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Apéry’s Theorem (1978/1979): The Number ζ(3) =
∞

∑
m=1

1
m3 is Irrational

Sketch of proof, as in (van der Poorten, 1979)

Define:

cn,k =

(
n
k

)2(n + k
k

)2
, zn =

n

∑
m=1

1
m3 , un,k = zn +

k

∑
m=1

(−1)m+1

2m3(n
m)(

n+m
m )

,

vn,k = cn,kun,k, an =
n

∑
k=0

cn,k, bn =
n

∑
k=0

vn,k.

Prove: (an) and (bn) satisfy the same 2nd-order recurrence, so that

0 < ζ(3)− bn/an = O
(
a−2

n
)
, an = Θ

(
n−3/2(

√
2 + 1)4n).

Define `n = lcm(1, . . . , n) and prove 2`3
nan ∈N, 2`3

nbn ∈ Z.

Notice `n = O
(
en) and e3(

√
2 + 1)−4 ' 0.59 to conclude:

0 < 2`3
n (anζ(3)− bn) = O

(
n3/2e3n(

√
2 + 1)−4n) =⇒ ζ(3) 6∈ Q.
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Apéry’s Theorem (1978/1979): The Number ζ(3) =
∞

∑
m=1

1
m3 is Irrational

Summary of ingredients of the proof

Genius to invent the sequences (an) and (bn)

Elementary number theory

Deriving same second-order recurrence for (an) and (bn)

Asymptotic estimates

Focus of the talk on proving the recurrence:

this part is amenable to computer-algebra methods

typical use of “creative telescoping” for summation
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Beukers’ Alternative Proof

(Beukers, 1979)

Observe

In = `3
n

∫ 1

0

∫ 1

0

∫ 1

0

Ln(x) Ln(y)
1− u (1− xy)

dx dy du ∈ Z + Z ζ(3),

where

Ln(x) =
1
n!

dn

dxn xn(1− x)n (Legendre orthogonal polynomials) .

Integrations by parts and easy bounding yield

0 < In ≤ 2ζ(3) 33n(
√

2 + 1)−4n.

Observing 33(
√

2 + 1)−4 ' 0.79 implies irrationality.

Mathematically more elegant, but would not illustrate CA/FP interaction.
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Apéry’s Recurrence for (an) and (bn)

Second-order recurrence (Apéry, 1978/1979)

(n + 1)3sn+1 − (34n3 + 51n2 + 27n + 5) sn + n3sn−1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)

“[They] cleverly construct

qn,k = 4 (2n + 1)
(
k (2k + 1)− (2n + 1)2) cn,k

with the motive that

(n + 1)3cn+1,k − (34n3 + 51n2 + 27n + 5)cn,k + n3cn−1,k =
[
qn,j
]j=k

j=k−1.”

After summation over k from 0 to n + 1:

(n + 1)3an+1 − (34n3 + 51n2 + 27n + 5) an + n3an−1 =
[
qn,j
]j=n+1

j=−1︸ ︷︷ ︸
0−0=0

.
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Q = 4 (2n + 1)
(
k (2k + 1)− (2n + 1)2)

with the motive that(
(n + 1)3Sn − (34n3 + 51n2 + 27n + 5) + n3S−1

n

)
· c = (1− S−1

k ) (Q · c) .”
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n

)
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Apéry’s Recurrence for (an) and (bn)

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)

“[They] cleverly construct

P = (n + 1)3Sn − (34n3 + 51n2 + 27n + 5) + n3S−1
n

and
Q = 4 (2n + 1)

(
k (2k + 1)− (2n + 1)2)

with the motive that
P · c = (1− S−1

k ) (Q · c) .”

After summation over k from 0 to n + 1:

P · a =
[
Q·c
]j=n+1

j=−1 .

Skew-polynomial algebras:

Snn = (n + 1)Sn, Skk = (k + 1)Sk in Q(n, k)〈Sn, Sk〉
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My Motivations to Reconsider CA from a FP Viewpoint

I do: study computer-algebra algorithms on special functions.

Can an algorithmically-generated encyclopedia be authoritative?

E.g., Dynamic Dictionary of Mathematical Functions (DDMF).

Doubts with the litterature related to special-functions algorithms

some key papers are too informal to assess their correctness / I’ve lost
proofs written too tersely in my own papers

formal power series vs fractions vs functions? / diagonals, positive
parts: Cauchy theorem vs algebraic residues?

hypergeometric sequence vs hypergeometric term? / holonomic vs
rationally holonomic vs D-finite vs ∂-finite vs P-recursive?

I want: banish underqualified phrasings and prevent shifts in meaning.
I don’t want: reproduce informal interaction with the computer.
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Summation by Computer Algebra Is Used in Proofs

Example: Densities of short uniform random walks (Borwein, Straub, Wan,
Zudilin, 2012).
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Summation by Computer Algebra Is Used in Proofs

Example: Bounding error in high-precision computation of Euler’s constant
(Brent, Johansson, 2013).
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Computer-Algebra Proofs of Combinatorial Sums

Algorithmic theory for Special Functions and Combinatorial Sequences
initiated by Zeilberger (1982, 1990, 1991)

Replace named sequences by linear systems of recurrences
(+ initial conditions to identify the right solutions)

Develop algorithms on the level of systems for +, ×, ∑

Implementations exist for Maple, Mathematica, Maxima, etc.

Great success:

fast evaluation formulae: π, the Catalan constant, ζ-values, β-values

enumerative combinatorics: heap-ordered trees, q-analogue of totally
symmetric plane partitions; positive 3D rook walks; small-step walks

partition theory: Rogers-Ramanujan and Göllnitz-type identities

knot theory: colored Jones functions

mathematical physics: computation of Feynman diagrams
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Computer-Aided Proofs of Apéry’s Theorem

Computer-algebra algorithms apply to Apéry’s sums!

Zeilberger’s calculation (≤ 1992) for (an)

Zudilin’s alternate proof (1992) by two calls to Zeilberger’s algorithm

Apéry’s original calculations using Zeilberger’s and Chyzak’s
algorithms: Salvy’s Maple worksheet (2003),

http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

Using difference-field extensions (Schneider, 2007)

Our formalization follows the Apéry/van der Poorten/Salvy path.
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A Convoluted Proof of Cassini’s Identity FnFn+2 = F2
n+1 + (−1)n

Fibonacci numbers: Fn+2 = Fn+1 + Fn, F0 = F1 = 1.

Define (σn) by: σn+1 = −σn, σ0 = 1.

Introduce un := F2
n+1 + σn and compute the normal forms:

un = F2
n+1 + σn,

un+1 = F2
n + 2FnFn+1 + F2

n+1 − σn,

un+2 = F2
n + 4FnFn+1 + 4F2

n+1 + σn,

un+3 = 4F2
n + 12FnFn+1 + 9F2

n+1 − σn.

Solving a linear system yields: un+3 − 2un+2 − 2un+1 + un = 0.

Same process for vn := FnFn+2 delivers the same recurrence.

Now, checking initial conditions and an induction ends the proof:

u0 = v0 = 2, u1 = v1 = 3, u2 = v2 = 10.
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A Generalization: ∂-Finite Sequences (Chyzak, Salvy, 1998)

(tn,k) is ∂-finite

m
the shifts (tn+i,k+j) span a finite-dimensional Q(n, k)-vector space

⇒ linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients orthogonal
polynomials, Bessel functions.

Closures under +, ×, shifts

Annihilating ideal→ skew Gröbner basis→ normal forms in finite dim.

Iterative algorithm to search for linear dependencies

 simplification and zero test of ∂-finite polynomial expressions.
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m
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⇒ linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

ann
(

n
k

)
=

{
L1

(
Sn −

n + 1
n + 1− k

)
+ L2

(
Sk −

n− k
k + 1

)
: L1, L1 ∈ Q(n, k)〈Sn, Sk〉

}
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A Convoluted Proof of ∑n
k=0 (

n
k) = 2n

Define Fn :=
n

∑
k=0

(
n
k

)
.

Prove (
n + 1

k

)
− 2
(

n
k

)
=

[
−j(n

j)

n + 1− j

]j=k+1

j=k

as a consequence of(
n + 1

k

)
=

n + 1
n + 1− k

(
n
k

)
,
(

n
k + 1

)
=

n− k
k + 1

(
n
k

)
.

Sum from k = −1 to k = n + 1 to get Fn+1 − 2Fn = 0.

Now, observing F0 = 1 yields the result.

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3)



12 / 23

Algorithms for Summing “Holonomic” ∂-Finite Sequences

Zeilberger’s algorithm (1991)
Input: a hypergeometric term fn,k, that is, first-order recurrences.
Output: rational functions p0(n), . . . , pr(n), Q(n, k) with minimal r, such
that pr(n) fn+r,k + · · ·+ p0(n) fn,k = Q(n, k + 1) fn,k+1 −Q(n, k) fn,k.

Chyzak’s algorithm (2000)

Input:

{
a ∂-finite term u w.r.t. A = Q(n, k)〈Sn, Sk〉,
a Gröbner basis G of ann u.

Output:

{
P ∈ Q(n)〈Sn〉 of minimal possible order,
Q ∈ A reduced mod. G and such that P · u = (Sk − 1)Q · u.

Example: we can get the same 2nd-order operator P for both sides of

∞

∑
r=0︸︷︷︸
by C

∞

∑
s=0︸︷︷︸
by Z

(−1)n+r+s
(

n
r

)(
n
s

)(
n + r

r

)(
n + s

s

)(
2n− (r + s)

n

)
=

∞

∑
k=0︸︷︷︸
by Z

(
n
k

)4
.
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A Skeptic’s Approach to Combining FP and CA

“Proving” an algorithm

would prove all its results satisfy the specifications

but it is too much work in our context

Instead, use an external computer-algebra tool as an oracle

be as skeptical of the computer algebra as of the human

approach of choice when checking is simpler than discovering

Inspired by (Harrison, Théry, 1997)
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A Program to Derive Recurrences for Apéry’s Sums

Concrete sequences . . .

step explicit form operation input(s)

1 cn,k = (n
k)

2
(n+k

k )
2

simplification

2 an = ∑n
k=1 cn,k creative telescoping cn,k

3 dn,m = (−1)m+1

2m3(n
m)(

n+m
m )

simplification

4 sn,k = ∑k
m=1 dn,m creative telescoping dn,m

5 zn = ∑n
m=1

1
m3 simplification

6 un,k = zn + sn,k addition zn and sn,k

7 vn,k = cn,kun,k product cn,k and un,k

8 bn = ∑n
k=1 vn,k creative telescoping vn,k
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A Program to Derive Recurrences for Apéry’s Sums

. . . replaced with abstract analogues: any solution of a given GB

step explicit form operation input GB(s) output GB

1 cn,k = (n
k)

2
(n+k

k )
2

simplification C

2 an = ∑n
k=1 cn,k creative telescoping C A

3 dn,m = (−1)m+1

2m3(n
m)(

n+m
m )

simplification D

4 sn,k = ∑k
m=1 dn,m creative telescoping D S

5 zn = ∑n
m=1

1
m3 simplification Z

6 un,k = zn + sn,k addition Z and S U

7 vn,k = cn,kun,k product C and U V

8 bn = ∑n
k=1 vn,k creative telescoping V B
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How Can a Candidate Recurrence be Checked?

Because (
n + 1

k

)
=

n + 1
n + 1− k

(
n
k

)
,
(

n
k + 1

)
=

n− k
k + 1

(
n
k

)
,

it follows:

(
n + 1

k

)
− 2
(

n
k

)
+

[
j(n

j)

n + 1− j

]j=k+1

j=k

=

(
n + 1

k

)
− 2
(

n
k

)
+

(k + 1)( n
k+1)

n− k
−

k(n
k)

n + 1− k
=(

n + 1
n + 1− k

− 2 +
k + 1
n− k

n− k
k + 1

− k
n + 1− k

)
︸ ︷︷ ︸

=0

(
n
k

)
= 0.
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How Can a Candidate Recurrence be Checked?

Because the annihilating (left) ideal I of (n
k) is generated by the GB

g1 := Sn −
n + 1

n + 1− k
, g2 := Sk −

n− k
k + 1

,

it follows:

Sn − 2 + (Sk − 1)
k

n + 1− k
=

Sn − 2 +
k + 1
n− k
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k

n + 1− k
=
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k + 1
n− k

g2 +

(
n + 1

n + 1− k
− 2 +

k + 1
n− k

n− k
k + 1

− k
n + 1− k

)
︸ ︷︷ ︸

=0

∈ I.
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How Can a Candidate Recurrence be Checked?

Because

k 6= n + 1 =⇒
(
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)
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if k 6= n + 1, k 6= n, and k 6= −1.
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The Algebraic Disease and a Potential Cure

Explanation:

Recurrences are valid out of an algebraic set ∆.

Closures under +, ×, Si are sound, but out of an unknown ∆.

Meaning of summation is dubious if summation range intersects ∆.

Hope:

Easy: Discover the recurrences by a Maple session by algorithms.

Uneasy: Guard each of them by a proviso, but how to get it?

Remark:

To the best of my knowledge, correctness of summation algorithms is
adressed only for very limited situations (Abramov, Petkovšek, 2007).
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Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence

human-discovered and -written provisos for each of the recurrences

Maple-generated coefficients of the recurrences, pretty-printed to Coq
recurrences written in terms of the proviso name and coefficient names:

hypergeometric sequences (cn,k , dn,m) and indefinite sum (zn): a GB directly
obtained from the explicit form
composite under + or × (un,k and vn,k): a GB directly obtained via
algorithmic closure
composite under creative telescoping (an, sn,k , bn): first, recurrences of the
form P · f = (Sk − 1)Q · f ; then, conversion of the P into a GB

Proofs of recurrences for each abstracted sequence

load guarded recurrences for arguments (assumed) and for the
composite (being proved)

assume arguments satisfying relevant recurrences; define the composite
as a function of the arguments

state and prove lemmas (recurrences) for the composite

Proofs of recurrences for the concrete sequences

ad-hoc means for initial sequences (cn,k, dn,m, zn)

recurrences for other sequences follows immediately by instantiation

finally, reduction of fourth-order recurrence for (bn) to order 2
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A Lemma for Creative Telescoping?

p0(n)un,k + p1(n)un+1,k + · · · + pr(n)un+r,k = Q(n, k + 1)un,k+1 − Q(n, k)un,k

Un :=
n+β

∑
k=α

un,k

pr(n)un+r,n+β+r = pr(n)un+r,n+β+r

.

.

. =

.

.

.

p1(n)un+1,n+β+1 + · · · + pr(n)un+r,n+β+1 = p1(n)un+1,n+β+1 + · · ·+ pr(n)un+r,n+β+1

p0(n)un,n+β + p1(n)un+1,n+β + · · · + pr(n)un+r,n+β = Q(n, n + β + 1)un,n+β+1 − Q(n, n + β)un,n+β

.

.

. =

.

.

.

p0(n)un,α+1 + p1(n)un+1,α+1 + · · · + pr(n)un+r,α+1 = Q(n, α + 2)un,α+2 − Q(n, α + 1)un,α+1

p0(n)un,α + p1(n)un+1,α + · · · + pr(n)un+r,α = Q(n, α + 1)un,α+1 − Q(n, α)un,α

+
r

∑
i=1

i
∑
j=1

pi(n)un+i,n+β+j
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Sound Creative Telescoping

A lemma instead of a case-by-case analysis

Given (un,k) ∈ QZ2
, define Un = ∑

n+β
k=α un,k. Given a set ∆ such that

(n, k) /∈ ∆⇒(P · u•,k)n = (Q · u)n,k+1 − (Q · u)n,k,

the following identity holds for any n such that α ≤ n + β:

(P ·U)n =
(
(Q · u)n,n+β+1 − (Q · u)n,α

)
+

r

∑
i=1

i

∑
j=1

pi(n)un+i,n+β+j

+ ∑
α≤k≤n+β ∧ (n,k)∈∆

(P · u•,k)n − (Q · u)n,k+1 + (Q · u)n,k.

In practice: Coq’s u, U, P, Q are total maps, extending the mathematical objects.

Use of the lemma: normalizing the right-hand side (to 0)

Ill-formed terms should cancel (manual inspection)

Normalize modulo GB (several copies of stairs: un,α, un,n+β)

Use rational-function normalization to get 0 (Coq’s field)
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Other Parts of the Formalization (Coq + MathComp + CoqEAL)

Elementary number theory

definition of binomials over Z2

standard properties + 1 ≤ i ≤ j ≤ n =⇒ j(i
j) | `n

Asymptotic estimates

of an:
implicit use of Poincaré–Perron–Kreuser theorem(s) in Apéry’s proof
replaced with the more elementary 33n = O(an)

of `n:
original proof uses `n = en+o(1), implied by the Prime Number Theorem
replaced with `n = O(3n)

Numbers: libraries used

proof-dedicated integers and rationals of MathComp (Gonthier et al.)
computation-dedicated integers and rationals of CoqEAL (Cohen,
Mörtberg, Dénès)

algebraic numbers (Cohen)

Cauchy reals to encode ζ(3) as (zn)n∈N and a Cauchy-CV proof
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End Result (as of May 2014)

We have machine-checked (a stronger statement of):

Theorem: `n = O(3n) =⇒ ζ(3) 6∈ Q.

Coq < Print lcmn_asymptotic_bound.
lcmn_asymptotic_bound =
exists (K2 K3 : rat) (N : nat),

0 < K2 /\ 0 < K3 /\ K2 ^ 3 < 33%:~R /\
forall (n : nat),

(N <= n)%N -> (iter_lcmn n)%:~R < K3 * K2 ^ n
: Prop

Coq < About zeta_3_irrational.
zeta_3_irrational :
lcmn_asymptotic_bound ->

not (exists (r : rat), (z3 = (r%:CR))%CR)
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End Result (as of May 2014)

We have machine-checked (a stronger statement of):

Theorem: `n = O(3n) =⇒ ζ(3) 6∈ Q.

Coq < Print lcmn_asymptotic_bound.
lcmn_asymptotic_bound =
exists (K2 K3 : rat) (N : nat),

0 < K2 /\ 0 < K3 /\ K2 ^ 3 < 33%:~R /\
forall (n : nat),

(N <= n)%N -> (iter_lcmn n)%:~R < K3 * K2 ^ n
: Prop

Coq < About zeta_3_irrational.
zeta_3_irrational :
lcmn_asymptotic_bound ->

not (exists (r : rat), (z3 = (r%:CR))%CR)
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Subjective Conclusions on Getting to Work with Coq (+ MathComp)

An excessively difficult endeavour: a very shallow learning curve

different methodologies over the years documentation out of sync 
oral transmission

too difficult to read through notation + coercions + structure inference

understanding libraries requires a knowledge of Coq’s most advanced
features

Formalization: opposing goals?

mimicking the mathematical informal interaction

flushing doubts on proofs/interpretation of mathematical objects
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Conclusions and Future Work

(Ongoing) Complete proof by formalizing bound on lcm(1, . . . , n)
Test robustness of approach by more examples of sums

Understanding why it works, so as to automate our protocol

(Ongoing) Differential analogue: similar approach to prove the
second-order ODE for the square-lattice Green function∫ 1

0

∫ 1

0

1

(1− xyz)
√

1− x2
√

1− y2
dx dy

Dedicated data structure to keep (skew-)polynomials normalized
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