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Compressed Sensing

the signal iIs an N components vector

@ — @4— only K<N components are non-zero

the measurement is an M<N components vector

K
p = N o= — MxN random matrix with 1.1.d. elements

white noise with variance <§72> = A

1
T

N
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Standard techniques

Minimization of the lO norm under linear constraint

min ||x||g with Fx =1y
X

HX‘ |() = number of non-zero elements

non-convex norm, exponentially hard to find

Candes, Tao, Donoho »  Minimization of the [{ norm

N
HX| ‘1 — Z |£IZZ‘ convex norm, easy to minimize
1=1

A
The [1 norm well approximates the [g norm /




The Donoho-Tanner line

a=1

Square matrix, we can invert it

F X + f a <1

Rectangular matrix, under-determined

K =pN M = aN

o = ,0 Information-theoretical limit

Let us consider the noiseless case with a
measurement matrix with 1.1.d. elements
distributed according to a gaussian with zero
mean and a variance of order |/N.

Donoho-Tanner, LI minimization

AMP Bayesian

Information-Theoretical limit



Setting and motivation

Bayesian setting

COAL > Reconstruct the signal, given the measurement vector,
the measurement matrix and a prior knowledge of the
(sparse) distribution of signal elements

Approximate Message Passing ___, Powerful algorithm.
Convergence Issues.

Donoho, Maleki, Montanari (2009)



Setting and motivation

Fm:@: ! N(0,1)

y = Fx+¢& Vi

P(x) = (1—p)i(z)+ pN(0,1)

Simplest case In which Approximate Massage Passing (AMP)
has convergence problems.

I the mean is sufficiently large then AMP displays violent divergencies.

This kind of divergencies are observed in many other cases and are the
main obstacle to a wide use of AMP

n this simple case there are workarounds that ensure convergence,

ke a “mean-removal’ procedure.

BUT it Is interesting because want to understand the origin of the non-
convergence that, we argue, is of the same nature in more complicated
settings.




Bayesian Inference with Belief Propagation

P(x|F)P(y|F,x)
P(y|F)

Bayes formula > P(x|F,y) =

M
" T 1 1 _NN )2
Conditional probability of . P(y|F,x) H v SN Fuixs)
the measurement vector

Takes an exponential time, unfeasible



Bayes optimal setting

It we know exactly the prior distribution on the signal elements
and on the noise we are In the so-called BAYES OPTIMAL setting

-

In the following we will consider that this is the case.
When it Is not the case, the prior can be efficiently learned
adding a step to the algorithm that | will present.

(I will not talk about this)

o




Belief Propagation (Cavity method)

Two kinds of nodes: factors (matrix
lines) and variables (signal elements)

We can introduce a third kind of nodes:
the prior distribution on the signal
elements, local field.

Belief propagation works for:
locally tree-like graphs or densely and
weakly connected graphs.

Messages represent an approximation to
the marginal distribution of a variable.

Messages are updated according to a
sequential or parallel schedule until
convergence (fixed point).




Belief Propagation, -BP and AMP

/" BP N
O(N?)
Qontinuous messagesj
l brojection
" rBP
O(N?)
\_numbers J

l dense matrix, [AP

7 AMP
O(N?)
QperationsJ

Donoho, Maleki, Montanari (2009)
Krzakala et al. (2012)

For the last step one assumes parallel update

In this case, fast matrix multiplication algorithms
can be applied, reducing the complexity to

Nlog(N)



AMP Algorithm

4 N

Vitt = Flup, (1) .
" Z " The performance of the algorithm
W = Z Fal— A Vt Z F2of, ) can be evaluated through

5 —1
(E2 =D F“it A (3) N
- A+ Vit Et—iZ(s-—a’?)Z
(=) N o
Z Fuzﬁ (4) 1=1

R =al + 3 :

ZMW;“ 1 N

o = (SR, 9 =< Z
ot = £ ((SE)2 R (6) i=1

- /

A

f1 (X2, R) — k-th connected cumulants w.rt. the measure

(z—R)>2
1 e 252
=z Vo

a; and v; are the AMP estimators for the mean and variance of the i-th signal component.



AMP Algorithm

4 N

V.t = ZFEZ v (1) .
The performance of the algorithm
W = Z Fal— A Vt Z F2of, ) can be evaluated through
-
(Z)? = = : (3) N
ZM:AqLV/fH Et—iZ(s-—atV
— PR,
Z F (Yp— H—l) N . ‘
R — gt + we A+Vt+1 (1) 1=1
Zuﬁﬁl 1 N
t
= fy (SR 5 Vi=< D
ot = £ ((SE)2 R (6) i=1

Y 1
NN
The AMP algorithm does NOT depend explicitly on the value of the mean of the matrix.

Fﬂi: N(O71)




Convergence

Bayes optimal case.

Given a certain (sufficiently high)
measurement ratio.

Very small or zero noise.

MSE at iter.

O
-
=

O
o
5

0.00¢

5 10
AMP iter
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Bayati, Montanari (rigorous in the zero-mean case) ‘| |

Sta-te E\/O | Ut| Oon (l nﬂ N rte N) Krzakala et al. (replicas in the zero-mean case) ‘12

Caltagirone, Krzakala, Zdeborova (replicas in the non-zero-mean case) ‘14

State evolution Is the asymptotic analysis of the average
performance of the inference algorithm when the size of the
signal goes to Iinfinity.

[t gives a good indication of what happens in a practical situation
T the size of the signal Is sufficiently large.

[t can be obtained rigorously in simple cases and non rigorously
with the replica method in more involved cases.




Bayati, Montanari (rigorous in the zero-mean case) ‘| |

S-ta-te E\/O | U-t| Oon (l nﬂ N |'te N) Krzakala et al. (replicas in the zero-mean case) ‘12

Caltagirone, Krzakala, Zdeborova (replicas in the non-zero-mean case) ‘14

A t
Vit — / ds P(s) /Dz X f2( v ,s+zA(Et,Dt)+72Dt)
e

t 2
piri :/dsP(s) /Dz X [S—fl (AZV ,s+zA(Et,Dt)+72Dt>]

t
Dttt :/dsP(s) /Dz X [s—fl (A—;V ,s—l—zA(Et,Dt)—l—”yZDt)]

Et_|_A_|_fY2(Dt)2
«

with A(E?, D) = \/

f the mean Is zero the density evolution that does not depend on D



The Nishimori Condition

Bayes optimal setting > CEt — v D = O>

l

(Et—l—l _ Vt—l—l Dt—|—1 _ (D

Therefore, analytically, if the evolution starts (exactly) on
the Nishimori Line 1t stays on it until convergence.

What is the effect of small perturbations with respect to the NL?

® \ery small fluctuations due to numerical precision in the DE
® [uctuations due to finite size in the AMP algorithm



/ero-mean case

0.2, no spinodal

Gaussian Signal, Gaussian inference, p

A

Convergence on the NL
(Bayati, Montanari)

-

P — —

P —— — —

[ — ——

s —

—_ e — — — —

— e — — —
e ——

—_— - -

S

— - e -

SN N N U

— e ———

Y

0.06

0.05

0.04

S e T e T T T T T T T T R T TR T T T I T R R R RO N N N N

AN NN N N N U T B .
SO NN N N N N U R A P S
N N N N N U D A A
ffffff A/A/A/A/A/A/A/d//t/d/(/(// / \ ~
[ e~~~ v~ S N N N .
,,,,,,,,,,,,,,,,, P N N N NN / “
fffffffffffffffffffffffffff !
|
11111 - I 1
N~ O Lo < (a0 Al ~—
Q Q Q Q Q Q Q
o o o o o o o
=

0.07

0.02

0.01

(The non-zero mean adds a third dimension to the phase space)




Stability Analysis (1)

A

The NL is a"fixed line'"
(K* =0,D* = 0)



Stability Analysis (I1)

We linearize the equations with

(K'=K'— K*
6D' = D' — D*



Stability Analysis (I1)

We linearize the equations with

0K'=K'— K~ O™\ _ K
D' = D! — D* oD ) 2o
M_ aKfK(Vta();O) 0
B 0 8DfD(Vt7 Ov O)

When the signal is Gauss-Bernoulli with zero mean, the off-diagonal terms vanish.



Stability Analysis (I1)

2 27/t+1
ary ary V
anD(Vt):_A+Vt/dsP(s)/sz2 (A% s+ 2A) = — ATV

SV =~ 5r [ AP [ D2 {fu (4% 5+ 24) +2(02 (A%,5 -+ 24))

L2y (A% 5+ 2A) — 5] fy (A% s+ 2A)} | @

p=01 a=03 A=10"1

0

o 7 < ng) the eigenvalue Is always less

05
than | In modulus.

o 7N <y <P the eigenvalue

-1

1.5t becomes larger than | in a limited
2| ] region.
— - 2 : :
s | z;gzg °* V> ’yg ) the eigenvalue Is larger than |
zzg-g — in modulus down to the fixed point.
-3 . AR Cl
9 -8 -7 6 5 -4 -3 2 -



Density Evolution and AMP

For zero measurement noise both the
critical values do NOT depend on the
undersampling rate «

For weak noise only the second critical
value has a very weak dependence on

both A and «

[Inset] Convergence Rate of the AMP
algorithm for different signal sizes.

The transition becomes sharper and sharper

N — 00

It I1s expected to move towards the second critical
value and behave similarly to the density evolution.

- J




S\/\/AMP algOﬂthm’ a pOSS|b|e SOlU'UOﬂ Manoel, Krzakala, Tramel, Zdeborova (2014)
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With random sequential update convergence problems disappear.



SWAMP algorithm, a possible solution

0.45 — 0.15

LOW RANK!

i
W
=)

0.10!|

0.15 1 0.05¢

MSE at iter.

0.00} . | 0.00}

0 5 10 15 0
AMP iter. SWAMP iter.

Very effective solution that works well in many interesting cases!
[t Is not a universal solution.

Looses the property of involving only matrix multiplications.

Caltagirone, Manoel, Krzakala, — arXiv:1401.6384 Rangan, Schniter, Fletcher
Tramel, Zdeborova. arXiv:1406.431 | Kabashima



Conclusions and Perspectives

® \We found that the origin of the convergence problems is an instability of the
Nishimori Line
® \We provided a possible solution with the SWAMP algorithm.

® Relate this kind of instability in the density evolution to the shape of the
replica potential.
® Perform the same kind of analysis for the case of dictionary learning.

THANKYOU!



