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o]

Apéry’s Theorem (1978/1979): The Number (3 Z 5 is Irrational

Sketch of proof, as in (van der Poorten, 1979)

o Define:
)m+1

2 2
n\“(n+k o1
Cnk = (k) ( R ) s Zn = Z Prek =Zn+ Z 2m3 n+m)

m=1

OUnk = CnkUnk, On = Z Cnkr by = Z On k-
0

o Prove: (a,) and (by,) satisfy the same 2nd-order recurrence, so that

0<Z(3) —bu/an = O(ay?), an = 0O(n32(V2+1)*).

o Define ¢, = lcm(1,...,n) and prove 2(3a, € N, 263b, € Z.

o Notice ¢, = O(¢") and €3(v/2+1)~* ~ 0.59 to conclude:
0 < 263 (an{(3) —by) = O(n®2"(V2+1)™*") = {(3) ¢ Q.
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o Genius to invent the sequences (a,) and (by,)
o Elementary number theory
o Deriving same second-order recurrence for (a,) and (by,)

o Asymptotic estimates
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Summary of ingredients of the proof

o Genius to invent the sequences (a,) and (by,)
o Elementary number theory
o Deriving same second-order recurrence for (a,) and (by,)

o Asymptotic estimates

Focus of the talk on proving the recurrence:
o this part is amenable to computer-algebra methods
o typical use of “creative telescoping” for summation
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Beukers’ Alternative

(Beukers, 1979)

Observe

1,1_43///01_Sf L"(y))dxdydueZJrzg(s)

n
Ly(x) = %;Wx” (1—-x)"  (Legendre orthogonal polynomials) .

Integrations by parts and easy bounding yield
0 < I, <27(3)3%(vV241)~4"
Observing 3%(v/2 4+ 1)~* ~ 0.79 implies irrationality.
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Beukers’ Alternative Proof

(Beukers, 1979)

Observe
3 Ln(x) Ln (}/)
I = & / / /0 T (1 gy Py du € Z+2(3),
where
14", @ .
Ly(x) = T dn (1-x) (Legendre orthogonal polynomials) .

Integrations by parts and easy bounding yield
0 < I, <27(3)3%(vV241)~4"
Observing 3%(v/2 4+ 1)~* ~ 0.79 implies irrationality.

Mathematically more elegant, but would not illustrate CA/FP interaction.
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Apéry’s Recurrence for (ay)

Second-order recurrence (Apéry, 1978/1979)

(n+1)%s,41 — (34n® + 5102 4271+ 5) s, + n%s,_1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)
“[They] cleverly construct

G =402n+1) (k (2k+1) — (2n+ 1)2) G
with the motive that

(n+ 1)3Cn+1,k — (341> + 5112 +27n + B))e i 4 n3cn71’k = [q”,]-];z:_l.”

After summation over k from 0 to n + 1:

(n+1)3a,41 — (34n® +51n* + 271+ 5) ay + nla,_ = [q,llj];z'jl .

—_———
0—-0=0

4/23

ey e vy ey



Apéry’s Recurrence for (a,) and

Second-order recurrence (Apéry, 1978/1979)

(n+1)%s,41 — (34n® + 510> 4271+ 5) s, + n%s,_1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)

“[They] cleverly construct
Q=42n+1) (k(2k+1) — (2n+1)?)
with the motive that

((n +1)3S, — (341 + 51n + 27n +5) + n3S;1) e=(1-51)(0-¢).

After summation over k from 0 to n + 1:
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Apéry’s Recurrence for (a,

Second-order recurrence (Apéry, 1978/1979)

(n+1)3s,41 — (3413 +51n% +27n +5) s + n%s,_1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)
“[They] cleverly construct
P = (n+1)3S, — (34n® +51n* + 27n + 5) + n35, !
and
Q=4(2n+1) (k(2k+1) — (2n+1)?)
with the motive that
Pc=(1-S71(0-¢).”
After summation over k from 0 to n + 1:

P-a=[0e]".

4/2
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Apéry’s Recurrenc

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)

“[They] cleverly construct
P = (n+1)3S, — (34n> +51n +27n +5) + n3S, 1

and
Q=4(2n+1) (k(2k+1) — (2n+1)?)
with the motive that
Pc=(1-S1)(0¢)”

After summation over k from 0 to n + 1:

Pea= [0/

Skew-polynomial algebras:
Syn=m+1)S,, Sik=(k+1)S; in Q(nk){(Su Sk)
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I do: study computer-algebra algorithms on special functions.

E.g., Dynamic Dictionary of Mathematical Functions (DDMF). '




My Motivations to Reconsider CA from a FP Viewpoint

I do: study computer-algebra algorithms on special functions.

Can an algorithmically-generated encyclopedia be authoritative?

E.g., Dynamic Dictionary of Mathematical Functions (DDMF).

Doubts with the litterature related to special-functions algorithms

o some key papers are too informal to assess their correctness / I've lost
proofs written too tersely in my own papers

o formal power series vs fractions vs functions? / diagonals, positive
parts: Cauchy theorem vs algebraic residues?

o hypergeometric sequence vs hypergeometric term? / holonomic vs
rationally holonomic vs D-finite vs o-finite vs P-recursive?
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My Motivations to Reconsider CA from a FP Viewpoint

I do: study computer-algebra algorithms on special functions.

Can an algorithmically-generated encyclopedia be authoritative?

E.g., Dynamic Dictionary of Mathematical Functions (DDMF).

Doubts with the litterature related to special-functions algorithms

o some key papers are too informal to assess their correctness / I've lost
proofs written too tersely in my own papers

o formal power series vs fractions vs functions? / diagonals, positive
parts: Cauchy theorem vs algebraic residues?

o hypergeometric sequence vs hypergeometric term? / holonomic vs
rationally holonomic vs D-finite vs o-finite vs P-recursive?

I want: banish underqualified phrasings and prevent shifts in meaning.
I don’t want: reproduce informal interaction with the computer.

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Summation by Compu

Example: Densities of short uniform random walks (Borwein, Straub, Wan,
Zudilin, 2012).

Turning our attention to negative integers, we have for k > 0 an integer:
4 (kRN [
2k —1)= — [ — 2kK 3
(79) wi-2k- 0 =% (G) [ R
because the two sides satisfy the same recursion ([BBBGOS, (8)]), and agree when
k=0,1 ([BBBGOS, (47) and (48)]).

From (78), we experimentally determined a single hypergeometric for Ws(s) at
negative odd integers:

Lemma 2. For k > 0 an integer,
3 (2k)? 111
Wyeak -1 = Y2 B wms 1Y,
24k+132k k+1,k+1|4

Proof. It is easy to check that both sides agree at k = 0,1. Therefore we need
only to show that they satisfy the same recursion. The recursion for the left-hand
side implies a contiguous relation for the right-hand side, which can be verified by
extracting the summand and applying Gosper’s algorithm ([PWZ06]). O
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Summation by

Example: Bounding error in high-precision computation of Euler’s constant
(Brent, Johansson, 2013).

The “lower” sum L is precisely Zm/g L2k, Replacing k by 2k in 21) (as
the odd terms vanish by symmetry), we have to prove

1)7[(25)02[(4k — 2§12 2k)!J?
Z( ‘)[3( ]2)1c]—(1 ']3322]13] ([l(c!)“)s]%‘ (23)

This can be done algorithmically using the creative telescoping approach of Wilf
and Zeilberger. For example, the implementation in the Mathematica package
HolonomicFunctions by Koutschan [6] can be used. The command

= (25172 / (3173 3275);
CreativeTelescoping[(-1)"j a (a /. j -> 2k-j),
{s[j1-1}, slk]]

outputs the recurrence equation
(8+ 8k)b1 — (1+ 6k + 12k + 8k%) b, = 0

matching the right-hand side of (23), together with a telescoping certificate.
Since the summand in (23) vanishes for j < 0 and j > 2k, no boundary condi-
tions enter into the telescoping relation, and checking the initial value (k = 0)
suffices to prove the identity/!

I Curiously, the built-in Sun function in Mathematica 9.0.1 computes a closed form for the
sum (23), but returns an answer that is wrong by a factor 2 if the factor [(4k — 27)!]2 in the
summand is input as [(2(2k — §))1]2.

6/23
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Computer-Algebra Proofs of Combinatorial Sums

Algorithmic theory for Special Functions and Combinatorial Sequences
initiated by Zeilberger (1982, 1990, 1991)

o Replace named sequences by linear systems of recurrences
(+ initial conditions to identify the right solutions)

o Develop algorithms on the level of systems for +, X, Y,

Implementations exist for Maple, Mathematica, Maxima, etc.

Great success:

o fast evaluation formulae: 7, the Catalan constant, -values, p-values

o enumerative combinatorics: heap-ordered trees, g-analogue of totally
symmetric plane partitions; positive 3D rook walks; small-step walks

o partition theory: Rogers-Ramanujan and Gollnitz-type identities
o knot theory: colored Jones functions

o mathematical physics: computation of Feynman diagrams

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Computer-Aided Proofs of

Computer-algebra algorithms apply to Apéry’s sums!
o Zeilberger’s calculation (< 1992) for (ay,)
o Zudilin’s alternate proof (1992) by two calls to Zeilberger’s algorithm

o Apéry’s original calculations using Zeilberger’s and Chyzak’s
algorithms: Salvy’s Maple worksheet (2003),
http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

o Using difference-field extensions (Schneider, 2007)

8/23
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http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

Computer-Aided Proo

Computer-algebra algorithms apply to Apéry’s sums!
o Zeilberger’s calculation (< 1992) for (ay,)
o Zudilin’s alternate proof (1992) by two calls to Zeilberger’s algorithm

o Apéry’s original calculations using Zeilberger’s and Chyzak’s
algorithms: Salvy’s Maple worksheet (2003),
http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

o Using difference-field extensions (Schneider, 2007)

Our formalization follows the Apéry/van der Poorten/Salvy path.
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http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

o Fibonacci numbers: F,.» = F,;1+F,, F=F =1
o Define (0y,) by: 041 = —0y, 0p=1.

9/23



o Fibonacci numbers: F,.» = F,;1+F,, F=F =1
o Define (0y,) by: 041 = —0y, 0p=1.
o Introduce u, := F? R and compute the normal forms:

Uy = F,%H + on,
U1 = Fy +2FFyqq + Fo g — 0w,
Unsp = F2 +4F,Fyq +4F2, 1 + 00,
Uiy = 4F? + 12F,Fy i + 9F2 4 — 0.

o Solving a linear system yields: u,43 — 2uy42 — 241 + 1y = 0.



o Fibonacci numbers: F,.» = F,;1+F,, F=F =1
o Define (0y,) by: 041 = —0y, 0p=1.
o Introduce u, := Fg 1t 0n and compute the normal forms:

U, = F;%—H + 0oy,
U1 = Fo +2F; Fypg + F3+1 = On,
Unsp = F2 +4F,Fyq +4F2, 1 + 00,
Uiy = 4F? + 12F,Fy i + 9F2 4 — 0.
o Solving a linear system yields: u,43 — 2uy42 — 241 + 1y = 0.

o Same process for vy, := F,F,;2 delivers the same recurrence.

o Now, checking initial conditions and an induction ends the proof:

Uy = vy = 2, Uy =01 =3, uy = vy = 10.
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(t ) is O-finite

)

the shifts (#,,;x;) span a finite-dimensional Q(#, k)-vector space

= linear functional equations with rational-function coefficients.
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(tn ) is O-finite

)

the shifts (t,,;x;) span a finite-dimensional Q(#, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n+1\  n+l1 n n _n—k(n\.
k ) n+1-k\k)’ k+1)  k+1\k)’

orthogonal polynomials, Bessel functions.

=

10/ 23
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A Generalization: 0-Finite Seq

(tn ) is O-finite

)

the shifts (t,,;x;) span a finite-dimensional Q(#, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n+1\  n+l n n _n—k(n\,
k ) n+1-k\k)’ k+1)  k+1\k)’

orthogonal polynomials, Bessel functions.

=

Closures under +, X, shifts
o Annihilating ideal — skew Grobner basis — normal forms in finite dim.

o Iterative algorithm to search for linear dependencies

~ simplification and zero test of 0-finite polynomial expressions.

10 /23
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A Generalization: 0-Finite S

(tn ) is O-finite

)

the shifts (t,,;x;) span a finite-dimensional Q(#, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n n+1 n—k
amn () = {ma (5 0 ) v (s ) i e@ubs,s |

orthogonal polynomials, Bessel functions.

Closures under +, X, shifts
o Annihilating ideal — skew Crobner basis — normal forms in finite dim.

o Iterative algorithm to search for linear dependencies

~ simplification and zero test of 0-finite polynomial expressions.
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" n
o Define F, := Z <k>

k=0

n+1 n
(") -2(2) -
as a consequence of
n+1\  n+1 n n _n—k(n
k ) n+1-k\k)" \k+1) k+1\k)’

0 Sum fromk = —-1tok =n+1to get F,11 —2F, = 0.
o Now, observing Fy = 1 yields the result.

o Prove

_m j=k+1
](j)
n+1l—j

=k
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Zeilberger’s algorithm (1991)
INPUT: a hypergeometric term f,, , that is, first-order recurrences.
OutpuT: rational functions py(n), ..., pr(n), Q(n, k) with minimal 7, such

that py (1) fyyrk + -+ po() fur = QUn, k+1) fr i1 — Q(n, k) fuk-

12/23
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Algorithms for

Zeilberger’s algorithm (1991)

INPUT: a hypergeometric term f,, , that is, first-order recurrences.
Ourtpurt: rational functions pg(n), ..., pr(n), Q(n, k) with minimal r, such
that py (1) fuyri+ -+ po(n) furx = Qn k+1) frx1 — Q(n,k) fix-

Chyzak’s algorithm (2000)
a o-finite term u w.rt. A = Q(n,k)(Sy, Sg),
a Grobner basis G of annu.

INPUT:

P € Q(n)(Sy) of minimal possible order,
Q € A reduced mod. G and such that P-u = (S, —1)Q - u.

OUuUTPUT: {

12/23
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Algorithms for Summing *

Zeilberger’s algorithm (1991)

INPUT: a hypergeometric term f,, , that is, first-order recurrences.
Ourtpurt: rational functions pg(n), ..., pr(n), Q(n, k) with minimal r, such
that pr(n) fuirk + -+ po(n) fup = Qln, k+1) fyx1 — Q(n, k) fik-

Chyzak’s algorithm (2000)
a o-finite term u w.rt. A = Q(n,k)(Sy, Sg),
a Grobner basis G of annu.

INPUT:

P € Q(n)(Sy) of minimal possible order,
Q € A reduced mod. G and such that P-u = (S —1)Q - u.

OUuUTPUT: {

Example: we can get the same 2nd-order operator P for both sides of

EEr OO0 B0

by C by Z by Z

12 /23
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o would prove all its results satisfy the specifications
o but it is too much work in our context

o be as skeptical of the computer algebra as of the human

o approach of choice when checking is simpler than discovering

Inspired by (Harrison, Théry, 1997)
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Concrete sequences ...

step explicit form operation input(s)

1 Cnk = (2)2("7{’()2 simplification

2 an = ):,'(‘:1 Cpk creative telescoping Cok

3 dpm = % simplification

m3 () (")

4 Sy = Lk _1dnm | creative telescoping dnm

5 Zn =Yl simplification

6 Uy = Zn + Spk addition zn and s, &
7 Vpk = Cpilnk product Cp e and uy, x
8 by =Y} 1 Unk creative telescoping Uy i
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A Program to De

. replaced with abstract analogues: any solution of a given GB

step explicit form operation input GB(s) output GB
2
1 Cnk = (2)2("7{") simplification C
2 an =Y} Cuk creative telescoping C A
3 dpm = #’%’,}l—) simplification D
4 Suk = YK i dum | creative telescoping D S
5 =Yl simplification z
6 Upk = Zn + Sy k addition Zand S u
7 Upk = Cplhnk product Cand U 1%
8 by = Y7 1 Unk creative telescoping v B
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Because
n+1\  n+1 n n _n—k(n
k ) n+1—-k\k)" \k+1) k+1\k/)’
it follows:
. i=k+1
n+1 (™ & ](7) = B
k k n+1l—j . B

(7)-s() 22kt

n+1 k+1n—k k n
(n+1—k_2+n—kk+1 _n—l—l—k) <k> =0.

=0
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Because the annihilating (left) ideal I of (}) is generated by the GB

— n+1 ._S_n—k
SU=on =T g 82Tk

it follows:

k
Spn—24+(Sy—1)———— =

n+1-—k
k+1 k
S 2 S T ok T
k+1 n+1 k+1n—k k
gl+n—kg2+(n+1—k_2+n—kk+1 _n+1—k> €l
=0

15/23
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Because
n+1\  n+1 n n _n—k(n
k ) n+1—-k\k)" \k+1) k+1\k/)’
it follows:
. i=k+1
n+1 (™ & ](7) = B
k k n+1l—j . B

(7)-s() 22kt

n+1 k+1n—k k n
(n+1—k_2+n—kk+1 _n—l—l—k) <k> =0.

=0
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Because

n+1\  n+1 n n _n—k(n
k#ntl =>< p >—m<k>' ks -l :><k+1>—m<k>'

it follows:

() 20+ [l

() o) -0 s,

n+1 k+1n—k k n
<n+1—k_2+n—kk+1 _n+1—k> <k) =0

=0

e j=k+1
](j)
n+1l—j

ifk#n+1,k#n,and k # —1.

15/23
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_ The Algobrac Discse and a Poental Cure .

Explanation:
o Recurrences are valid out of an algebraic set A.
o Closures under +, X, S; are sound, but out of an unknown A.

o Meaning of summation is dubious if summation range intersects A.

Hope:
o Easy: Discover the recurrences by a Maple session by algorithms.

o Uneasy: Guard each of them by a proviso, but how to get it?
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The Algebraic Di

Explanation:

o Recurrences are valid out of an algebraic set A.
o Closures under +, X, S; are sound, but out of an unknown A.

o Meaning of summation is dubious if summation range intersects A.

Hope:
o Easy: Discover the recurrences by a Maple session by algorithms.

o Uneasy: Guard each of them by a proviso, but how to get it?

Remark:

o To the best of my knowledge, correctness of summation algorithms is
adressed only for very limited situations (Abramov, Petkovsek, 2007).
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Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence

o human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq
o recurrences written in terms of the proviso name and coefficient names:

o hypergeometric sequences (c, k, dy,n) and indefinite sum (z,): a GB directly
obtained from the explicit form

o composite under + or x (u,x and v,x): a GB directly obtained via
algorithmic closure

o composite under creative telescoping (a,, Sy, bx): first, recurrences of the
form P f = (Sx — 1)Q - f; then, conversion of the P into a GB

ey e vy ey



Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence
o human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq

o recurrences written in terms of the proviso name and coefficient names

Proofs of recurrences for each abstracted sequence
0 load guarded recurrences for arguments (assumed) and for the
composite (being proved)

o assume arguments satisfying relevant recurrences; define the composite
as a function of the arguments

o state and lemmas (recurrences) for the composite, e.g.:

Lemma: Ve € QZZ, Yu € QZZ, Yov € QZZ, if ¢ solves C and u solves U
and v = ¢ X u, then v solves V.

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence
o human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq

o recurrences written in terms of the proviso name and coefficient names

Proofs of recurrences for each abstracted sequence

0 load guarded recurrences for arguments (assumed) and for the
composite (being proved)

o assume arguments satisfying relevant recurrences; define the composite
as a function of the arguments

o state and lemmas (recurrences) for the composite

Proofs of recurrences for the concrete sequences
© ad-hoc means for initial sequences (c,, x, dn,m, Zn)
o recurrences for other sequences follows immediately by instantiation

o finally, reduction of fourth-order recurrence for (b,) to order 2

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



pomuge +  prmugpe o+ prMugg, = QUuk+Duy iy - Q(n, k)uy i

n+p
Uy = 2 Uy g
k=a
PU(”)un,n+ﬂ + pl(”)un+1,n+ﬁ +oeee + Pf(n)un+r,n+ﬁ = Q(”1n+ﬁ+1)un,n+ﬁ+l - Q(”/”"’ﬁ)un,nﬂi
poMupast + pr(muppresr + 0+ prMippre = Qi a+2)upe = Qe+ Dy
po(Mune + P11, +-o + pr(Muntra = Qe+ 1)ty 011 - Q(n, &) un,a
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po(muye +  pr(muy 1k

Po (”)un,n+ﬂ + n (”)un+1,n+ﬁ

po(Munai1 +  p1(mun1a41

po(Mune + p1 (")un+1,n

+

+

Mk = QUuk+ Duy g
n+p
uy = DRI
k=a

-+ Pr(”)“n+r,n+ﬁ = Qmn+p+ 1)un,n+[3+1

A pr(Mpyra = Q(n,a+2)uya42

A prMunire = Qma+ Dy

Q(m, k)uy i

Q(n,n+ ﬁ)un,nﬂi

QU+ V)t o 1q

Q(n, a)upq

po(n)Un
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n+p
Uy = 2 Uy g
k=a
Pr(m)iysrneper = Pr(W)ity g npir
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18/23



po(muye +  pr(mugpe  + o

+ oMy = QUnk 4Dy ey
n+p
uy = DRI
k=a
pf(n)“n+r,n+ﬁ+r =

Q(n,k)unk

p’(n)“n+r,n+ﬁ+r

P1 (”)un+1,rl+ﬁ+l +oeee A+ pf(")“n+r,n+ﬁ+1 = P1 (”)un+1,rl+ﬁ+l +eeet P'(")“n+r,n+ﬁ+1

Po (”)un,n+ﬂ + n (”)un+1,n+ﬁ et opr (”)un+r,n+ﬁ = Q(mn+p+ 1)un,n+;3+1 - Q(mn+ ﬁ)un,n+f3

poMipas1 + pr(muppresr + 0+ prMippre = QU a+2)uye = Qma+Duyerq
po(Mune + P11, +-o + pr(Muntra = Qe+ 1)ty 011 - Q(n, a)un
pomUn  +  pr(MUper -+ prmUnsr = Qun+p+Duyuipin — Q(n,a)upa
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po(muye +  pr(mugpe  + o

P1 (”)un+1,n+ﬁ+l + e

+  prMuy e = Qn k+ 1)ty i - Q(n, k)uy i
n+p
Un = E Unk
k=a
pf(n)un+r,n+ﬁ+r = p"(”)”ﬂ‘!’,?l‘#ﬁ‘#f

+ pr(")un+r,‘n+ﬁ+l = p1(m)uy Ln+p+1 +’”+pr(n>“n{r,n{,%-1

po(Mnurp + pr(Mugringp + 0+ prMugrnrp = Qn+p+Nuyyipir — QU+ By pip
po(Mtpar1 + Pr(Muyi1asr + 0+ pr(Miyyrarn = Qi & +2)ttyy 10 —  Q(ma+1)uy 041
po(mune +  prMugiie  + o0+ pr(Mipgre = Qe+ 1)ty 011 - Q(n, &) un,a
pomUn  +  pr(MUper -+ prmUnsr = Qun+p+Dupuipir  — Q(n, &)una
+ IZ i Pi(m) i poj
i=1j=1
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A lemma instead of a case-by-case analysis

Given (uy ) € QZZ, define U,, = ZZif u, . Given a set A such that
(n,k) €A =(P-thep)n = (Q t)pjt1 — (Q- )i
the following identity holds for any n such that « < n + B:
(P-Upn = (@ Wnnepss = (Q-Wna) + 1 1 i)t
i=1j=

+ )3 (P tto)n — (Q- )i + (Q ).
a<k<n+p A (nk)eA
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(k) &8 =(P-sep)n = (Q- t)nps1 = (Q- W)
the following identity holds for any n such that « < n + B:
oo
(P W = ((Q Wnrprr = (Q-Wna) + 1 1 pilm)itninipe
i=1j=1

+ )3 (P tto)n — (Q- )i + (Q ).
a<k<n+p A (nk)eA

In practice: Coq’s u, U, P, Q are total maps, extending the mathematical objects.
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Sound Creative Telescoping

A lemma instead of a case-by-case analysis
. ZZ 5 _ n+ﬁ 9
Given (u, ;) € Q% , define U, = Y, " u, . Given a set A such that

(n,k) & A =(P- ”.,k)n =(Q- ”)n,k+1 =(@- “)n,k/

the following identity holds for any n such that « < n + f:

(P ' u)‘/l = ((Q : u)n,n+ﬁ+1 - (Q : ”)n,zx) +

+ Z (P : uo,k)n - (Q : ”)n,k+1 + (Q . ”)n,k'

a<k<n+p A (nk)eA

In practice: Coq’s u, U, P, Q are total maps, extending the mathematical objects.

Use of the lemma: normalizing the right-hand side (to 0)

o [ll-formed terms should cancel (manual inspection)
o Normalize modulo GB (several copies of stairs: una, Uy,n+p)
o Use rational-function normalization to get 0 (Coq’s field)
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Other Parts of the Formalization (Coq + MathComp + CoqEAL)

Elementary number theory

o definition of binomials over Z?2

o standard properties + 1 <i<j<n — ](;) |

Asymptotic estimates

o of ay:
o implicit use of Poincaré-Perron-Kreuser theorem(s) in Apéry’s proof
o replaced with the more elementary 33" = O(a")
o of Uy:
o original proof uses £, = e"°(1)
o replaced with £, = O(3")

, implied by the Prime Number Theorem

Numbers: libraries used
o proof-dedicated integers and rationals of MathComp (Gonthier et al.)

o computation-dedicated integers and rationals of CoqEAL (Cohen,
Mortberg, Dénes)

o algebraic numbers (Cohen)
o Cauchy reals to encode {(3) as (zx)en and a Cauchy-CV proof
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Other Parts of the Formalization (Coq + MathComp + CoqEAL)

Elementary number theory

o definition of binomials over Z?2

o standard properties + 1 <i<j<n — ](;) |

Asymptotic estimates

o of ay:
o implicit use of Poincaré—Perron—Kreuser theorem(s) in Apéry’s proof
o replaced with the more elementary 33" = O(a")

o of Uy:

o original proof uses £, = ¢"t°(), implied by the Prime Number Theorem

o replaced with £, = O(3") [Admitted; under continued work.]

Numbers: libraries used
o proof-dedicated integers and rationals of MathComp (Gonthier et al.)

o computation-dedicated integers and rationals of CoqEAL (Cohen,
Mortberg, Dénes)

o algebraic numbers (Cohen)

o Cauchy reals to encode {(3) as (zx)en and a Cauchy-CV proof
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We have machine-checked (a stronger statement of):

|Theorem: l,=0(3") = (3) £Q. |
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We have machine-checked (a stronger statement of):

|Theorem l,=0(3") = (3) £Q. |

Coq < Print lcmn_asymptotic_bound.
lcmn_asymptotic_bound =
exists (K2 K3 : rat) (N : nat),
0<K2 /\ 0<K3 /\ K2~ 3 <334~k /\
forall (n : nat),
(N <= n)%N -> (iter_lcmn n)%:~R < K3 * K2 "~ n
: Prop

Coq < About zeta_3_irrational.
zeta_3_irrational :
lcmn_asymptotic_bound ->

not (exists (r : rat), (z3 = (x%:CR))%CR)

ey e vy ey



Subjective Conclusions

An excessively difficult endeavour: a very shallow learning curve

o different methodologies over the years ~+ documentation out of sync ~»
oral transmission

o too difficult to read through notation + coercions + structure inference

o understanding libraries requires a knowledge of Coq’s most advanced
features
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Subjective Conclusions on Getting to Work with Coq (+ MathComp)

An excessively difficult endeavour: a very shallow learning curve

o different methodologies over the years ~+ documentation out of sync ~»
oral transmission

o too difficult to read through notation + coercions + structure inference

o understanding libraries requires a knowledge of Coq’s most advanced
features

Formalization: opposing goals?

o mimicking the mathematical informal interaction

o flushing doubts on proofs/interpretation of mathematical objects
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Conclusions

o (Ongoing) Complete proof by formalizing bound on lem(1,...,n)
o Test robustness of approach by more examples of sums
o Understanding why it works, so as to automate our protocol

o (Ongoing) Differential analogue: similar approach to prove the
second-order ODE for the square-lattice Green function

11 1 ded
/0/0 (1—xyz)V1—x2/1— 42 ey

o Dedicated data structure to keep (skew-)polynomials normalized

ey e vy ey



