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INE YE OLDE DÆS

In the dark ages there was tape.

Data is stored along tape as magnetised regions.
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FIELD UP, FIELD DOWN, ONE AND ZERO

Naive idea — store 1’s and 0’s as regions with field in different directions.

A core question

How much data can we store?

• n regions can store 2n possible words.
• 1 bit per region.
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REAL WORLD GETS IN THE WAY

The engineering is easier if we encode data as
• Store 0 as “field unchanged”
• Store 1 as “field changed”
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FLIP-FLOP PROBLEMS

• The magnetic regions are not perfectly discrete
• The read mechanism might misread “change-change”.
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ENCODE DATA DIFFERENTLY

• Store data so that we forbid “change-change”
• Store words in {0, 1} so that there is no “11” subword.

A core question

How much data can we store?

How many legal words are there?
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COUNT LEGAL WORDS

Let
• ψn(⊕) be # legal words ending in ⊕
• ψn(	) be # legal words ending in 	

ψn+1(⊕) = ψn(	)

ψn+1(	) = ψn(⊕) + ψn(	)

= ψn

ψn+1(	) = ψn(	) + ψn−1(	)

ψn = ψn−1 + ψn−2
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BUILD A TRANSFER MATRIX

More generally. . .

[
ψn+1(	)
ψn+1(⊕)

]
=

(
1 1
1 0

) [
ψn(	)
ψn(⊕)

]

=

(
1 1
1 0

)n [
ψ0(	)
ψ0(⊕)

]
= PT

(
λn

1 0
0 λn

2

)
P
[

1
1

]
Number of words ∼ nth power of dominant eigenvalue
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1D IS EASY

So for this “11”-forbidden model

ψn ∼
(

1 +
√

5
2

)n

Entropy of encoding is log2

(
1+
√

5
2

)
≈ 0.69 bits per region.

What about other models?
• Run-length limited (d, k)

— forbid subwords {11, 101, 1001, . . . 10d1, 0k+1}.
• Charge model (b)

— cumulative charge lies between ±b.
• Parity models

— even # 0’s between 1’s.
— odd # 0’s between 1’s.

Use same transfer matrix machinery.
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BUT NOW WE LIVE IN THE FUTURE. . .

and we can store data in 2d! (InPhase Technologies & hVault)

Coding theorists extend entropy question from 1d to 2d

A core question
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BUT NOW WE LIVE IN THE FUTURE. . .

and we can store data in 2d! (InPhase Technologies & hVault)

Coding theorists extend entropy question from 1d to 2d

A core question

How many 2d words avoid 11 and 1
1 ?
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WHAT DOES THIS LOOK LIKE?

2d coding problem = hard square lattice gas

= independent sets on Z2
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WHAT DO WE WANT TO KNOW?

More generally. . .

2d shift of finite type

• Given a finite alphabet A, and
• a finite set of words F ,

• a word in AZ2
is valid when it avoids words in F .

Entropy

• Let Cn×n be the # valid n× n words.

• Entropy is log2 κ = lim
n→∞

1
n2 log2 Cn×n

So what do we know. . .
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PROVABLY HARD

• Algorithmically undecideable if there are any valid words
[Berger 1966]

• In 1d, κ ∈ R+ is an entropy iff κ is a Peron number
[Lind 1983]

• In 2d and up, κ ∈ R+ is an entropy iff κ is recursively enumerable
[Hochman & Meyerovitch 2007]

• In 2d and up, κ known exactly for very few SFTs
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EXAMPLE OF EXACT

Odd constraint
Words in {0, 1} so that between 1’s there are odd number of 0’s.
[Louidor & Marcus 2010] κ =

√
2.

One sub-lattice fixed as 0’s and other is unconstrained.
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BOUNDS

Back to hardsquares. . .
• No reason that κ should have a “nice” expression.
• So try to find tight bounds.

Most approaches based on transfer matrices

Big problem — # states grows exponentially with width
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TRANSFER MATRIX

Tw = column-to-column TM for hard squares in strip of width w

κ = lim
w→∞

Λ
1/w
w where Λw is dominant eigenvalue
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USEFUL IDEAS FROM LINEAR ALGEBRA 101

Symmetric matrix V
• Eigenvalues λ1, . . . , λn all real

• Min-max Theorem — for any non-trivial vector x,

λmin ≤
〈x |V | x〉
〈x | x〉 ≤ λmax

• Trace of power

Tr Vk = λk
1 + λk

2 + · · ·+ λk
n

Tr V2k = λ2k
1 + λ2k

2 + · · ·+ λ2k
n ≥ λ2k

max

Leverage these to get good bounds
[Engel 1990] and [Calkin & Wilf 1998]
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TRACE TRICK

Rewrite trace

Tr V2k =
∑

Vψ0,ψ1 Vψ1,ψ2 . . .Vψ2k−1,ψ0

Sum is over all sequences of states, but only “legal” ones count

So Tr T2k
w is equivalent to “legal” configurations on rings

Tr T2k
w =

〈
1
∣∣∣Bw−1

2k

∣∣∣ 1〉
Sneaky — “width” is now exponent.
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LIMITS

So build TM for rings B2k — also grows exponentially with circumference.

Λ2k
w ≤ Tr T2k

w =
〈

1
∣∣∣Bw−1

2k

∣∣∣ 1〉
Raise to 1/w and let width→∞

Λ
2k/w
w ≤

(
Tr T2k

w
)1/w

=
〈
1
∣∣Bw−1

2k

∣∣ 1〉1/w

↓ ↓
κ2k ≤ ξ2k

Upper bound

Let B2k be the TM for system on ring of circumference 2k, then

κ ≤ ξ1/2k
2k

where ξ2k is dominant eigenvalue of B2k.
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RESULTS

ξ2 = 2.41421356237309504 . . . κ ≤ 1.55377397403003730 . . .

ξ4 = 5.15632517465866169 . . . κ ≤ 1.50690222590181180 . . .

ξ6 = 11.5517095660481450 . . . κ ≤ 1.50351480947590302 . . .

[Calkin & Wilf 1998]

ξ36 = 2349759.74655388695 . . . κ ≤ 1.5030480824753399273

[Friedland, Lundow & Markström 2010]

Huge transfer matrix — use symmetries to compress it.
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RAYLEIGH QUOTIENTS

Min-max theorem

λmin ≤
〈x |V | x〉
〈x | x〉 ≤ λmax

So the simplest idea — set |x〉 = |1〉.

Λw ≥
〈1 |Tw | 1〉
〈1 | 1〉

For fixed w this is silly — instead compute the eigenvalue by power method.
But if we can choose a better vector. . .
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Λw ≥
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But if we can choose a better vector. . .

Rechnitzer



Packing bits 2d Bounds Upper Lower Picking well Beware CTM Results

SNEAKY TRICKS AGAIN

Vector |1〉 a poor choice.

Λ
p
w ≥

〈
1
∣∣Tp

w
∣∣ 1〉

〈1 | 1〉

Sneaky — width becomes exponent

Rechnitzer



Packing bits 2d Bounds Upper Lower Picking well Beware CTM Results

SNEAKY TRICKS AGAIN

Power method — replace |1〉with Tq
w |1〉.

Λ
p
w ≥

〈
Tq

w1
∣∣Tp

w
∣∣Tq

w1
〉〈

Tq
w1
∣∣Tq

w1
〉

Sneaky — width becomes exponent
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SNEAKY TRICKS AGAIN

All configs in w× 2q rectangle = configs in 2q× w rectangle

〈
Tq

w1
∣∣Tq

w1
〉

=
〈

1
∣∣∣T2q

w

∣∣∣ 1〉 =
〈
1
∣∣Tw

2q
∣∣ 1〉

Sneaky — width becomes exponent
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Λ
p
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w
∣∣Tq
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w1
∣∣Tq

w1
〉
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SNEAKY TRICKS AGAIN

Massage things a little

〈
Tq

w1
∣∣Tp

w
∣∣Tq

w1
〉

=
〈

1
∣∣∣T2q+p

w

∣∣∣ 1〉

Sneaky — width becomes exponent
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Massage things a little

〈
Tq

w1
∣∣Tp

w
∣∣Tq

w1
〉

=
〈

1
∣∣∣T2q+p

w
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Sneaky — width becomes exponent
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SNEAKY TRICKS AGAIN

Again use the x↔ y symmetry

〈
Tq

w1
∣∣Tp

w
∣∣Tq

w1
〉

=
〈

1
∣∣∣T2q+p

w

∣∣∣ 1〉 =
〈
1
∣∣Tw

2q+p
∣∣ 1〉

Sneaky — width becomes exponent
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RESULTS

Putting this together

Λ
p
w ≥

〈
1
∣∣Tw

2q+p

∣∣ 1〉〈
1
∣∣∣Tw

2q

∣∣∣ 1〉
Now raise to 1/w and let w→∞

Lower bound [Calkin & Wilf 1998]

For any p, q ≥ 1

κp ≥
Λ2q+p

Λ2q

• κ ≥ 1.50304768131466259 . . . (p = 3, q = 2) [Calkin & Wilf]

• κ ≥ 1.50304808247533226 . . . (p = 1, q = 13) [Friedland et al]
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PICK A BETTER VECTOR

• We use corner transfer matrix formalism to pick a better vector.

• Corner transfer matrices used to study lattice gas & magnet models
[Baxter 1968]

• Very famously lead to solution of hard hexagons [Baxter 1980]
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[Baxter 1968]

• Very famously lead to solution of hard hexagons [Baxter 1980]
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HOW TO BUILD A VECTOR

Each entry of vector corresponds to a state along the cut

Baxter’s Ansatz which extends [Kramers & Wannier 1941]

Build Rayleigh quotient with vector ψ

ψ(σ1, σ2, . . . , σw) = Tr [F(σ1, σ2)F(σ2, σ3) . . . F(σw, σ1)]

For some matrices F(a, b).
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WHAT DOES THIS LOOK LIKE?

• Can think of F as a “literal” half-row transfer matrix.
— but it can be almost any matrix.

• Trace makes it a cylinder — doesn’t change bound.
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RAYLEIGH QUOTIENT→ TRACES

Rayleigh quotient

Λw ≥
〈ψ |Tw |ψ〉
〈ψ |ψ〉

〈ψ |T |ψ〉 = Tr Sw

〈ψ |ψ〉 = Tr Rw
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RAYLEIGH QUOTIENT→ TRACES

Rayleigh quotient

Λw ≥
〈ψ |Tw |ψ〉
〈ψ |ψ〉

〈ψ |T |ψ〉 = Tr Sw

〈ψ |ψ〉 = Tr Rw

Where ω = 1 if face valid else ω = 0.
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TO GET A BOUND

Lower bound

κ = lim
w→∞

Λ
1/w
w

≥ lim
w→∞

(
Tr Sw

Tr Rw

)1/w

=
η

ξ

where ξ, η are dominant eigenvalues of R and S.

1 Pick matrices F — note dimension need not be related to w
2 Form matrices R and S
3 Compute dominant eigenvalues of ξ, η.

But how do we pick F?
And where are these infamous “corner transfer matrices”?
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EIGENVECTORS 7→ EIGENMATRICES(?)

R |X〉 = ξ |X〉

∑
b

F(a, b)X(b)F(b, a) = ξX(a)

S |Y〉 = η |Y〉

∑
c,d

ω

(
a b
c d

)
F(a, c)Y(c, d)F(d, b) = ηY(a, b)

|X〉 , |Y〉 eigenvectors of R and S.
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EIGENVECTORS 7→ EIGENMATRICES(?)

R |X〉 = ξ |X〉
∑

b

F(a, b)X(b)F(b, a) = ξX(a)

S |Y〉 = η |Y〉
∑
c,d

ω

(
a b
c d

)
F(a, c)Y(c, d)F(d, b) = ηY(a, b)

X(a),Y(a, b) ≈ “half-plane transfer matrices”
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TO MAXIMISE, PLANES 7→ CORNER×CORNER

Baxter showed that Rayleigh quotient stationary when

X(a) = A(a)2 Y(a, b) = A(a)F(a, b)A(b)

where A is half of X — a “corner transfer matrix”
Baxter then carefully picked F to make things work.
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RENORMALISE INSTEAD

• We have used “corner transfer matrix renormalisation group method”
[Nishino & Okunishi 1996]

• Related to density matrix renormalisation group method
[White 1992]

• The central idea = only keep important parts of A.
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• We have used “corner transfer matrix renormalisation group method”
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• Related to density matrix renormalisation group method
[White 1992]

• The central idea = only keep important parts of A.
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BUILD RECURSIVELY

Start by building “literal” matrices. Let
• A be corner transfer matrix for a 2× 2 grid
• F be the half-row / half-column transfer matrix for a 1× 2 grid

• Then build larger matrices by

Al(c)|d,a =
∑

d

ω

(
a b
c d

)
F(c, d)A(b)F(b, a)

F(c, d)|b,a = ω

(
a b
c d

)
F(b, a)

• Iterate until A and F are huge — they are still “literal”.
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NOW ESTIMATE EIGENVALUES ξ, η

• Look at eigenvalue equation:

ξ
∑

a

X(a) =
∑
a,b

F(a, b)X(b)F(b, a)

• Invariant under similarity transform, so can diagonalise A.
• Key idea: discard small eigenvalues

Huge “literal” A, F 7→ small “aphysical” A, F.

Clever idea [Nishino & Okunishi 1996]

• Building huge literal A, F and then projecting it down is wasteful.
• Instead grow & project frequently until A, F converge.
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∑
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PUT IT ALL TOGETHER

1 Start with “reasonable” A, F.

2 Grow & project repeatedly until A, F converge.

3 Use this F to compute ξ, η and so lower bound for κ.

4 Grow A, F a little larger and repeat from #2.

Lower bound [YBC & AR]

κ ≥ 1. 5030480824753322643220

66329475
553689385781038610305062028101
73593385039692344038046329965

Previous best lower bound [Friedland, Lundow & Markström 2010]
Previous best estimate [Baxter 1999]
Our lower bound
Our best estimate same except last 2 digits.
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PUT IT ALL TOGETHER

1 Start with “reasonable” A, F.

2 Grow & project repeatedly until A, F converge.

3 Use this F to compute ξ, η and so lower bound for κ.

4 Grow A, F a little larger and repeat from #2.

Lower bound [YBC & AR]

κ ≥ 1. 503048082475332264322066329475
55368938578103861030506202810

1
73593385039692344038046329965

Previous best lower bound [Friedland, Lundow & Markström 2010]
Previous best estimate [Baxter 1999]

Our lower bound
Our best estimate same except last 2 digits.
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PUT IT ALL TOGETHER

1 Start with “reasonable” A, F.

2 Grow & project repeatedly until A, F converge.

3 Use this F to compute ξ, η and so lower bound for κ.

4 Grow A, F a little larger and repeat from #2.

Lower bound [YBC & AR]

κ ≥ 1. 503048082475332264322066329475
553689385781038610305062028101
73593385039692344038046329947

Previous best lower bound [Friedland, Lundow & Markström 2010]
Previous best estimate [Baxter 1999]
Our lower bound

Our best estimate same except last 2 digits.
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OTHER MODELS

Hard squares, Read-write Isolated Memory and Non-Attacking Kings
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OTHER MODELS

Even model
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Charge 3
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RESULTS

Substantial improvement of all previous lower bounds

Model Matrix size Lower bound on (and estimate of) κ
NAK 256 1.342 643 951 124 601 297 851 730 161 875

740 395 719 438 196 938 393 943 434 885
455 0 (1)

RWIM 128 1.448 957 371 775 608 489 872 231 406 108
136 686 434 371 (7)

Even 128 1.357 587 502 184 123 (5)

Charge(3) 74 1.357 587 50

4-Colouring 96 2.336 056 641 041 133 656 814 01 (4)

5-Colouring 64 3.250 404 923 167 119 143 819 73 (6)

• NAK, RWIM, Even, Charge(3) — [Louidor & Marcus (2010)]
• 4-Colouring and 5-colouring — [Lundow & Markström (2008)]

Why are Even and Charge(3) the same?

Rechnitzer



Packing bits 2d Bounds Upper Lower Picking well Beware CTM Results

RESULTS

Substantial improvement of all previous lower bounds

Model Matrix size Lower bound on (and estimate of) κ
NAK 256 1.342 643 951 124 601 297 851 730 161 875

740 395 719 438 196 938 393 943 434 885
455 0 (1)

RWIM 128 1.448 957 371 775 608 489 872 231 406 108
136 686 434 371 (7)

Even 128 1.357 587 502 184 123 (5)

Charge(3) 74 1.357 587 50

4-Colouring 96 2.336 056 641 041 133 656 814 01 (4)

5-Colouring 64 3.250 404 923 167 119 143 819 73 (6)

• NAK, RWIM, Even, Charge(3) — [Louidor & Marcus (2010)]
• 4-Colouring and 5-colouring — [Lundow & Markström (2008)]

Why are Even and Charge(3) the same?
Rechnitzer



Packing bits 2d Bounds Upper Lower Picking well Beware CTM Results

OPEN QUESTIONS

• What other models?

• Upper bounds?
• Methods in literature require computing eigenvalues of huge matrices

Can we find a method that relies on picking a good vector?

Bounds due to [Collatz 1942]

If T is non-negative and x is any positive vector, then

min
i

∣∣∣∣ (Tx)i

xi

∣∣∣∣ ≤ Λ ≤ max
i

∣∣∣∣ (Tx)i

xi

∣∣∣∣
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