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Flip Graphs
Graph on a set of combinatorial objects, such that two adjacent
objects differ by a single, reversible, exchange operation between
elements composing the structure.
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Spanning trees
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Permutations

(T. Piesk, Creative Commons)
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Acyclic orientations

(D. Eppstein, Wikimedia commons)
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Triangulations

(Fomin, Zelevinsky)
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Perfect matchings
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Polytopal flip graphs

Many flip graphs are skeletons of polytopes:

Spanning trees Spannning tree polytopes Edmonds 1971

Permutations Permutohedra Schoute 1911, Guilbaud-Rosenstiehl 1963

Acyclic orientations Graphical zonotopes
Greene 1977, Greene-Zaslavsky 1983

Triangulations Associahedra Tamari 1951, Stasheff 1963, Loday 2004

Perfect matchings Perfect matching polytope Chvátal 1972
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Polymatroidal flip graphs

Flip graphs are skeletons of (poly)matroid polytopes:

Spanning tree polytopes Matroids
Permutohedra Polymatroids
Associahedra

Graphical zonotopes
Perfect matching polytope Matroid intersections
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Flip distances

Given two vertices of the polytope, can we efficiently compute the
shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently
compute the flip distance between them?

Geodesics vs. Combinatorial reconfiguration formulation
https://reconf.wikidot.com/

What is the complexity of computing the rotation distance between
two binary trees?

13 / 44
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Diameter

What is the diameter of the polytope?

What is the largest flip distance between any two combinatorial
objects of some size?

Two questions:
Combinatorial What are the best upper and lower bounds?
Computational Can we compute the diameter efficiently?

Hirsch conjecture: The diameter of dimension n polytopes with f
faces is at most f − n.

Santos 2012
Polynomial Hirsch conjecture: The diameter of dimension n
polytopes with f faces is at most some polynomial in n and f .
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Hamiltonicity

Is the skeleton of the polytope Hamiltonian? Hamilton 1856

Is there a Gray code for the combinatorial objects?

Again, two versions:
Combinatorial Does there always exist a Hamiltonian cycle?
Computational Can we compute it efficiently, say with bounded

delay?
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Matroids

A matroid can also be defined as M = (E ,B), where B is a set of
bases, satisfying the basis exchange axiom:

If A and B are two distinct bases, then for any element a ∈ A \ B ,
there exists an element b ∈ B \ A such that A \ {a} ∪ {b} ∈ B.
Whitney 1935, Nakasawa 1935-38, McLane 1936, Rado 1940s, Tutte 1950s
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Bases

The bases of M are its maximal independent sets.
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Matroid polytopes

The polytope of M is the convex hull of the indicator vectors of the
bases of M:

PM = conv{eB : B ∈ B}

Theorem
A 0/1 polytope P is the polytope of a matroid if and only if:
• every edge of P is a translate of ei − ej , for some i , j ,
• there exists a submodular rank function r : 2E 7→ N s.t.:

P = Pr := {x ∈ RE :
∑
i∈U

xi ≤ r(U) ∀U ⊂ E ∧
∑
i∈E

xi = r(E )}.

Gel’fand, Goresky, MacPherson, Serganova 1987
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Distances and Hamiltonicity

• From the basis exchange axiom, the distance between two
bases A and B is exactly |A∆B|/2.

• The diameter δ(PM) is therefore (half) the maximum
symmetric difference between two bases.
• Can be computed in polynomial time using the Matroid Union

theorem and Edmonds’ Matroid partition algorithm.
Edmonds 1965

• It is known that any 0/1 polytope is Hamilton-connected
Naddef-Pulleyblank 1984

• Efficient Gray codes using linear optimization as a black box
Merino-Mütze 2023
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Polymatroids

Theorem
A polytope P is a polymatroid if and only if:
• every edge of P is parallel to ei − ej , for some i , j ,
• there exists a submodular function f : 2E 7→ R s.t.:

P = Pf := {x ∈ RE :
∑
i∈U

xi ≤ f (U) ∀U ⊂ E ∧
∑
i∈E

xi = f (E )}.

• Greedy optimization algorithm
• Aka generalized permutahedra, or submodular polyhedra
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Acyclic orientations and graphical zonotopes

Given a simple, connected graph G = ([n],E ), let f : 2[n] → N,

f (U) = |{e ∈ E : e ∩ U 6= ∅}|.

• Pf is the Graphical zonotope of G .
Greene 1977, Greene-Zaslavsky 1983

• Pf is also the Minkowski sum of segments
conv{ei , ej}, ij ∈ E .
• The skeleton of Pf is the flip graph on acyclic orientations of

G .
• Distances and diameter: Easy.
• Hamiltonicity: not always. When exactly is an open problem.
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Example: Permutahedron
When G is the complete graph, we obtain all permutations.
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Example: Bilinski dodecahedron
When G is a 4-cycle.
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Hypergraphic polytopes
Given a hypergraph H = (V , E), where E ⊆ 2V \ {∅}, let
fH : 2V → N be defined as

fH(U) := |{e ∈ E : e ∩ U 6= ∅}|.

• Minkowski sum of standard simplices
• Vertices ↔ Acyclic orientations of hypergraphs, edges ↔ flips

Benedetti, Bergeron, Machacek 2018, C., Hoang, Merino, Mička, Mütze
2023
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Flip distances in hypergraphic polytopes
Theorem
Computing the flip distance between two acyclic orientations of
hypergraph H is APX-hard even when the input hypergraph
H = (V , E) is known to have bounded maximum degree and be
such that |e| ≤ 3 for every e ∈ E .

C., Steiner 2023
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Associahedra are hypergraphic
Let H = ([n], E) be the set of intervals in [n]:

E := {{i , i + 1, . . . , j} : 1 ≤ i < j ≤ n}.

Then the hypergraphic polytope of H is Loday’s associahedron.
Loday 2004

• Complexity of computing flip distances: wide open!
• Diameter is exactly 2n − 6.

Sleator, Tarjan, Thurston 1988, Pournin 2014
• Hamiltonicity: Yes.

Lucas 1987, Lucas, Roelants van Baronaigien, Ruskey 1993
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• Hamiltonicity: Yes.
Lucas 1987, Lucas, Roelants van Baronaigien, Ruskey 1993
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Graph associahedra and elimination trees

When H = (V , E) is the graphical building set of a graph
G = (V ,E ):

E := {S ⊆ V : G [S ] is connected},

then the hypergraphic polytope PH of H is the graph associahedron
of G .

• Vertices of PH are one-to-one with elimination trees of G ,
• and the skeleton of PH is the rotation graph on elimination

trees of G .

32 / 44



Flip Graphs Problems Matroids Polymatroids Hypergraphic polytopes Graph associahedra References

Graph associahedra and elimination trees

When H = (V , E) is the graphical building set of a graph
G = (V ,E ):

E := {S ⊆ V : G [S ] is connected},

then the hypergraphic polytope PH of H is the graph associahedron
of G .
• Vertices of PH are one-to-one with elimination trees of G ,
• and the skeleton of PH is the rotation graph on elimination

trees of G .

32 / 44



Flip Graphs Problems Matroids Polymatroids Hypergraphic polytopes Graph associahedra References

Elimination trees
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Rotations in elimination trees
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Distances and diameters of graph associahedra

• Distances: Computing rotation distances is NP-hard
Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023

• . . . unless the graph is a star or a complete split graph.
C., Pournin, Valencia-Pabon 2023

• Diameter:
• Tree associahedra have worst-case diameter Θ(n log n)

C., Langerman, Perez-Lantero 2018
• Tight bounds for complete split or complete bipartite graph

associahedra.
C., Pournin, Valencia-Pabon 2022

• Hamiltonicity: Always!
Manneville-Pilaud 2015, C., Merino, Mütze 2023
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Associahedra

• Jean-Louis Loday. Realization of the Stasheff polytope. Arch.
Math. (Basel), 83(3):267–278, 2004.
• Lionel Pournin. The diameter of associahedra. Adv. Math.,

259:13–42, 2014.
• Vincent Pilaud, Francisco Santos, and G ünter M. Ziegler.

Celebrating Loday’s associahedron. Arch. Math. (Basel),
2023. To appear.
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Polymatroids and generalized permutohedra

• Alexander Postnikov, Victor Reiner, and Lauren Williams.
Faces of generalized permutohedra. Doc. Math., 13:207–273,
2008.
• Alexander Postnikov. Permutohedra, associahedra, and
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• Marcelo Aguiar and Federico Ardila. Hopf monoids and

generalized permutahedra. To appear in Mem. Amer. Math.
Soc. 2017.
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Acyclic orientations

• Carolina Benedetti, Nantel Bergeron, and John Machacek.
Hypergraphic polytopes: combinatorial properties and
antipode. J. Comb., 10(3):515–544, 2019.
• Vincent Pilaud. Acyclic reorientation lattices and their lattice

quotients. Proceedings of the 34th International Conference
on Formal Power Series and Algebraic Combinatorics
(FPSAC), 2022.
• Jean Cardinal, Hung Phuc Hoang, Arturo I. Merino, Ondrej

Micka, and Torsten Mütze. Combinatorial generation via
permutation languages. V. Acyclic orientations. SIAM J.
Discret. Math., 37(3):1509–1547, 2023.
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Graph associahedra
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Computational complexity
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Okamoto. Hardness of finding combinatorial shortest paths on
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