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Linear Optimization? 

Given an n-dimensional vector b and an n x d matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax = b 

    x ≥ 0 
 

linear algebra    linear optimization 
 



                  

Linear Optimization? 

Given an n-dimensional vector b and an n x d matrix A 
find, in any, a d-dimensional vector x such that : 
  
Ax = b     Ax ≤ b 

 
linear algebra    linear optimization 
 
Can linear optimization be solved in strongly polynomial  
time? is listed by Smale (Fields Medal 1966) as one of  
the top mathematical problems for the XXI century 
 
Strongly polynomial : algorithm independent from 
 the input data length and polynomial in n and d.  



Lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
ex. δ(3,3) = 6 and is achieved  
by a truncated cube 

 



Lattice polytopes with large diameter  

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d  
 
diameter δ(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most δ(P) edges 
 
δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
 
Ø  δ(P) : lower bound for the worst case number of iterations required 

by pivoting methods (simplex) to optimize a linear function over P 

Ø  Hirsch conjecture : δ(P) ≤ n – d   (n  number of inequalities) 
     was disproved [Santos 2012] 

 



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
upper bounds : 
 

 δ(d,1) ≤ d     [Naddef 1989] 
 

 δ(2,k) = O(k2/3)     [Balog-Bárány 1991] 
 

 δ(2,k) = 6(k/2π)2/3 +O(k1/3 log k)   [Thiele 1991]  
      [Acketa-Žunić 1995] 

 
 δ(d,k) ≤ kd     [Kleinschmid-Onn 1992] 

 
 δ(d,k) ≤ kd -  d/2             for k ≥ 2  [Del Pia-Michini 2016] 

 
 δ(d,k) ≤ kd -   2d/3  - (k - 3)    for k ≥ 3  [Deza-Pournin 2018] 

 

Lattice polytopes with large diameter  



δ(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d  
 
lower bounds : 
 

 δ(d,1) ≥ d    [Naddef 1989] 
 

 δ(d,2) ≥   3d/2    [Del Pia-Michini 2016] 
 

 δ(d,k) = Ω(k2/3 d)    [Del Pia-Michini 2016] 
 

 δ(d,k) ≥  (k+1)d /2   for k < 2d  [Deza-Manoussakis-Onn 2018] 
 

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 

3 3 

4 4 

5 5 

δ(d,1) = d    [Naddef 1989] 

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 

4 4 

5 5 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 

  

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 

4 4 6 

5 5 7 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016]   

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 

4 4 6 8 

5 5 7 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016] 
δ(4,3)=8, δ(3,4)=7, δ(3,5)=9  [Deza-Pournin 2018], [Chadder-Deza 2017] 

  

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10 

4 4 6 8 

5 5 7 10 

δ(d,1) = d    [Naddef 1989] 
δ(2,k) : close form   [Thiele 1991] [Acketa-Žunić 1995] 
δ(d,2) =   3d/2    [Del Pia-Michini 2016] 
δ(4,3)=8, δ(3,4)=7, δ(3,5)=9  [Deza-Pournin 2018], [Chadder-Deza 2017] 
δ(5,3)=10, δ(3,6)=10   [Deza-Deza-Guan-Pournin 2018]   

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10 11+ 12+ 13+ 

4 4 6 8 10+ 12+ 14+ 16+ 17+ 18+ 

5 5 7 10 12+ 15+ 17+ 20+ 22+ 25+ 

Ø  Conjecture [Deza-Manoussakis-Onn 2018]   δ(d,k) ≤  (k+1)d /2 
 
and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive 
lattice vectors. The conjecture holds for all known entries of δ(d,k) 

Lattice polytopes with large diameter  



Q. What is δ(2,k) : largest diameter of a polygon which vertices are 
drawn form the k x k grid? 
 
A polygon can be associated to a set of vectors (edges) summing up to 
zero, and without a pair of positively multiple vectors  
 
 
 
 
 
 
 
 
 
δ(2,3) = 4 is achieved by the 8 vectors : (±1,0), (0,±1), (±1,±1) 

Lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

Lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 

||x||1 ≤ 1 

Lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 

||x||1 ≤ 2 

Lattice polygons with many vertices 



δ(2,2) = 2 ; vectors : (±1,0), (0,±1) 
δ(2,3) = 4 ; vectors : (±1,0), (0,±1), (±1,±1) 
δ(2,9) = 8 ; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1) 

||x||1 ≤ 3 

Lattice polygons with many vertices 



2 !(!)
!

!!!
!

 
δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2) = 1, φ(3) = φ(4) = 2,… 

!!(!)
!

!!!
!

||x||1 ≤ p 

Lattice polygons with many vertices 



 
δ(2,k) =     for  k =         φ(p) : Euler totient function counting positive 

             integers less or equal to p relatively prime with p 
             φ(1) = φ(2) = 1, φ(3) = φ(4) = 2,… 

!!(!)
!

!!!
!2 !(!)

!

!!!
!

δ(2,k) 
                           k 

1 2 3 4 5 6 7 8 9 

p 1 2 3 

v 4 6 8 8 10 12 12 14 16 

δ 2 3 4 4 5 6 6 7 8 

Lattice polygons 



!!(!)
!

!!!
!

H1(2,p) : Minkowski sum generated by {x ∈ Z2 : ||x||1 ≤ p, gcd(x)=1, x ≻ 0} 
 
H1(2,p) has diameter δ(2,k) =    for k =   
 
 
Ex. H1(2,2) generated by (1,0), (0,1), (1,1), (1,-1)  (fits, up to translation, in 3x3 grid) 
 

    x ≻ 0 : first nonzero coordinate of x is nonnegative  

2 !(!)
!

!!!
!

 
 

||x||1 ≤ p 

Primitive polygons 



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Given a set G of m vectors (generators) 
 
Minkowski (G) : convex hull of the 2m sums of the m vectors in G 
Zonotope (G) : convex hull of the 2m signed  sums of the m vectors in G 
 

 up to translation Z(G) is the image of H(G) by an homothety of factor 2 
 
v  Primitive zonotopes: zonotopes generated by short integer vectors which 

are pairwise linearly independent  
 
 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  Hq(d, 1) : [0, 1]d cube for q ≠∞ 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  Z1(d,2) : permutahedron of type Bd 

 
 
 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  H1(3,2) : truncated cuboctahedron  
     (great rhombicuboctahedron) 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative  
 
Ø  H∞(3,1) : truncated small rhombicuboctahedron 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative 
   H+ / Z+: positive primitive lattice polytope x ∈ Zd

+ 
 
Ø  H1(d,2)+ : Minkowski sum of the permutahedron with the {0,1}d, i.e., 
     graphical zonotope obtained by the d-clique with a loop at each node 

  graphical zonotope ZG: Minkowski sum of segments [ei,ej] 
  for all edges {i,j} of a given graph G 

 
 
 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



Hq(d,p) : Minkowski (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

Zq(d,p) : Zonotope (x ∈ Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0) 
 

   x ≻ 0 : first nonzero coordinate of x is nonnegative 
   H+ / Z+: positive primitive lattice polytope x ∈ Zd

+ 
 
 
Ø  For k < 2d, Minkowski sum of a subset of the generators of H1(d,2 is, 
     up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2 

 
 

Primitive zonotopes 
(generalization of the permutahedron of type Bd )  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10 11+ 12+ 13+ 

4 4 6 8 10+ 12+ 14+ 16+ 17+ 18+ 

5 5 7 10 12+ 15+ 17+ 20+ 22+ 25+ 

Ø  Conjecture [Deza-Manoussakis-Onn 2018]   δ(d,k) ≤  (k+1)d /2 
 
and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive 
lattice vectors. The conjecture holds for all known entries of δ(d,k) 

Lattice polytopes with large diameter  



δ(d,k) 
                           k 

1 2 3 4 5 6 7 8 9 

d 

2 2 3 4 4 5 6 6 7 8 

3 3 4 6 7 9 10 11 12 13 

4 4 6 8 10 12 14 16 17 18 

5 5 7 10 12 15 17 20 22 25 

Ø  Conjecture [Deza-Manoussakis-Onn 2018]   δ(d,k) ≤  (k+1)d /2 
 
and δ(d,k) is achieved, up to translation, by a Minkowski sum of primitive 
lattice vectors. The conjecture holds for all known entries of δ(d,k) 

Lattice polytopes with large diameter  



Given a lattice (d,k)-polytope P, two vertices u and v such that δ(P) = d(u,v), 
then d(u,v) ≤ δ(d-1,k) + k  and d(u,v) < δ(d-1,k) + k unless: 
 
Ø  u+v = (k,k,...,k), 

Ø  any edge of P with u or v as vertex is {−1,0,1}-valued, 

Ø  any intersection of P with a facet of the cube [0,k]d is a (d−1)-dimensional 
face of P of diameter δ(d-1,k). 

 
Those conditions, combined with enumeration up to symmetry, drastically 
reduce the search space for lattice (d,k)-polytopes such that δ(P)=δ(d-1,k)+k  
 
Computationally ruling out δ(d,k) = δ(d-1,k) + k and using δ(d,k) ≤  (k+1)d /2 
for k < 2d yields : δ(3,4) = 7 and δ(3,5) = 9 

Ø  δ(great rhombicuboctahedron) = δ(3,5)  

v  Additional tools needed to rule out δ(d,k) = δ(d-1,k) + k -1 

Computational determination of δ(d,k)  
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 Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A034997 Number of Generalized Retarded Functions in Quantum Field Theory. 1

2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930 (list; graph; refs; listen; history; text; internal format)
OFFSET 1,1
COMMENTS a(d) is the number of parts into which d-dimensional space (x_1,...,x_d) is

split by a set of (2^d - 1) hyperplanes c_1 x_1 + c_2 x_2 + ...+ c_d x_d
=0 where c_j are 0 or +1 and we exclude the case with all c=0.

Also, a(d) is the number of independent real-time Green functions of Quantum
Field Theory produced when analytically continuing from euclidean
time/energy (d+1 = number of energy/time variables).  These are also known
as Generalized Retarded Functions.

The numbers up to d=6 were first produced by T. S. Evans using a Pascal
program, strictly as upper bounds only.  M. van Eijck wrote a C program
using a direct enumeration of hyperplanes which confirmed these and
produced the value for d=7. Kamiya et al. showed how to find these numbers
and some associated polynomials using more sophisticated methods, giving
results up to d=7. T. S. Evans added the last number on Aug 01 2011 using
an updated version of van Eijck's program, which took 7 days on a standard
desktop computer.

REFERENCES Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele
Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and
Algebra. Springer International Publishing, 2015. 157-171.

T. S. Evans, N-point finite temperature expectation values at real times,
Nuclear Physics B 374 (1992) 340-370.

H. Kamiya, A. Takemura and H. Terao, Ranking patterns of unfolding models of
codimension one, Advances in Applied Mathematics 47 (2011) 379 - 400.

M. van Eijck, Thermal Field Theory and Finite-Temperature Renormalisation
Group, PhD thesis, Univ. Amsterdam, 4th Dec. 1995.

LINKS Table of n, a(n) for n=1..8.
L. J. Billera, J. T. Moore, C. D. Moraites, Y. Wang and K. Williams, Maximal

unbalanced families, arXiv preprint arXiv:1209.2309, 2012. - From N. J. A.
Sloane, Dec 26 2012

T. S. Evans, What is being calculated with Thermal Field Theory?, arXiv:hep-
ph/9404262 and in "Particle Physics and Cosmology: Proceedings of the
Ninth Lake Louise Winter School", World Scientific, 1995 (ISBN 9810221002)

EXAMPLE a(1)=2 because the point x=0 splits the real line into two parts, the
positive and negative reals.

a(2)=6 because we can split two dimensional space into 6 parts using lines
x=0, y=0 and x+y=0.

CROSSREFS Sequence in context: A056642 A001199 A232469 * A067735 A118077 A013976
Adjacent sequences:  A034994 A034995 A034996 * A034998 A034999 A035000

KEYWORD nonn,more
AUTHOR Tim S. Evans
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Sloane OEI sequences 
H∞(d,1)+ vertices : A034997 = number of generalized retarded functions in 
quantum Field theory (determined till d =8) 
 
H∞(d,1) vertices : A009997 = number of regions of hyperplane arrangements 
with {-1,0,1}-valued normals in dimension d (determined till d =7) 
 
 
Estimating the number of vertices of H∞(d,1)+   
[Odlyzko 1988], [Zuev 1992], [Kovijanić-Vukićević 2007] 
 
 

   d2  (1-o(1))  ≤ log2 | H∞(d,1)+ | ≤ d2 
 
 
 
 

Computational determination of the  
number of vertices of primitive zonotopes 



Convex Matroid Optimization 

The optimal solution of max { f(Wx) : x ∈ S} is attained at a vertex of the 
projection integer polytope in Rd  : conv(WS) = Wconv(S)  
 
S : set of feasible point in Zn  (in the talk S ∈ {0,1} n ) 

W : integer d x n matrix   (W is {0,1,…, p}-valued) 
f : convex function from Rd  to R 
 
Q. What is the maximum number v(d,n) of vertices of conv(WS) when  
S ∈ {0,1} n and W is a {0,1}-valued d x n matrix ? 
 
obviously  v(d,n) ≤ |WS| = O(nd) 
in particular  v(2,n) = O(n2),  and v(2,n) = Ω(n0.5) 



[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
Ex: maximum number m(2,1) of vertices of a planar projection conv(WS)  
of matroid S by a binary matrix W is attained by the following matrix and 
uniform matroid of rank 3 and order 8: 
 
 

 W = 
 
 
 
S = U(3,8) = 

                 
             

                                                                                  conv(WS)  

2 3 0 1 

1 

2 

3 

Convex Matroid Optimization 



Convex Matroid Optimization 

The optimal solution of max { f(Wx) : x ∈ S} is attained at a vertex of the 
projection integer polytope in Rd  : conv(WS) = Wconv(S)  
 
S : set of feasible point in Zn  (in the talk S ∈ {0,1} n ) 

W : integer d x n matrix   (W is mostly {0,1,…, p}-valued) 
f : convex function from Rd  to R 
 
Q. What is the maximum number v(d,n) of vertices of conv(WS) when  
S ∈ {0,1} n and W is a {0,1}-valued d x n matrix ? 
 
obviously  v(d,n) ≤ |WS| = O(nd) 
in particular  v(2,n) = O(n2),  and v(2,n) = Ω(n0.5) 
 
[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 



[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
[Deza-Manoussakis-Onn 2018] Given matroid S of order n, {0,1,…,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS) 
is equal to the number of vertices of H∞(d,p) 
 

m(d,p) = | H∞(d,p) | 
 
 

Convex Matroid Optimization 
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[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued  
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S 
 
[Deza-Manoussakis-Onn 2018] Given matroid S of order n, {0,1,…,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS) 
is equal to the number of vertices of H∞(d,p) 
 

m(d,p) = | H∞(d,p) | 
 

[Melamed-Onn 2014]          [Deza-Manoussakis-Onn 2017] 
 
d 2d ≤ m(d,1) ≤           d! 2d ≤ m(d,1) ≤          - f(d)  
 
24 ≤ m(3,1) ≤ 158          m(3,1) = 96  
64 ≤ m(4,1) ≤ 19840          m(4,1) = 5376   
  
m(2,1) = 8    

2 (3! − 3)/2
!

!!!

!!!
!2 (3! − 3)/2

!

!!!

!!!
!

Convex Matroid Optimization 

m(2,p) = 8 



 
Dd : convex hull of the degree sequences of all hypergraphs on d nodes 

Dd  = H∞(d,1)+ 
 

Dd (k) : convex hull of the degree sequences of all k-uniform hypergraphs  
 on d nodes 

 
 

Primitive Zonotopes  
(degree sequences)  



 
Dd : convex hull of the degree sequences of all hypergraphs on d nodes 

Dd  = H∞(d,1)+ 
 

Dd (k) : convex hull of the degree sequences of all k-uniform hypergraphs  
 on d nodes 

 
Q: check whether x ∈ Dd (k) ∩ Zd  is the degree sequence of a k-uniform 
hypergraph. Necessary condition: sum of the coordinates of x is multiple of k. 
 
[Erdős-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient 
 
[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)  

Primitive Zonotopes  
(degree sequences)  



 
Dd : convex hull of the degree sequences of all hypergraphs on d nodes 

Dd  = H∞(d,1)+ 
 

Dd (k) : convex hull of the degree sequences of all k-uniform hypergraphs  
 on d nodes 

 
Q: check whether x ∈ Dd (k) ∩ Zd  is the degree sequence of a k-uniform 
hypergraph. Necessary condition: sum of the coordinates of x is multiple of k. 
 
[Erdős-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient 
 
[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)  
 
Ø  Answer to Colbourn-Kocay-Stinson Q. (1986)  
     Deciding whether a given integer sequence is the degree sequence of a  
     3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017] 

Primitive Zonotopes  
(degree sequences)  



δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture : δ(d,k) ≤  (k+1)d/2   and δ(d,k)  is achieved, up to translation, 

by a Minkowski sum of primitive lattice vectors (holds for all known δ(d,k) ) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

 
Ø  m(d,p) = | H∞(d,p) |   (convex matroid optimization complexity) 
   
Ø  determination of δ(3,k) and of δ(d,3)  ?  (δ(d,3) =2d  ?) 

Ø  complexity issues, e.g. decide whether a given point is a vertex of Z∞(d,1) 

Ø  Answer to [Colbourn-Kocay-Stinson 1986] question: 
     Deciding whether a given integer sequence is the degree sequence of a  
     3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017] 
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δ(d,k): largest diameter over all lattice (d,k)-polytopes  
 
Ø  Conjecture : δ(d,k) ≤  (k+1)d/2   and δ(d,k)  is achieved, up to translation, 

by a Minkowski sum of primitive lattice vectors (holds for all known δ(d,k) ) 
  
 ⇒ δ(d,k) =  (k+1)d/2   for k < 2d 

 
Ø  m(d,p) = | H∞(d,p) |   (convex matroid optimization complexity) 
   
Ø  determination of δ(3,k) and of δ(d,3)  ?  (δ(d,3) =2d  ?) 

Ø  complexity issues, e.g. decide whether a given point is a vertex of Z∞(d,1) 

Ø  Answer to [Colbourn-Kocay-Stinson 1986] question: 
     Deciding whether a given integer sequence is the degree sequence of a  
     3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017] 

ü  thank you 
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