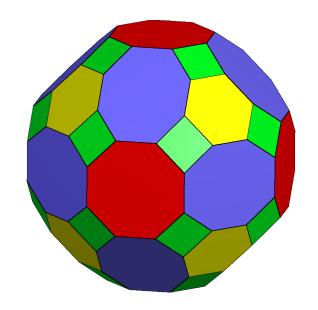
On lattice polytopes, convex matroid optimization, and degree sequences of hypergraphs



Antoine Deza, Paris Sud

based on joint works with: **Asaf Levin**, Technion **George Manoussakis**, Ben Gurion **Shmuel Onn**, Technion

Linear Optimization?

Given an n-dimensional vector b and an $n \times d$ matrix A find, in any, a d-dimensional vector $x \times d$ such that :

$$Ax = b$$

$$Ax = b$$

linear algebra

linear optimization

Linear Optimization?

Given an *n*-dimensional vector *b* and an *n* x *d* matrix *A* find, in any, a *d*-dimensional vector *x* such that :

$$Ax = b$$
 $Ax \le b$

linear algebra

linear optimization

Can linear optimization be solved in **strongly polynomial** time? is listed by Smale (Fields Medal 1966) as one of the top mathematical problems for the XXI century

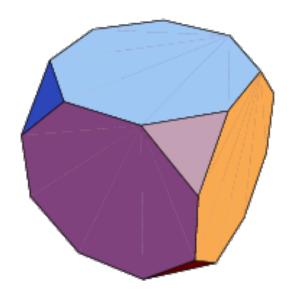
Strongly polynomial: algorithm *independent* from the *input data length* and polynomial in *n* and *d*.

lattice (d, k)-polytope : convex hull of points drawn from $\{0, 1, ..., k\}^d$

diameter $\delta(P)$ of polytope P: smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges

 $\delta(d, k)$: largest diameter over all **lattice** (d, k)-polytopes

ex. $\delta(3,3) = 6$ and is achieved by a *truncated cube*



lattice (d, k)-polytope : convex hull of points drawn from $\{0, 1, ..., k\}^d$

diameter $\delta(P)$ of polytope P: smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges

 $\delta(d, k)$: largest diameter over all **lattice** (d, k)-polytopes

- \triangleright $\delta(P)$: lower bound for the worst case number of iterations required by *pivoting methods* (simplex) to optimize a linear function over P
- \succ Hirsch conjecture : δ (P) ≤ n-d (n number of inequalities) was disproved [Santos 2012]

 $\delta(d, k)$: largest *diameter* of a convex hull of points drawn from $\{0, 1, ..., k\}^d$ upper bounds:

$$\delta(d,1) \le d$$
 [Naddef 1989]

$$\delta(2, \mathbf{k}) = O(\mathbf{k}^{2/3})$$
 [Balog-Bárány 1991]

$$\delta(2, \mathbf{k}) = 6(\mathbf{k}/2\pi)^{2/3} + O(\mathbf{k}^{1/3} \log \mathbf{k})$$
 [Thiele 1991] [Acketa-Žunić 1995]

$$\delta(d, k) \le kd$$
 [Kleinschmid-Onn 1992]

$$\delta(d, k) \le kd - \lceil d/2 \rceil$$
 for $k \ge 2$ [Del Pia-Michini 2016]

$$\delta(d, k) \le kd - \lceil 2d/3 \rceil - (k - 3)$$
 for $k \ge 3$ [Deza-Pournin 2018]

 $\delta(d, k)$: largest **diameter** of a convex hull of points drawn from $\{0, 1, ..., k\}^d$

lower bounds:

$$\delta(d,1) \ge d$$
 [Naddef 1989]

$$\delta(d,2) \ge \lfloor 3d/2 \rfloor$$
 [Del Pia-Michini 2016]

$$\delta(d, \mathbf{k}) = \Omega(\mathbf{k}^{2/3} d)$$
 [Del Pia-Michini 2016]

$$\delta(d, k) \ge |(k+1)d/2|$$
 for $k < 2d$ [Deza-Manoussakis-Onn 2018]

\$/0	$\delta(d, k)$		k										
0(0	, K)	1	2	3	4	5	6	7	8	9			
	2	2											
	3	3											
d	4	4											
	5	5											

 $\delta(d,1) = d$

[Naddef 1989]

\$/6	$\delta(d, k)$		k										
	, K)	1	2	3	4	5	6	7	8	9			
	2	2	3	4	4	5	6	6	7	8			
	3	3											
d	4	4											
	5	5											

 $\delta(d,1) = d$

 $\delta(2, \mathbf{k})$: close form

[Naddef 1989]

[Thiele 1991] [Acketa-Žunić 1995]

\$/0	$\delta(d, k)$		k											
	, K)	1	2	3	4	5	6	7	8	9				
	2	2	3	4	4	5	6	6	7	8				
	3	3	4											
d	4	4	6											
	5	5	7											

 $\delta(d,1) = d$

 $\delta(2, \mathbf{k})$: close form

 $\delta(d,2) = \lfloor 3d/2 \rfloor$

[Naddef 1989]

[Thiele 1991] [Acketa-Žunić 1995]

[Del Pia-Michini 2016]

8/0	$\delta(d, k)$		k											
	, K)	1	2	3	4	5	6	7	8	9				
	2	2	3	4	4	5	6	6	7	8				
	3	3	4	6	7	9								
d	4	4	6	8										
	5	5	7											

 $\delta(d,1) = d$

 $\delta(2, \mathbf{k})$: close form

 $\delta(\mathbf{d},2) = \lfloor 3\mathbf{d}/2 \rfloor$

 $\delta(4,3)=8$, $\delta(3,4)=7$, $\delta(3,5)=9$

[Naddef 1989]

[Thiele 1991] [Acketa-Žunić 1995]

[Del Pia-Michini 2016]

[Deza-Pournin 2018], [Chadder-Deza 2017]

8/0	$\delta(d, k)$		k											
0(0	, K)	1	2	3	4	5	6	7	8	9				
	2	2	3	4	4	5	6	6	7	8				
	3	3	4	6	7	9	10							
d	4	4	6	8										
	5	5	7	10										

 $\delta(d,1) = d$

 $\delta(2, \mathbf{k})$: close form

 $\delta(\mathbf{d},2) = \lfloor 3\mathbf{d}/2 \rfloor$

 $\delta(4,3)=8$, $\delta(3,4)=7$, $\delta(3,5)=9$

 $\delta(5,3)=10, \delta(3,6)=10$

[Naddef 1989]

[Thiele 1991] [Acketa-Žunić 1995]

[Del Pia-Michini 2016]

[Deza-Pournin 2018], [Chadder-Deza 2017]

[Deza-Deza-Guan-Pournin 2018]

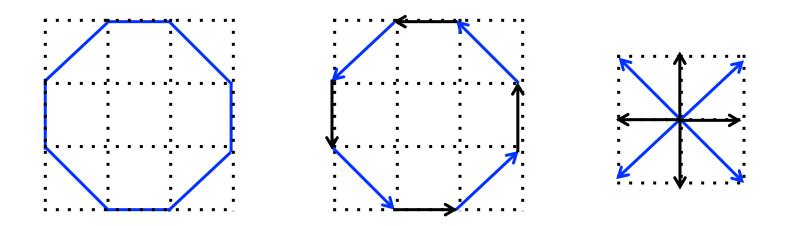
\$/6			k											
$\delta(a)$, K)	1	2	3	4	5	6	7	8	9				
	2	2	3	4	4	5	6	6	7	8				
	3	3	4	6	7	9	10	11+	12+	13+				
d	4	4	6	8	10+	12+	14+	16+	17+	18+				
	5	5	7	10	12+	15+	17+	20+	22+	25+				

> Conjecture [Deza-Manoussakis-Onn 2018] $\delta(d, k) \leq \lfloor (k+1)d/2 \rfloor$

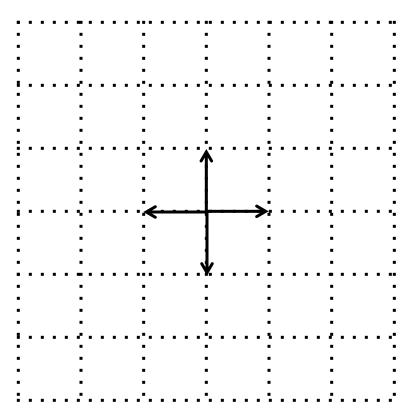
and $\delta(\mathbf{d}, \mathbf{k})$ is achieved, up to translation, by a *Minkowski sum of primitive lattice vectors*. The conjecture holds for all known entries of $\delta(\mathbf{d}, \mathbf{k})$

Q. What is $\delta(2, k)$: largest diameter of a polygon which vertices are drawn form the $k \times k$ grid?

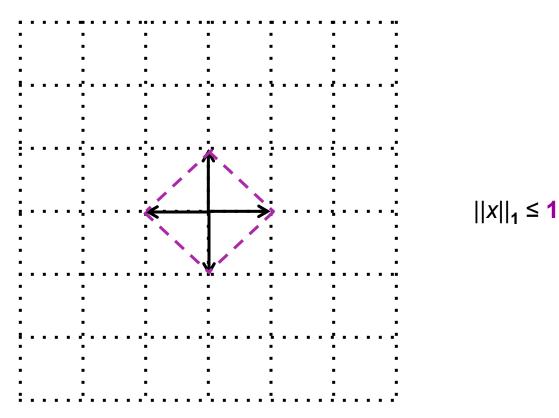
A polygon can be associated to a set of vectors (edges) summing up to zero, and without a pair of positively multiple vectors



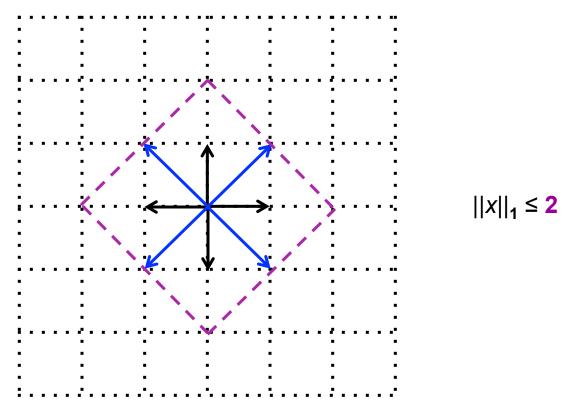
 $\delta(2,3) = 4$ is achieved by the 8 vectors : (±1,0), (0,±1), (±1,±1)



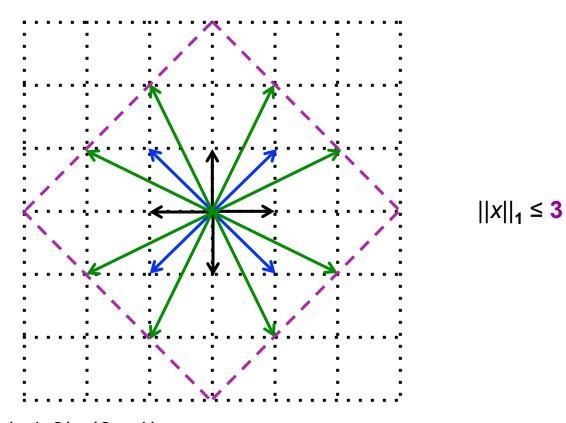
 $\delta(2,2) = 2$; vectors: $(\pm 1,0)$, $(0,\pm 1)$



 $\delta(2,2) = 2$; vectors: $(\pm 1,0)$, $(0,\pm 1)$



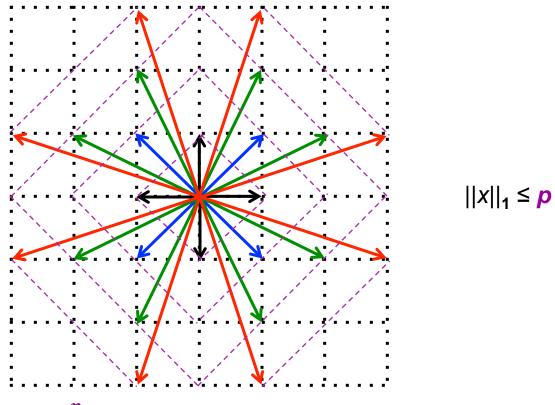
```
\delta(2,2) = 2; vectors : (±1,0), (0,±1) \delta(2,3) = 4; vectors : (±1,0), (0,±1), (±1,±1)
```



```
\delta(2,2) = 2; vectors : (±1,0), (0,±1)

\delta(2,3) = 4; vectors : (±1,0), (0,±1), (±1,±1)

\delta(2,9) = 8; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1)
```



$$\delta(2, \mathbf{k}) = 2 \sum_{i=1}^{p} \varphi(i) \text{ for } \mathbf{k} = \sum_{i=1}^{p} i \varphi(i)$$

 $\varphi(p)$: **Euler totient function** counting positive integers less or equal to p relatively prime with p $\varphi(1) = \varphi(2) = 1$, $\varphi(3) = \varphi(4) = 2$,...

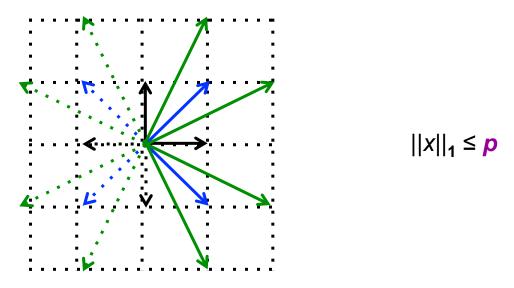
Lattice polygons

8/0	$\delta(2, k)$		k										
0(2	., .	1	2	3	4	5	6	7	8	9			
	p			2						3			
	V	4	6	8	8	10	12	12	14	16			
	δ	2	3	4	4	5	6	6	7	8			

$$\delta(2, \mathbf{k}) = 2 \sum_{i=1}^{p} \varphi(i)$$
 for $\mathbf{k} = \sum_{i=1}^{p} i\varphi(i)$ $\varphi(\mathbf{p})$: **Euler totient function** counting positive integers less or equal to \mathbf{p} relatively prime with

integers less or equal to p relatively prime with p $\varphi(1) = \varphi(2) = 1, \ \varphi(3) = \varphi(4) = 2,...$

Primitive polygons



 $H_1(2, \mathbf{p})$: Minkowski sum generated by $\{x \in \mathbb{Z}^2 : ||x||_1 \le \mathbf{p}, \gcd(x)=1, x \ge 0\}$

$$H_1(2, \mathbf{p})$$
 has diameter $\delta(2, \mathbf{k}) = 2 \sum_{i=1}^{p} \varphi(i)$ for $\mathbf{k} = \sum_{i=1}^{p} i \varphi(i)$

Ex. $H_1(2,2)$ generated by (1,0), (0,1), (1,1), (1,-1) (fits, up to translation, in 3x3 grid)

 $x \ge 0$: first nonzero coordinate of x is nonnegative

(generalization of the permutahedron of type B_d)

$$H_q(d, p)$$
: Minkowski $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

$$Z_q(d,p)$$
: Zonotope $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

 $x \ge 0$: first nonzero coordinate of x is nonnegative

Given a set G of m vectors (generators)

Minkowski (G): convex hull of the 2^m sums of the m vectors in G Zonotope (G): convex hull of the 2^m signed sums of the m vectors in G

up to translation Z(G) is the image of H(G) by an homothety of factor 2

Primitive zonotopes: zonotopes generated by short integer vectors which are pairwise linearly independent

(generalization of the permutahedron of type B_d)

$$H_q(d,p)$$
: Minkowski $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

$$Z_q(d,p)$$
: Zonotope $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

 $x \ge 0$: first nonzero coordinate of x is nonnegative

 $\rightarrow H_q(\mathbf{d}, 1) : [0, 1]^d$ cube for $\mathbf{q} \neq \infty$

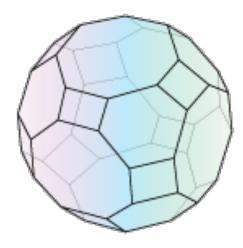
(generalization of the permutahedron of type B_d)

$$H_q(d, p)$$
: Minkowski $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

$$Z_q(d,p)$$
: Zonotope $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

 $x \ge 0$: first nonzero coordinate of x is nonnegative

 $\succ Z_1(\mathbf{d},2)$: permutahedron of type B_d



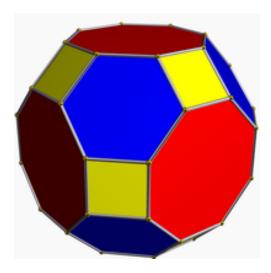
(generalization of the permutahedron of type B_d)

$$H_q(d, p)$$
: Minkowski $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

$$Z_q(d, p)$$
: Zonotope $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

 $x \ge 0$: first nonzero coordinate of x is nonnegative

 \succ $H_1(3,2)$: truncated cuboctahedron (great rhombicuboctahedron)



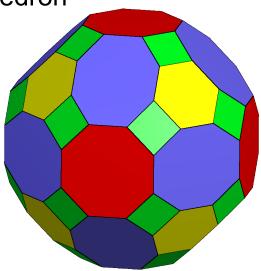
(generalization of the permutahedron of type B_d)

$$H_q(d, p)$$
: Minkowski $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

$$Z_q(d,p)$$
: Zonotope $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

 $x \ge 0$: first nonzero coordinate of x is nonnegative

 $\succ H_{\infty}(3,1)$: truncated small rhombicuboctahedron



(generalization of the permutahedron of type B_d)

$$H_q(d, p)$$
: Minkowski $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

$$Z_q(d,p)$$
: Zonotope $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

 $x \ge 0$: first nonzero coordinate of x is nonnegative H^+/Z^+ : **positive** primitive lattice polytope $x \in \mathbb{Z}^d_+$

 \succ $H_1(d,2)^+$: Minkowski sum of the permutahedron with the $\{0,1\}^d$, i.e., graphical zonotope obtained by the d-clique with a loop at each node

graphical zonotope Z_G : Minkowski sum of segments $[e_i, e_j]$ for all *edges* $\{i,j\}$ of a given graph G

(generalization of the permutahedron of type B_d)

$$H_q(d, p)$$
: Minkowski $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

$$Z_q(d,p)$$
: Zonotope $(x \in \mathbb{Z}^d : ||x||_q \le p$, $gcd(x)=1$, $x \ge 0$)

 $x \ge 0$: first nonzero coordinate of x is nonnegative H^+ / Z^+ : **positive** primitive lattice polytope $x \in \mathbb{Z}^d_+$

For k < 2d, Minkowski sum of a subset of the generators of $H_1(d,2)$ is, up to translation, a lattice (d,k)-polytope with diameter |(k+1)d/2|

8/0		k											
$\delta(a)$, K)	1	2	3	4	5	6	7	8	9			
	2	2	3	4	4	5	6	6	7	8			
	3	3	4	6	7	9	10	11+	12+	13+			
d	4	4	6	8	10+	12+	14+	16+	17+	18+			
	5	5	7	10	12+	15+	17+	20+	22+	25+			

> Conjecture [Deza-Manoussakis-Onn 2018] $\delta(d, k) \leq \lfloor (k+1)d/2 \rfloor$

and $\delta(d,k)$ is achieved, up to translation, by a *Minkowski sum of primitive lattice vectors*. The conjecture holds for all known entries of $\delta(d,k)$

8/0	$\delta(d, k)$		k											
	, K)	1	2	3	4	5	6	7	8	9				
	2	2	3	4	4	5	6	6	7	8				
	3	3	4	6	7	9	10	11	12	13				
d	4	4	6	8	10	12	14	16	17	18				
	5	5	7	10	12	15	17	20	22	25				

> Conjecture [Deza-Manoussakis-Onn 2018] $\delta(d, k) \leq \lfloor (k+1)d/2 \rfloor$

and $\delta(\mathbf{d}, \mathbf{k})$ is achieved, up to translation, by a *Minkowski sum of primitive lattice vectors*. The conjecture holds for all known entries of $\delta(\mathbf{d}, \mathbf{k})$

Computational determination of $\delta(d, k)$

Given a lattice (d, k)-polytope P, two vertices u and v such that $\delta(P) = d(u, v)$, then $d(u, v) \le \delta(d-1, k) + k$ and $d(u, v) < \delta(d-1, k) + k$ unless:

- $\rightarrow u+v=(\mathbf{k},\mathbf{k},...,\mathbf{k}),$
- any edge of P with u or v as vertex is {-1,0,1}-valued,
- > any intersection of **P** with a facet of the cube $[0, k]^d$ is a (d-1)-dimensional face of **P** of diameter $\delta(d-1, k)$.

Those conditions, combined with enumeration up to symmetry, drastically reduce the search space for lattice (d, k)-polytopes such that $\delta(P) = \delta(d-1, k) + k$

Computationally ruling out $\delta(d, k) = \delta(d-1, k) + k$ and using $\delta(d, k) \le \lfloor (k+1)d/2 \rfloor$ for k < 2d yields : $\delta(3,4) = 7$ and $\delta(3,5) = 9$

 \triangleright δ (great rhombicuboctahedron) = δ (3,5)

❖ Additional tools needed to rule out $\delta(\mathbf{d}, \mathbf{k}) = \delta(\mathbf{d}-1, \mathbf{k}) + \mathbf{k} - \mathbf{1}$

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

	Search	<u>Hints</u>
Greetings from The On-Line Encyclopedia of Integer Sequences!)		

A034997 Number of Generalized Retarded Functions in Quantum Field Theory.

2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930 (<u>list; graph; refs; listen; history; text; internal format</u>)

OFFSET 1,1

COMMENTS

- a(d) is the number of parts into which d-dimensional space (x_1, \ldots, x_d) is split by a set of $(2^d 1)$ hyperplanes $c_1 x_1 + c_2 x_2 + \ldots + c_d x_d = 0$ where c_j are 0 or +1 and we exclude the case with all c=0.
- Also, a(d) is the number of independent real-time Green functions of Quantum Field Theory produced when analytically continuing from euclidean time/energy (d+1 = number of energy/time variables). These are also known as Generalized Retarded Functions.
- The numbers up to d=6 were first produced by T. S. Evans using a Pascal program, strictly as upper bounds only. M. van Eijck wrote a C program using a direct enumeration of hyperplanes which confirmed these and produced the value for d=7. Kamiya et al. showed how to find these numbers and some associated polynomials using more sophisticated methods, giving results up to d=7. T. S. Evans added the last number on Aug 01 2011 using an updated version of van Eijck's program, which took 7 days on a standard desktop computer.

REFERENCES

Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and

- 370, 11292, 1066044, 347326352, 419172756930 (<u>list; graph; refs; listen; history; text; internal format</u>)
 - 1,1
 - a(d) is the number of parts into which d-dimensional space $(x_1,...,x_d)$ is split by a set of $(2^d 1)$ hyperplanes $c_1 x_1 + c_2 x_2 + ... + c_d x_d = 0$ where c j are 0 or +1 and we exclude the case with all c=0.
 - Also, a(d) is the number of independent real-time Green functions of Quantum Field Theory produced when analytically continuing from euclidean time/energy (d+1 = number of energy/time variables). These are also known as Generalized Retarded Functions.
 - The numbers up to d=6 were first produced by T. S. Evans using a Pascal program, strictly as upper bounds only. M. van Eijck wrote a C program using a direct enumeration of hyperplanes which confirmed these and produced the value for d=7. Kamiya et al. showed how to find these numbers and some associated polynomials using more sophisticated methods, giving results up to d=7. T. S. Evans added the last number on Aug 01 2011 using an updated version of van Eijck's program, which took 7 days on a standard desktop computer.
 - Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and Algebra. Springer International Publishing, 2015. 157-171.
 - T. S. Evans, N-point finite temperature expectation values at real times, Nuclear Physics B 374 (1992) 340-370.
 - H. Kamiya, A. Takemura and H. Terao, Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47 (2011) 379 400.
 - M. van Eijck, Thermal Field Theory and Finite-Temperature Renormalisation Group, PhD thesis, Univ. Amsterdam, 4th Dec. 1995.

Table of n, a(n) for n=1..8.

L. J. Billera, J. T. Moore, C. D. Moraites, Y. Wang and K. Williams, <u>Maximal unbalanced families</u>, arXiv preprint arXiv:1209.2309, 2012. - From <u>N. J. A. Sloane</u>, Dec 26 2012

Computational determination of the number of vertices of primitive zonotopes

Sloane OEI sequences

 $H_{\infty}(\mathbf{d},1)^{+}$ vertices : A034997 = number of generalized retarded functions in quantum Field theory (determined till \mathbf{d} =8)

 $H_{\infty}(\mathbf{d},1)$ vertices : A009997 = number of regions of hyperplane arrangements with $\{-1,0,1\}$ -valued normals in dimension \mathbf{d} (determined till \mathbf{d} =7)

Estimating the number of vertices of $H_{\infty}(d,1)^+$ [Odlyzko 1988], [Zuev 1992], [Kovijanić-Vukićević 2007]

$$d^2 (1-o(1)) \le \log_2 |H_{\infty}(d,1)^+| \le d^2$$

The optimal solution of max { f(Wx) : $x \in S$ } is attained at a vertex of the projection integer polytope in \mathbb{R}^d : conv(WS) = Wconv(S)

```
S: set of feasible point in \mathbb{Z}^n (in the talk \mathbb{S} \in \{0,1\}^n) 
W: integer d \times n matrix (W is \{0,1,...,p\}-valued) 
f: convex function from \mathbb{R}^d to \mathbb{R}
```

Q. What is the maximum number $\mathbf{v}(d, \mathbf{n})$ of vertices of conv(**WS**) when $\mathbf{S} \in \{0,1\}^n$ and **W** is a $\{0,1\}$ -valued $\mathbf{d} \times \mathbf{n}$ matrix ?

```
obviously v(d,n) \le |WS| = O(n^d)
in particular v(2,n) = O(n^2), and v(2,n) = O(n^{0.5})
```

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1,...,p\}$ -valued $d \times n$ matrix W, the maximum number m(d,p) of vertices of conv(WS) is independent of n and S

Ex: maximum number $\mathbf{m}(2,1)$ of vertices of a planar projection conv(**WS**) of matroid **S** by a binary matrix **W** is attained by the following matrix and uniform matroid of rank 3 and order 8:

$$\mathbf{W} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{S} = \mathsf{U}(3,8) = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{S} = \mathsf{U}(3,8) = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{Conv}(\mathbf{WS})$$

The optimal solution of max { f(Wx) : $x \in S$ } is attained at a vertex of the projection integer polytope in \mathbb{R}^d : conv(WS) = Wconv(S)

```
S: set of feasible point in \mathbb{Z}^n (in the talk \mathbb{S} \in \{0,1\}^n)

W: integer d \times n matrix (W is mostly \{0,1,...,p\}-valued)

f: convex function from \mathbb{R}^d to \mathbb{R}
```

Q. What is the maximum number $\mathbf{v}(d, \mathbf{n})$ of vertices of conv(**WS**) when $\mathbf{S} \in \{0,1\}^n$ and **W** is a $\{0,1\}$ -valued $\mathbf{d} \times \mathbf{n}$ matrix?

```
obviously v(d,n) \le |WS| = O(n^d)
in particular v(2,n) = O(n^2), and v(2,n) = \Omega(n^{0.5})
```

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1,...,p\}$ -valued $d \times n$ matrix W, the maximum number m(d,p) of vertices of conv(WS) is independent of n and S

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1,...,p\}$ -valued $d \times n$ matrix W, the maximum number m(d,p) of vertices of conv(WS) is independent of n and S

[Deza-Manoussakis-Onn 2018] Given matroid **S** of order n, $\{0,1,...,p\}$ -valued $d \times n$ matrix **W**, maximum number m(d,p) of vertices of conv(**WS**) is equal to the number of vertices of $H_{\infty}(d,p)$

$$\mathbf{m}(\mathbf{d},\mathbf{p}) = |H_{\infty}(\mathbf{d},\mathbf{p})|$$

[Melamed-Onn 2014] Given matroid **S** of order n and $\{0,1,...,p\}$ -valued $d \times n$ matrix **W**, the maximum number m(d,p) of vertices of conv(**WS**) is independent of n and **S**

[Deza-Manoussakis-Onn 2018] Given matroid **S** of order n, $\{0,1,...,p\}$ -valued $d \times n$ matrix **W**, maximum number $\mathbf{m}(d,p)$ of vertices of conv(**WS**) is equal to the number of vertices of $H_{\infty}(d,p)$

$$\mathbf{m}(\mathbf{d},\mathbf{p}) = |H_{\infty}(\mathbf{d},\mathbf{p})|$$

[Melamed-Onn 2014]

$$d \ 2^d \le m(d,1) \le 2 \sum_{i=0}^{d-1} {3^d - 3/2 \choose i}$$

$$24 \le \mathbf{m}(3,1) \le 158$$

 $64 \le \mathbf{m}(4,1) \le 19840$

$$m(2,1) = 8$$

[Deza-Manoussakis-Onn 2017]

d!
$$2^d \le \mathbf{m}(d,1) \le 2 \sum_{i=0}^{d-1} {3^d - 3/2 \choose i} - f(d)$$

$$m(3,1) = 96$$

 $m(4,1) = 5376$

$$\mathbf{m}(2, \mathbf{p}) = 8 \sum_{i=1}^{r} \varphi(i)$$

(degree sequences)

 D_d : convex hull of the degree sequences of all hypergraphs on d nodes $D_d = H_{\infty}(d,1) +$

 $D_d(k)$: convex hull of the degree sequences of all k-uniform hypergraphs on d nodes

(degree sequences)

 D_d : convex hull of the degree sequences of all hypergraphs on d nodes $D_d = H_{\infty}(d,1) +$

 $D_d(k)$: convex hull of the degree sequences of all k-uniform hypergraphs on d nodes

Q: check whether $x \in D_d(k) \cap \mathbb{Z}^d$ is the degree sequence of a k-uniform hypergraph. Necessary condition: sum of the coordinates of x is multiple of k.

[Erdős-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient

[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)

(degree sequences)

 D_d : convex hull of the degree sequences of all hypergraphs on d nodes $D_d = H_{\infty}(d,1)+$

 $D_d(k)$: convex hull of the degree sequences of all k-uniform hypergraphs on d nodes

Q: check whether $x \in D_d(k) \cap \mathbb{Z}^d$ is the degree sequence of a k-uniform hypergraph. Necessary condition: sum of the coordinates of x is multiple of k.

[Erdős-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient

[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)

Answer to Colbourn-Kocay-Stinson Q. (1986)
Deciding whether a given integer sequence is the degree sequence of a 3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017]

Primitive zonotopes, convex matroid optimization, and degree sequences of hypergraphs

 $\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes

Conjecture: $\delta(d, k)$ ≤ $\lfloor (k+1)d/2 \rfloor$ and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors (holds for all known $\delta(d, k)$)

$$\Rightarrow \delta(d, \mathbf{k}) = \lfloor (\mathbf{k} + 1)d/2 \rfloor$$
 for $\mathbf{k} < 2d$

- $ightharpoonup m(d,p) = |H_{\infty}(d,p)|$ (convex matroid optimization complexity)
- \triangleright determination of $\delta(3, \mathbf{k})$ and of $\delta(\mathbf{d}, 3)$? $(\delta(\mathbf{d}, 3) = 2\mathbf{d}$?)
- \triangleright complexity issues, e.g. decide whether a given point is a vertex of $Z_{\infty}(\mathbf{d},1)$
- Answer to [Colbourn-Kocay-Stinson 1986] question: Deciding whether a given integer sequence is the degree sequence of a 3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017]

Primitive zonotopes, convex matroid optimization, and degree sequences of hypergraphs

 $\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes

Conjecture : $\delta(d, k)$ ≤ $\lfloor (k+1)d/2 \rfloor$ and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors (holds for all known $\delta(d, k)$)

$$\Rightarrow \delta(d, \mathbf{k}) = \lfloor (\mathbf{k} + 1)d/2 \rfloor$$
 for $\mathbf{k} < 2d$

- $ightharpoonup m(d,p) = |H_{\infty}(d,p)|$ (convex matroid optimization complexity)
- \triangleright determination of $\delta(3, \mathbf{k})$ and of $\delta(\mathbf{d}, 3)$? $(\delta(\mathbf{d}, 3) = 2\mathbf{d}$?)
- \triangleright complexity issues, e.g. decide whether a given point is a vertex of $Z_{\infty}(\mathbf{d},1)$
- Answer to [Colbourn-Kocay-Stinson 1986] question: Deciding whether a given integer sequence is the degree sequence of a 3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017]

√ thank you