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Introduction
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Motivations

In combinatorics:
Lattice walks

wn,m: number of walks
that end at (n,m)

−→
generating power series:
W (x , y) =

∑
n,m≥0 wn,mx

nym

wn,n: number of walks
that end on the diagonal
at (n, n)

−→ diagonal series:
diagW (x) =

∑
n≥0 wn,nx

n

Diagonals also appear in statistical physics, number theory,...
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Diagonals

F (x , y) =
1

1− x − y
=
∑

n,m≥0

(
n + m

n

)
xnym

diag(F ) =
∑
n≥0

(
2n
n

)
xn =

1√
1− 4x

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

diag(F ) is algebraic: (1− 4x)diag(F )2 − 1 = 0.

Theorem (Furstenberg, 1967)
Diagonals of bivariate rational functions are algebraic
Any algebraic univariate power series can be expressed as the diagonal
of a bivariate rational function
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Hierarchy of univariate power series

Definition
A series F (x) =

∑
n≥0 unx

n is D-finite when

r∑
i=0

pi (x)
d i

dx i
F (x) = 0, pi ∈ Q[x ]

Abel (≈ 1830): Alg ⊂ D-Finite
BoChLeSaSc (2007): Alg ⊂ D-Finite
efficiently
Furstenberg (1967): Diag = Alg
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Aim of the talk

We have seen three data structures for a diagonal:
1 the rational function defining the diagonal;
2 a polynomial equation satisfied by the diagonal;
3 a differential equation satisfied by the diagonal.

We will:
study the algorithmic change from the rational data structure to the
algebraic one;
show that the differential equation is a better data structure for the
problem of expanding the diagonal series.
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Today’s guest star example

d ∈ N
Step set S = {(1, i), 0 ≤ i ≤ d} ∪ {(i , 1), 0 ≤ i ≤ d}
wn,m : number of walks with steps in S that end at (n,m)

Proposition

W (x , y) =
∑

n,m≥0

wn,mx
nym =

1
1−

∑
(i ,j)∈S x iy j

Problem
Let N be a non-negative integer. Compute the expansion of diagW (x) at
order N:

diagW (x) =
N∑

n=0

wn,nx
n + O(xN+1)
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Two classical methods

Common strategy:
1 Compute the power series expansion of W (x , y)

2 Keep the diagonal, throw away the rest
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Two classical methods

Linear recurrence with constant coefficients:

wn,m =
∑

(i ,j)∈S

wn−i ,m−j

Resulting complexity: O(dN2) arithmetical operations

Newton iteration

Resulting complexity: Õ(N2) arith. ops.
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A linear complexity algorithm

Strategy:
1 Compute a polynomial that cancels the diagonal
2 Deduce a differential equation that cancels the diagonal
3 Deduce a linear recurrence with polynomial coefficients for wn,n

4 Compute enough initial conditions using one of the elementary
methods.

5 Compute the desired amount of terms using the recurrence

Resulting complexity: O(N)
Complexity of the pre-processing: ???
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Algebraic equations for diagonals

Theorem (Polya (1921), Furstenberg (1967))
The diagonal of a bivariate rational function is algebraic.

G (x , y) = 1
y F (x/y , y)→ diag(F ) = [y−1]G (x , y)

y1(x), . . . , yr (x) : distinct poles of G (x , y) ∈ Q(x)(y)

α1(x), . . . , αr (x) : residues of G at the y ′i s

diagF (x) =
∑

lim
x→0

yi (x)=0

αi (x)

The yi ’s whose limit is 0 at 0 are called the small branches of G .
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Example

d = 0, steps (1,0) and (0,1).

F (x , y) =
1

1− x − y
−→ G (x , y) =

1
y − x − y2

roots of the denominator of G :

x1 =
1−
√
1− 4x
2

, x2 =
1 +
√
1− 4x
2

residue at x1:

diag(F ) =
1

1− 2x1
=

1√
1− 4x
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Algebraic equations for diagonals

reminder : the αi ’s are the residues of G (x , y) = 1
y F (x/y , y)

We divide the problem of finding an algebraic equation for the diagonal
into three subproblems:

1 compute the polynomial R =
∏r

i=1 (y − αi (x)) ∈ Q(x)[y ]

2 compute the number c of small branches of G
3 R being known, compute the polynomial ΣcR defined by

ΣcR =
∏

i1<...<ic

(y − (αi1 + . . .+ αic )) ∈ Q(x)[y ]
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First step: polynomial cancelling the residues of G

Write G (x , y) = P(x , y)/Q(x , y).
1 If yi is a simple pole, then αi = P(x ,yi )

Qy (x ,yi )
. αi is cancelled by the

Rothstein-Trager resultant:

Resz(Qy (x , y)z − P(x , y),Q(x , y))

2 if yi is a multiple pole: Bronstein resultants
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Third step: Polynomial cancelling the sums of residues
Main tool: Newton sums

Definition
Let R = a

∏r
i=1 (x − αi ) ∈ Q[x ] be a polynomial. On définit la série

génératrice des sommes de Newton de R par:

N (R) =
∑
n≥0

(αn
1 + . . .+ αn

r )xn

si R = a0 + a1x + . . .+ arx
r , on note rec(R) = a0x

r + a1x
r−1 + . . .+ ar .

Proposition
Let R ∈ Q[x ] be a polynomial of degree r . Then
N (R) = rec(R ′)/rec(R)

rec(R) = exp
(∫ r−N (R)

x

)
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Size of the polynomial, complexity of the pre-processing

Theorem (Bostan, D., Salvy (2014))
Let A/B ∈ Q(x , y) be a rational function that is not singular at 0, and
such that B has bidegree (dx , dy ). There exists a(x) ∈ Q(x) such that,
with the same notations as above and Φ = aΣcR ,

Φ ∈ Q[x , y ]

Φ(x , diagF (x)) = 0
Φ has degree at most

(dx+dy
dx

)
in y

"generically", Φ is irreducible over Q(x)

"generically", Φ is computed in quasi-optimal time

In particular, the pre-processing of the algebraic equation for the diagonal
has a complexity that is exponential in the size of the input rational
function.
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A linear complexity algorithm
with polynomial time pre-processing

Strategy:
1 Directly compute the minimal differential equation for diagW
2 Deduce a linear recurrence with polynomial coefficients for wn,n

3 Compute enough initial conditions using one of the elementary
methods.

4 Compute the desired amount of terms using the recurrence

Resulting complexity: O(N)
Pre-processing of polynomial cost in d .
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Diagonals satisfy small differential equations

Theorem (Bostan, Chen, Chyzak, Li (2010))
Let A/B ∈ Q(x , y) be a rational function such that B has bidegree
(dx , dy ) and

the degrees in x and y of A are less than those of B
A is prime to B

B is primitive with respect to y

Then there exists a differential operator L(x , ∂x) such that
L(x , ∂x) · diag(A/B) = 0
L has order at most dy and degree O(dxd

2
y )
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