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Classical probability:

(Q, F, P)- probability space.
Random variable: measurable function X : Q — R.

L>(€2): commutative unital algebra of bounded measurable (equivalence

classes of) functions X : Q — C.

The unit: 1(w) =1 for all w € Q.

Expectation: EX := [, X(w)dP(w) is a state on L>(Q):
E is a linear function L*°(Q2) — C such that

1. E1=1,

2. If X(w) > 0 for all w € Q then E(X) > 0.
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Noncommutative probability:

Noncommutative probability space: (A, ¢)
A is a unital, complex x-algebra

¢ : A— Cis a linear map which satisfies
1.¢(1)=1,

2. ¢(x*x) > 0 for every x € A.

“random variables”: elements of A,
“expectation”: ¢.

% is an involution on A:

foraeC, a,b e A
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Distribution of a self-adjoint element a = a* € A

is a probability measure i on R satisfying:

qS(a”):/Rt"d,u(t), n=1,2,...,

so that ¢(a") are moments of p.

v

Such measure exists, because the sequence ¢(a") is positive definite: for a
finite sequence of real numbers a; we have

%:¢(ai+j)aiaj =¢ ((Z iaiai)2) > 0.

Under some additional assumptions (for example that A is a C*-algebra) p
is also unique.
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Independence

Let (A, ¢) be a (noncommutative) probability space and let {A4;}, i € I,
be a family of subalgebras, with 1 € A;.

We say that the subalgebras A; are independent if

1. ab = ba whenever ac€ A;, bec A;, i,j€l, i # ],

2. ¢(a1a2...an) = ¢(a1)p(a2) . . . ¢(am) whenever

ar € Ajj,a2€ Aj,...,am € Aj, and i1, ip,...,im € | are distinct.

V.

Let (2, F, P) be the product probability space: Q = x;¢,Q;, F = X1 Fi,
P = XiciP;. Then A := L*°(Q) is the tensor product of A; := L*°(Q;):
More generally, we can start with a family (A;, ¢;), i € I, of
noncommutative probability spaces, put A := );., A; and define the
natural state on A:

P(a1®@a®...®am) = ¢iy(a1)py(a2) . .- ¢i,(am)

forai € Aj,a» € Aj,,...,am € A;, and for i1, o, ..., im € | distinct.
The family {A;}, i € I, is independent in (A, ¢).
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However the tensor product of algebras is very commutative: elements
form distinct A; do commute.

Unital free product

Let (A;, ¢;), i € I, noncommutative probability spaces. Put A? := Kerg;.
Then the unital free product A = x;c;A; can be represented as

A=Cla® @ AoAle.. oA =Cle A (1)

The notation “ij # i» # ... # i” means that
il#i27 iZ#i:i?"'aim—l;éim'

A is the unique unital algebra containing all A; as subalgebras, such that
for given unital homomorphisms h; : A; — B, there is a unique
homomorphism h : A — B such that h|4, = h; for all i € | (coproduct).
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Multiplication: if

Aa=a1Q0a ... am, b=bHhRb®...Q by, (2)
with m,n>1, a1 € A),...,am€ A and by € AY,... b, € AD then
the product is defined by:

A®..0an A0 ®...Q b, if im 7 J1,
a-b:= AR..0 a1V CcR b R...R b,

ta(a1®...Qam-1) (b2 ®...®b,) ifim=j =1

where a := ¢j(amb1), ¢ := amb1 — ¢i(amb1)1, so that a,b; = ¢ + o,
ce A

For the expression
(1®...®am-1) (b2 ®...® by)
we proceed inductively. By definition, for a as in (2) we have
a=aj-ax:...-am.
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What is natural state on A?

The one satisfying: ¢(1) =1 and ¢(a) = 0 for a as in (2), with m > 1,

so that in (1) A%, the second summand, is the kernel of ¢.
This justifies the following definition

Definition: Let (A, ¢) be a probability space.
A family {A;};c, of unital (i.e. 1 € A;) subalgebras is called free if

¢(a1az...am) =0

whenever m>1, a1 € Ajy,...,am € Ai,, it,....im €, h #h # ... # im
and ¢(a1) = ... = ¢(am) = 0.

Hence in the construction (1) the algebras A; are free in (A, ¢).
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Now about positivity of ¢.

Assume that all ¢; admit GNS representation, i.e.
pi(a) = (mi(a)&i, &), ac A

where

T : .A,' = B(H,’)

is a x-representation of A; on a Hilbert space #;, & is a unit vector in H;.

Now we are going to construct the GNS representation for ¢, which will
prove positivity of ¢. Define H? := &, the orthocomplement of &; in H,,
so that H; = C¢; @ H;. Put

H:=Che P Menle. . oH).
11,.T,>l;,€l
iy Fin . Fim

Now for every i € | we define a representation o; of A; acting on H.
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Namely, we decompose H as
H = (C& e HY) @ H(i),
(we identify &y with &;) where
Hi)=Che P M oM. oH.
i5eees im€l
i#iy Fip - Fim

Then we put
a,-(a) = 77,-(a) &® qu_[(,').

In this way we have constructed a *-representation o; of A; acting on H.
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By the coproduct property we extend to a *-representation m of whole
A = x;c A;. We are going to show, that for every c € A

(m(c)éo. £0) = (c). J
Namely: fora=ajar...am, withm>1, a; € A?l,...,am € A?m,
My oyim € 1land i1 # b # ... % im, we have

m(a) = oy (a1)oi,(a2)...0i,(am)
Moreover, since ¢, (ax) = 0 we have
oi(ak)éo = i (ak)éo € H?k.
By induction it is easy to check, that
m(a)éo = 7 (a1)éo @ m(22)€0 @ - . . ® T, (am)Eo

@) e H) o HI @ ... @ HY
which means that ¢(a) =0
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