r_n(a) + r_n(b).$$
 (5)

Free probability 03.03.2014 10 / 19

Examples.

1. Catalan numbers: if

$$\phi(a^n) = \binom{2n+1}{n} \frac{1}{2n+1} \quad \text{then} \quad r_n(a) = 1 \quad \text{for all } n \ge 1. \tag{6}$$

2. More generally: Fuss/Raney numbers: if

$$\phi(a^n) = \binom{pn+r}{n} \frac{r}{pn+r} \quad \text{then}$$
 (7)

$$r_n(a) = \binom{(p-r)n+r}{n} \frac{r}{(p-r)n+r}.$$
 (8)

W. Młotkowski, Fuss-Catalan numbers in noncommutative probability, Documenta Mathematica 15 (2010).

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

WM () Free probability 03.03.2014 11 / 19

3. Aerated Catalan numbers: if

$$\phi(a^n) = \begin{cases} \binom{2k+1}{k} \frac{1}{2k+1} & \text{if } n = 2k, \\ 0 & \text{if } n \text{ odd,} \end{cases} \text{ then } r_n(a) = \begin{cases} 1 & \text{if } n = 2, \\ 0 & \text{if } n \neq 2. \end{cases}$$
 (9)

4. More generally, aerated Fuss/Raney numbers, if

$$\phi(a^n) = \begin{cases} \binom{pk+r}{k} \frac{r}{pk+r} & \text{if } n = 2k, \\ 0 & \text{if } n \text{ is odd,} \end{cases}$$
 (10)

then

$$r_n(a) = \begin{cases} \binom{(p-2r)k+r}{k} \frac{r}{(p-2r)k+r} & \text{if } n = 2k, \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$
 (11)

WM () Free probability 03.03.2014 12 / 19 Free Gaussian law $\gamma_{a,r}$:

$$\frac{1}{2\pi r^2} \sqrt{4r^2 - (x-a)^2} \chi_{[a-2r,a+2r]}(x) dx, \qquad (12)$$

then $r_1(\gamma_{a,r}) = a$, $r_2(\gamma_{a,r}) = r^2$ and $r_n(\gamma_{a,r}) = 0$ for $r \ge 3$.

Free Poisson law ϖ_t :

$$\max\{1-t,0\}\delta_0 + \frac{\sqrt{4t-(x-1-t)^2}}{2\pi x}\chi_{[(1-\sqrt{t})^2,(1+\sqrt{t})^2]}(x)\,dx \qquad (13)$$

then $r_n(\varpi_t) = t$ for all $n \ge 1$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

WM () Free probability 03.03.2014 13 / 19

Let \mathcal{H} be a Hilbert space and define the *full Fock space* of \mathcal{H} :

$$\mathcal{F}(\mathcal{H}) := \mathbb{C}\Omega \oplus \bigoplus_{m=1}^{\infty} \mathcal{H}^{\otimes m}.$$

Fix an orthonormal basis e_i , $i \in I$. Then the vectors

$$e_{i_1}\otimes e_{i_2}\otimes\ldots\otimes e_{i_m},$$

 $m \geq 0$, $i_1, i_2, \ldots, i_m \in I$, form an orthonormal basis of $\mathcal{F}(\mathcal{H})$. The vector corresponding to the empty word (m=0) will be denoted by Ω . For $i \in I$ define operator ℓ_i :

$$\ell_i e_{i_1} \otimes \ldots \otimes e_{i_m} = e_i \otimes e_{i_1} \otimes \ldots \otimes e_{i_m}$$

in particular $\ell_i \Omega = e_i$, and its adjoint:

$$\ell_i^*e_{i_1}\otimes e_{i_2}\otimes\ldots\otimes e_{i_m}=\left\{egin{array}{ll} e_{i_2}\otimes\ldots\otimes e_{i_m} & ext{if } m\geq 1 ext{ and } i_1=i \ 0 & ext{otherwise}. \end{array}
ight.$$

WM () Free probability 03.03.2014 14 / 19

Note the relation

$$\ell_i^* \ell_j = \begin{cases} \mathbf{1} & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$
 (14)

Define:

 \mathcal{A} - the unital algebra generated by all $\ell_i,\ell_i^*,\ i\in I$,

 \mathcal{A}_{i} - the unital subalgebra generated by ℓ_{i}, ℓ_{i}^{*} .

For $a \in \mathcal{A}$ we put $\phi(a) := \langle a\Omega, \Omega \rangle$.

By (14), A_i is the linear span of

$$\{\ell_i^m \left(\ell_i^*\right)^n : m, n \geq 0\},\$$

while \mathcal{A} is the linear span of

$$\{\ell_{i_1}\ell_{i_2}\dots\ell_{i_m}\ell_{j_1}^*\ell_{j_2}^*\dots\ell_{j_n}^*: m,n\geq 0\}.$$

Proposition.

1. If m + n > 0 then

$$\phi\left(\ell_{i_1}\ell_{i_2}\dots\ell_{i_m}\ell_{j_1}^*\ell_{j_2}^*\dots\ell_{j_n}^*\right)=0$$

2. The family $\{A_i\}_{i\in I}$ is free in (A, ϕ) .

WM () Free probability 03.03.2014 15 / 19

Lemma. Suppose that $x_1, x_2, \ldots, x_n \in \{-1, 0, 2, 3, \ldots\}$ and denote $\ell_i^{-1} := \ell_i^*$. Then

$$\phi\left(\ell_1^{\mathsf{x}_n}\dots\ell_1^{\mathsf{x}_2}\ell_1^{\mathsf{x}_1}\right)=1$$

iff the sequence (x_1, x_2, \dots, x_n) satisfies conditions (1-2-3) from page 4 and

$$\phi\left(\ell_1^{\mathsf{x}_n}\dots\ell_1^{\mathsf{x}_2}\ell_1^{\mathsf{x}_1}\right)=0$$

otherwise.

Proposition. Let

$$T_1 = \ell_1^* + \sum_{k=1}^{\infty} \alpha_k \ell_1^{k-1}$$

for some $\alpha_n \in \mathbb{C}$. Then α_k are free cumulants of T_1 :

$$\phi(T_1^n) = \sum_{\pi \in NC(n)} \prod_{V \in \pi} \alpha_{|V|}.$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 釣 9 0 0 0

03.03.2014

16 / 19

WM () Free probability

More generally:

Lemma. Suppose that $x_1, x_2, \ldots, x_n \in \{-1, 0, 2, 3, \ldots\}$ and $i_1, i_2, \ldots, i_n \in I$. Then

$$\phi\left(\ell_{i_n}^{\mathsf{x}_n}\dots\ell_{i_2}^{\mathsf{x}_2}\ell_{i_1}^{\mathsf{x}_1}\right)=1$$

iff the sequence (x_1, x_2, \ldots, x_n) satisfies (1-2-3) from page 4, i.e. $(x_1, x_2, \ldots, x_n) = \Lambda(\pi)$ for some $\pi \in NC(n)$, and, moreover, if $p, q \in V \in \pi$ then $i_p = i_q$. Otherwise we have

$$\phi\left(\ell_{i_n}^{\mathsf{x}_n}\dots\ell_{i_2}^{\mathsf{x}_2}\ell_{i_1}^{\mathsf{x}_1}\right)=0.$$

WM () Free probability 03.03.2014 17 / 19

Theorem. (Voiculescu 1986) Let

$$T_1 = \ell_1^* + \sum_{k=1}^{\infty} \alpha_k \ell_1^{k-1},$$

$$T_2 = \ell_2^* + \sum_{k=1}^{\infty} \alpha_k \ell_2^{k-1},$$

and

$$T = \ell_1^* + \sum_{k=1}^{\infty} (\alpha_k + \beta_k) \ell_1^{k-1}.$$

Then for every $n \ge 0$

$$\phi(T^n) = \phi((T_1 + T_2)^n).$$

→ロト ←個 ト ← 差 ト ← 差 ・ りへで

WM () Free probability 03.03.2014 18 / 19

Proof. From the lemma we have

$$\phi((T_1 + T_2)^n) = \sum_{\pi \in NC(n)} \sum_{\substack{V \in \pi \\ \gamma_V \in \{\alpha_{|V|}, \beta_{|V|}\}}} \prod_{V \in \pi} \gamma_V$$
$$= \sum_{\{\alpha_{|V|} + \beta_{|V|}\}} (\alpha_{|V|} + \beta_{|V|}) = \phi(T^n).$$

Theorem. Suppose that (A, ϕ) is a probability space, A_1, A_2 are free subalgebras, $a \in A_1$, $b \in A_2$. Then for every n > 1 we have

 $\pi \in NC(n) \ V \in \pi$

$$r_n(a+b)=r_n(a)+r_n(b).$$

Proof. We can assume that $a = T_1$, $b = T_2$, the elements in the Cuntz algebra, with $\alpha_k = r_k(a)$, $\beta_k = r_k(b)$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

WM () Free probability 03.03.2014 19 / 19