Cartes avec un nombre fixé de trous

Gwendal Collet, Éric Fusy

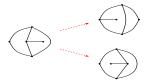
LIX, École Polytechnique

24 mai 2011

Les cartes...

Définition : Carte

Une carte est un graphe dessiné sur une surface sans croisements d'arêtes.



(a) Un graphe et deux plongements sur la sphère

(b) Une carte sur le tore générée aléatoirement

Carte bipartie

Une carte est bipartie si toutes ses faces sont de degré pair.

... avec des trous

Trou (sur la sphère)

Un trou est une face marquée et orientée dans le sens des aiguilles d'une montre.

Exemples:

- une carte sur une sphère à un trou est une carte enracinée.
- une carte sur une sphère à deux trous est une carte sur un cylindre.

Problème

Énumération des cartes avec des trous de longueur fixée.

Les travaux précédents (Bertrand Eynard)

La série génératrice des cartes biparties sur la sphère à deux trous vérifie :

$$T_{h_1,h_2} = \gamma^{h_1+h_2} \sum_{j=0}^{h_2/2} \frac{h_1! h_2! (h_2 - 2j)}{j! (\frac{h_1 - h_2}{2} + j)! (\frac{h_1 + h_2}{2} - j)! (h_2 - j)!}$$

La série génératrice des cartes biparties sur la sphère à trois trous vérifie :

$$T_{l_1,l_2,l_3} = C_{l_1} C_{l_2} C_{l_3} \frac{\gamma^{l_1 + l_2 + l_3}}{\gamma y'(1)} \frac{1 + (-1)^{l_1 + l_2 + l_3}}{2}$$

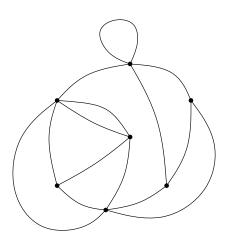
où $C_l = \frac{l!}{(\lfloor l/2 \rfloor)!(\lfloor (l-1)/2 \rfloor)!}$ et γ , y sont des séries formelles.

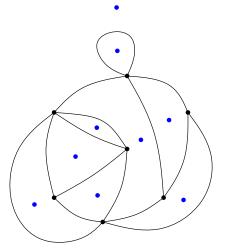
Les travaux précédents (Bertrand Eynard)

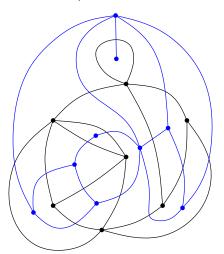
Méthode utilisée :

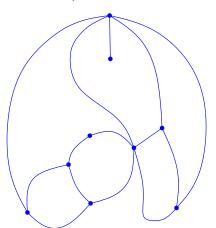
- Équations de boucle obtenues en généralisant les opérations de découpage de Tutte,
- Extraction de coefficient par résidu afin de fixer la longueur des trous.

Méthode analytique \Rightarrow Pas de vision combinatoire! Formules parfois inélégantes : pas de symétrie dans le cas à 2 trous...









Orientation eulérienne minimale

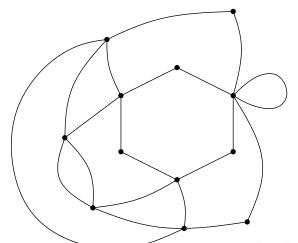
Une carte enracinée admet une orientation eulérienne si chacune de ses arêtes peut être orientée de manière à ce que les degrés entrants et sortants soient égaux en chaque sommet.

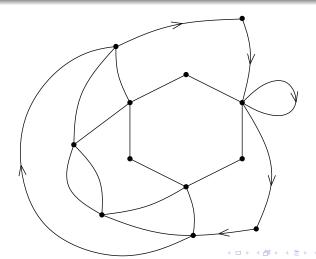
Cette orientation est minimale si et seulement si elle ne forme pas

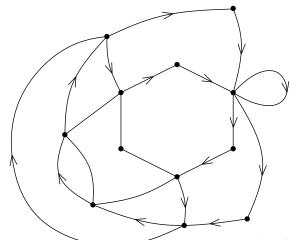
de circuit eulérien indirect (dans le sens contraire des aiguilles d'une montre par rapport à la racine).

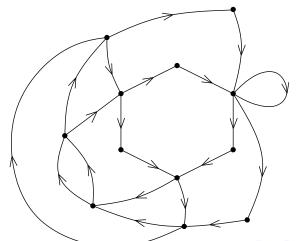
Lemme

Toute carte eulérienne enracinée admet une unique orientation eulérienne minimale.

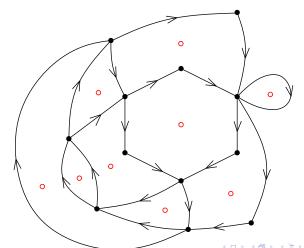


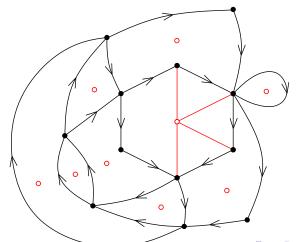


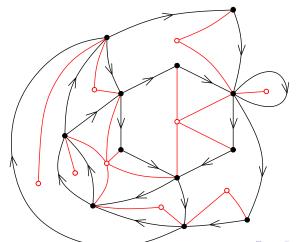


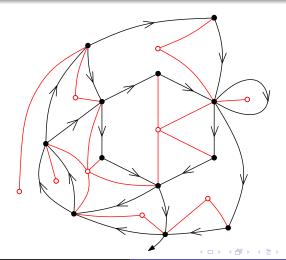


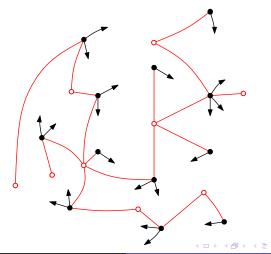
Des cartes aux mobiles











Série génératrice des mobiles

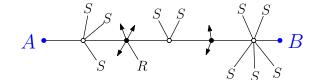
Séries génératrices des mobiles R et S

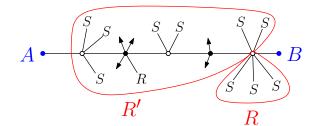
$$R(t, t_2, \dots, t_{2i}, \dots) = \frac{t}{1 - S}$$

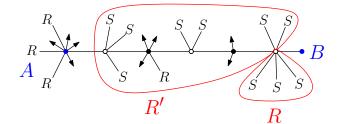
$$S(t, t_2, \dots, t_{2i}, \dots) = \sum_i t_{2i} {2i - 1 \choose i} R^{i-1}$$
 $\Rightarrow R(t, t_2, \dots, t_{2i}, \dots) = t + \sum_i t_{2i} {2i - 1 \choose i} R^i$

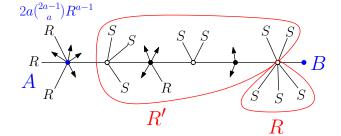
4 •

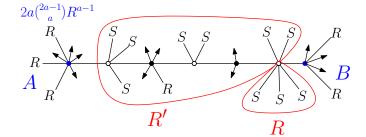
• B

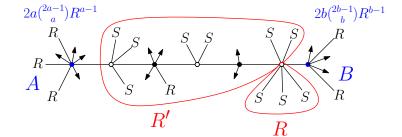












Bilan

Au final, on obtient :

$$M_{2a,2b} = ab \binom{2a}{a} \binom{2b}{b} R' R^{a+b-1}$$

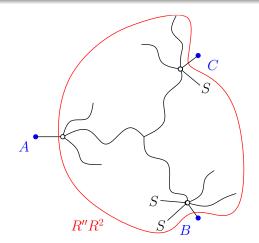
Mais on a marqué la face externe : il s'agit de la dérivée de la série qui nous intéresse \Rightarrow intégration !

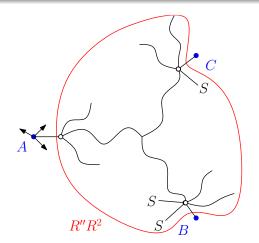
Or,
$$R'R^{a+b-1} = (\frac{R^{a+b}}{a+b})'$$
, donc:

$$T_{2a,2b} = ab \binom{2a}{a} \binom{2b}{b} \frac{R^{a+b}}{a+b}$$

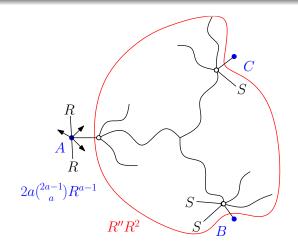
À comparer avec la formule obtenue par Eynard, non symétrique en a et b malgré la symétrie du problème.

$$A$$
 S
 S
 B



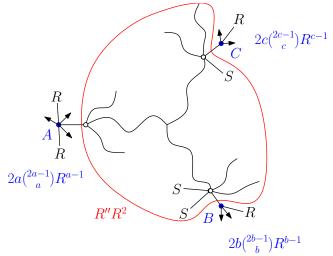


Cas général : 3 points marqués non alignés



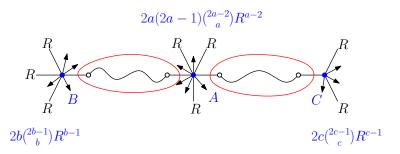
Des cartes aux mobiles Cas biparti à 2 trous Formule pour un nombre arbitraire de trous

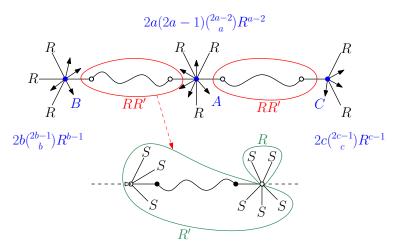
Cas général : 3 points marqués non alignés



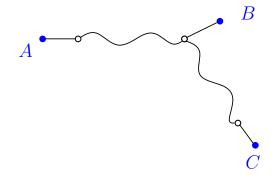
Des cartes aux mobiles
Cas biparti à 2 trous
Formule pour un nombre arbitraire de trous

Des cartes aux mobiles Cas biparti à 2 trous Formule pour un nombre arbitraire de trous

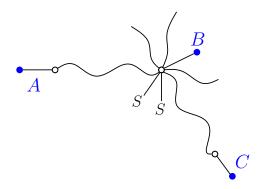


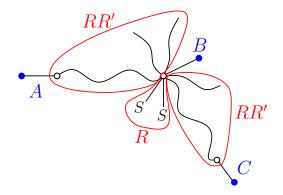


Des cartes aux mobiles Cas biparti à 2 trous Cas biparti à 3 trous Formule pour un nombre arbitraire de trous

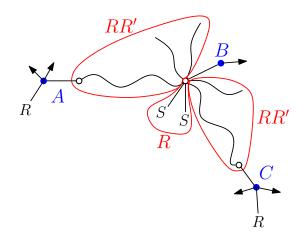


Des cartes aux mobiles Cas biparti à 2 trous Cas biparti à 3 trous Formule pour un nombre arbitraire de trous





Des cartes aux mobiles Cas biparti à 2 trous Cas biparti à 3 trous Formule pour un nombre arbitraire de trous



Bilan

Au final, en additionnant les trois cas, on obtient :

$$M_{2a,2b,2c} = abc \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} K$$

où
$$K = (a+b+c-1)R'^2R^{a+b+c-2} + R''R^{a+b+c-1}$$

Mais on a marqué la face externe : il s'agit de la dérivée de la série qui nous intéresse ⇒ intégration !

Or,
$$K = (R'R^{a+b+c-1})'$$
, donc :

$$T_{2a,2b,2c} = abc \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} R' R^{a+b+c-1}$$

Posons :
$$C_a = a \binom{2a}{a}$$
.

• 2 trous :
$$C_a C_b \frac{R^{a+b}}{a+b}$$

Posons :
$$C_a = a \binom{2a}{a}$$
.

• 2 trous : $C_a C_b \frac{R^{a+b}}{a+b}$

• 3 trous : $C_a C_b C_c R' R^{a+b+c-1}$

Posons :
$$C_a = a \binom{2a}{a}$$
.

- 2 trous : $C_a C_b \frac{R^{a+b}}{a+b}$
- 3 trous : $C_a C_b C_c R' R^{a+b+c-1}$
- 4 trous :

$$C_a C_b C_c C_d (R''R^{a+b+c+d-1} + (a+b+c+d-1)R'^2R^{a+b+c+d-2})$$

```
Posons: C_a = a\binom{2a}{a}.

• 2 trous: C_a C_b \frac{R^{a+b}}{a+b}

• 3 trous: C_a C_b C_c R' R^{a+b+c-1}

• 4 trous: C_a C_b C_c C_d (R'' R^{a+b+c+d-1} + (a+b+c+d-1)R'^2 R^{a+b+c+d-2})

\Rightarrow n \text{ trous}: C_{a_1} \dots C_{a_n} (\frac{R^{a_1+\cdots+a_n}}{a_1+\cdots+a_n})^{(n-2)}?
```

Théorème

La série génératrice des cartes biparties à n trous de longueurs respectives $2a_1, \ldots, 2a_n$ est :

$$T_{2a_1,...,2a_n} = \prod_{1 < i < n} a_i \binom{2a_i}{a_i} \left(\frac{R^{\sum_{i=1}^n a_i}}{\sum_{i=1}^n a_i} \right)^{(n-2)}$$

Proof.

Extraction des coefficients puis comparaison avec les coefficients obtenus par la méthodes des slicings de Tutte.

$$2\frac{e!}{v!} \prod_{i=1}^{k} \frac{1}{n_i!} {2i-1 \choose i-1}^{n_i}$$

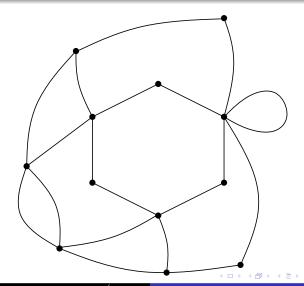
Orientation eulérienne partielle minimale

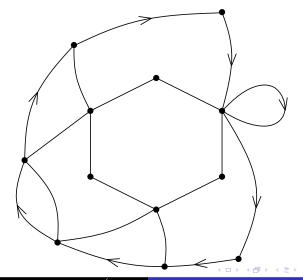
Même définition que pour les orientations eulériennes sans la nécessité d'orienter toutes les arêtes.

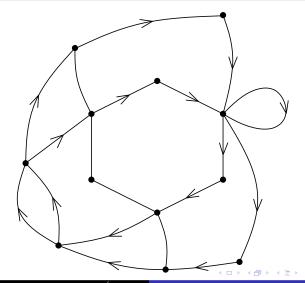
Elle est minimale si elle ne crée pas de circuit eulérien **partiel** indirect.

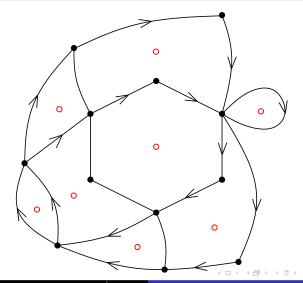
Lemme

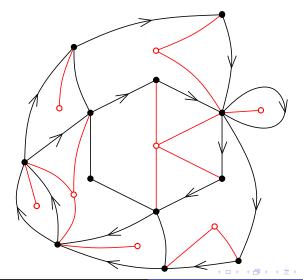
Toute carte enracinée possède une unique orientation eulérienne partielle minimale.

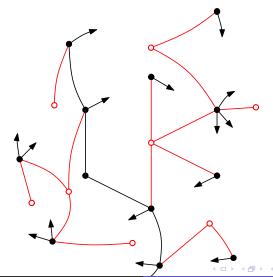








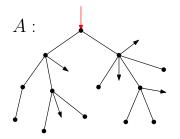


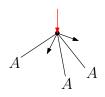


Lemme

Si une carte possède exactement deux sommets de degré impair, ces deux sommets sont reliés par un chemin noir dans le mobile associé. De plus, toutes les arêtes noir-noir sont contenues dans ce chemin.

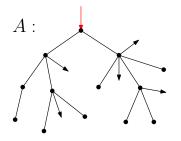
Arbre bourgeonnant noir

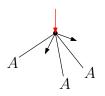




 $\begin{array}{c} i \text{ fils noirs} \\ i-1 \text{ bourgeons} \end{array}$

Arbre bourgeonnant noir

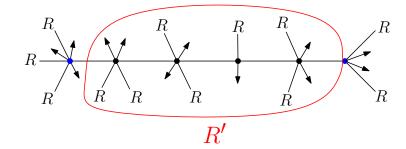




i fils noirs i-1 bourgeons

Série génératrice des arbres bourgeonnants noirs

$$A = t + \sum_{i>1} t_{2i} {2i-1 \choose i} A^i = R$$



Bilan

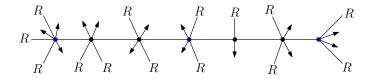
On obtient :

$$M_{2a+1,2b+1} = (2a+1)(2b+1)\binom{2a}{a}\binom{2b}{b}R'R^{a+b}$$

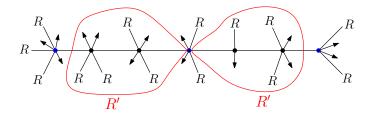
Comme pour le cas biparti, il faut intégrer, donc :

$$T_{2a+1,2b+1} = (2a+1)(2b+1) {2a \choose a} {2b \choose b} \frac{R^{a+b+1}}{a+b+1}$$

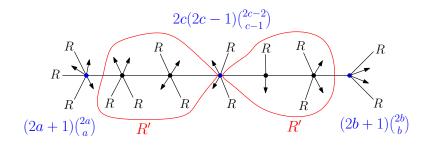
1er cas : 3ème sommet sur le chemin noir



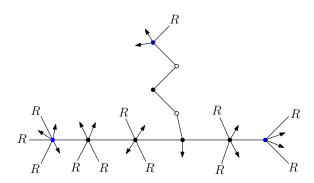
1er cas : 3ème sommet sur le chemin noir



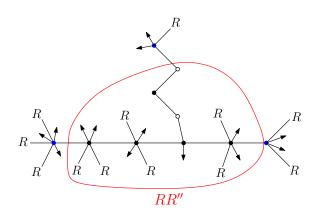
1er cas : 3ème sommet sur le chemin noir



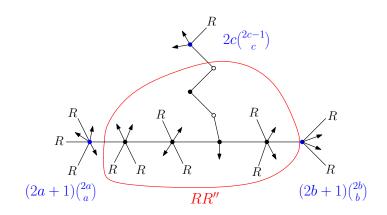
2ème cas : 3ème sommet sur les côtés du chemin noir



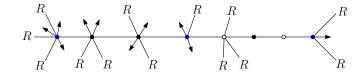
2ème cas : 3ème sommet sur les côtés du chemin noir



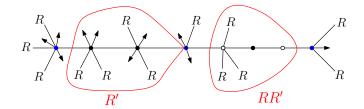
2ème cas : 3ème sommet sur les côtés du chemin noir



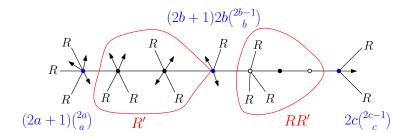
3ème cas : 3ème sommet sur le chemin noir



3ème cas : 3ème sommet sur le chemin noir



3ème cas : 3ème sommet sur le chemin noir



Bilan

Au final, en additionnant les trois cas, on obtient :

$$M_{2a+1,2b+1,2c} = (2a+1)(2b+1)c\binom{2a}{a}\binom{2b}{b}\binom{2c}{c}L$$

où
$$L = R''R^{a+b+c} + (a+b+c)R'^2R^{a+b+c-1}$$

Comme pour le cas biparti, il faut intégrer.

Or,
$$L = (R'R^{a+b+c})'$$
, donc :

$$T_{2a+1,2b+1,2c} = (2a+1)(2b+1)c\binom{2a}{a}\binom{2b}{b}\binom{2c}{c}R'R^{a+b+c}$$

Comparaison des résultats (2 trous)

Formule obtenue par des méthodes formelles :

$$T_{l_1,l_2} = \gamma^{l_1+l_2} \sum_{j=0}^{l_2/2} \frac{l_1! l_2! (l_2 - 2j)}{j! (\frac{l_1-l_2}{2} + j)! (\frac{l_1+l_2}{2} - j)! (l_2 - j)!}$$

où γ est une série formelle.

Formules obtenues par des méthodes bijectives :

$$T_{2a,2b} = ab \binom{2a}{a} \binom{2b}{b} \frac{R^{a+b}}{a+b}$$

$$T_{2a+1,2b+1} = (2a+1)(2b+1)\binom{2a}{a}\binom{2b}{b}\frac{R^{a+b+1}}{a+b+1}$$

On peut ainsi donner une expression symétrique du coefficient de cette série.

Comparaison des résultats (3 trous)

Formule obtenue par des méthodes formelles :

$$T_{l_1,l_2,l_3} = C_{l_1} C_{l_2} C_{l_3} \frac{\gamma^{l_1 + l_2 + l_3}}{\gamma y'(1)} \frac{1 + (-1)^{l_1 + l_2 + l_3}}{2}$$

où $C_l = \frac{!!}{(\lfloor l/2 \rfloor)!(\lfloor (l-1)/2 \rfloor)!}$ et γ et y sont des séries formelles. Formules obtenues par des méthodes bijectives :

$$T_{2a,2b,2c} = abc \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} R' R^{a+b+c-1}$$

$$T_{2a+1,2b+1,2c} = (2a+1)(2b+1)c\binom{2a}{a}\binom{2b}{b}\binom{2c}{c}R'R^{a+b+c}$$

Par identification, on a prouvé que : $R = \gamma^2$ et $R' = \frac{1}{y'(1)}$.

Méthode d'Eynard donne des résultats en genre supérieur, structure combinatoire ? Formule avec des sommets de degré impair ? Oui pour 2 sommets impairs marqués, existence d'une formule générale ?

Merci de votre attention. Des questions ?