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I Introduction
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Generalized Fourier Series

f (x) =
∑

anψn(x)

Some Examples

sin(x) = 2
∞∑
n=0

(−1)nJ2n (x)
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2π
T0 (x)−
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n=0
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(2 n + 1)2
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T2n+1 (x)

erf (x) = 2
∞∑
n=0

(
−1

4

)n
1√

π (2 n + 1) n!
1F1

(
n + 1

2

2n + 2

∣∣∣∣− x

)
More generally (ψn(x))n∈N can be an orthogonal basis of a Hilbert space.
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Applications: Good approximation properties.
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Applications: Good approximation properties.
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Our framework

Families of functions ψn(x) with two special properties

Mult by x (Px)

Recx2 (xψn(x)) = Recx1 (ψn(x))

Examples

Monomial polynomials
(Mn = xn)

All orthogonal polynomials

Bessel functions

Legendre functions

Parabolic cylinder functions

xMn = Mn+1

2xTn(x) = Tn+1(x) + Tn−1(x)

1

n
(xJn+1 − xJn−1) = 2Jn
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Our framework

Families of functions ψn(x) with two special properties

Mult by x (Px)

Recx2 (xψn(x)) = Recx1 (ψn(x))

Differentiation (P∂)

Rec∂2 (ψ′n(x)) = Rec∂1 (ψn(x))

Examples

Monomial polynomials

Classical orthogonal
polynomials

Bessel functions

Legendre functions

Parabolic cylinder functions

M ′n = nMn−1

1

n + 1
T ′n+1(x)−

1

n − 1
T ′n−1(x) = 2Tn(x)

2J′n(x) = Jn−1(x)− Jn+1(x)
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Our framework

Families of functions ψn(x) with two special properties

Mult by x (Px)

Recx2 (xψn(x)) = Recx1 (ψn(x))

Differentiation (P∂)

Rec∂2 (ψ′n(x)) = Rec∂1 (ψn(x))

This is our data-structure for ψn(x)
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Main Idea

Main Idea

If ψn(x) satisfies (Px) and (P∂), for any f (x) =
∑

anψn(x) solution of a
linear differential equation with polynomial coefficients, the coefficients an
are cancelled by a linear recurrence relation with polynomial coefficients.

Applications:

Efficient numerical computation of the coefficients.

Computation of closed-form for the coefficients (when it’s possible).
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Previous work

Clenshaw (1957): numerical scheme to compute the coefficients
when ψn(x) = Tn(x) (Chebyshev series).

Lewanowicz (1976-2004): algorithms to compute a recurrence
relation when ψn is an orthogonal or semi-orthogonal polynomial
family.

Rebillard and Zakraǰsek (2006): General algorithm computing a
recurrence relation when ψn is a family of hypergeometric
polynomials

Benoit and Salvy (2009) : Simple unified presentation and
complexity analysis of the previous algorithms using Fractions of
recurrence relations when ψn = Tn. New and fast algorithm to
compute the Chebyshev recurrence.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.



8 / 21

Introduction Pairs of Recurrence Relations Recurrences of Smaller Order Conclusion

New Results (2011)

Simple unified presentation of the previous algorithms using
Pairs of recurrence relations.

New general algorithm computing the recurrence relation of the
coefficients for a Generalized Fourier Series when ψn(x) satisfies
(Px) and (P∂).

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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II Pairs of Recurrence Relations
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Examples: Chebyshev case (f (x) =
∑

unTn(x))

Basic rules:

xf =
∑

anTn (Px)
−−→

an =
un−1 + un+1

2

f ′ =
∑

bnTn (P∂)
−−→

bn−1 − bn+1 = 2nun.

Combine:

f ′ + 2xf =
∑

cnTn (P∂ + 2Px)
−−−−−−−→

cn−1 − cn+1 = Rec1(un).

Application: Chebyshev series for exp(−x2).

(f ′ + 2xf )′ =
∑

dnTn (P∂)
−−→

dn−1 − dn+1 = 2ncn,

→ Rec2(dn) = Rec3(un),

(f ′ + 2xf )′ − 2f =
∑

enTn → Rec4(en) = Rec5(un).

Application: Chebyshev series for erf(x).

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Rings of Pairs of Recurrence Relations

Theorem (Least Common Left Multiple (Ore 33))

Given Rec1 and Rec2, there exists a recurrence relation Rec and a pair(
R̃ec1, R̃ec2

)
such that for all sequences (un)n∈N :

Rec (un) = R̃ec1 ◦ Rec1 (un) = R̃ec2 ◦ Rec2 (un)

The LCLM is the recurrence relation Rec with minimal order.

Computation : Euclidean algorithm.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Operations of addition and composition

Rec = lclm(Rec1,Rec2) = R̃ec1 ◦ Rec1 = R̃ec2 ◦ Rec2

Operation 1: Addition

Rec1(an) = Rec3(un), Rec2(bn) = Rec4(un)

Rec(an) = R̃ec1 ◦Rec3(un), Rec(bn) = R̃ec2 ◦Rec4(un)

→ Rec(an + bn) =
(

R̃ec1 ◦ Rec3 +R̃ec2 ◦ Rec4

)
(un).

Operation 2: Composition

Rec1(un) = Rec3(an), Rec2(un) = Rec4(bn)

Rec(un) = R̃ec1 ◦ Rec1(un) = R̃ec2 ◦ Rec2(un)

→ R̃ec1 ◦ Rec3(an) = R̃ec2 ◦ Rec4(bn).
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Main Result

Main Result : Morphism

There exists a morphism ϕ such that if f =
∑

unψn(x) and g =
∑

vnψn(x)
are related by L (f ) = g (L a linear differential operator), then:

ϕ (L) = (Rec1,Rec2) with Rec1 (un) = Rec2 (vn)

In particular if L (f ) = 0, then Rec1 (un) = 0.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Definition of the Morphism ϕ

f =
∑

unψn(x) g =
∑

vnψn(x)

Recx2 (xψn(x)) = Recx1 (ψn(x))
if xf = g , then
Recx2 (un) = Recx1 (vn)

ϕ(x)

Rec∂2 (ψ′n(x)) = Rec∂1 (ψn(x))
if f ′ = g , then
Rec∂1 (un) = Rec∂2 (vn)

ϕ(∂)

Example for Chebyshev series:

2xTn(x) = Tn+1(x) + Tn−1(x)

T ′n+1(x)

n + 1
−

T ′n−1(x)

n − 1
= 2Tn(x)

un+1 + un−1 = 2vn

2un =
1

n
(vn−1 − vn+1)

ϕ

Example for Bessel series

1

n
(xJn+1 − xJn−1) = 2Jn

2J′n(x) = Jn−1(x)− Jn+1(x)

2un =
vn+1

n + 1
+

vn−1

n − 1

un+1 − un−1 = 2vn

ϕ

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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General Algorithm

Recall

Definition of ϕ (x) and ϕ (∂)

Algorithms to compute addition and composition between two pairs

General Algorithm

We deduce from this morphism a general Horner-like algorithm to
compute the recurrence relation satisfied by the coefficients of a
generalized Fourier series solution of a linear differential equation.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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III Recurrences of Smaller Order
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Greatest Common Left Divisor and Reduction of Order

GCLD

Given a pair (Rec1,Rec2), the Euclidean algorithm computes the greatest recur-

rence relation Rec (GCLD) such that there exists a pair
(
R̃ec1, R̃ec2

)
with the

following relations for all sequences (un)n∈N and (vn)n∈N:

Rec ◦R̃ec1 (un) = Rec1 (un)

Rec ◦R̃ec2 (vn) = Rec2 (vn)

The orders of the recurrence relations R̃eci are at most those of Reci .

Remark

In a general case, we don’t have :

Rec1(un) = Rec2(vn)⇒ R̃ec1(un) = R̃ec2(vn),

(−1)n+2 − (−1)n = (−1)2(n+1) − (−1)2n ; (−1)n+1 + (−1)n = (−1)2n

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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GLCD for reduction of order

Theorem

Given L a linear differential operator, f =
∑

unψn(x), g =
∑

vnψn(x)
such that L (f ) = g and a pair (Rec1,Rec2) = ϕ(L). We have

R̃ec1 (un) = R̃ec2 (vn)

Application: Adaptation of the previous algorithm

At the end of the previous algorithm, add a final step:
Remove the GC LD of the two recurrence relations of the pair.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Example of reduction for Chebyshev series

√
1− x2 =

∑
n∈N

4

π(2n + 1)
T2n(x) =

∑
n∈N

cnTn(x)

√
1− x2 is the solution of the differential equation:

xy(x) + (1− x2)y ′(x) = 0

With the general algorithm we obtain the pair of recurrence relations :

Rec1 (un) = (n+3)un+2−2nun+(n−3)un−2 and Rec2 (vn) = 2 (−vn+1 + vn−1) .

We deduce : (n + 3)cn+2 − 2ncn + (n − 3)cn−2 = 0.

R̃ec1 (un) = (n + 2)un+1 − (n − 2)un−1 and R̃ec2 (vn) = 2vn.

We deduce : (n + 2)cn+1 − (n − 2)cn−1 = 0.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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Conclusion

Contributions:

Use of Pairs of recurrence relations.

New general algorithm.

Use of the GCLD to reduce order of the recurrence.

Perspectives:

Computation of the recurrence of minimal order.

Numerical computation of the coefficients.

Closed form for the coefficients.

Example

erf (x) =
∞∑
n=0

2
4−n (−1)n 1F1(n + 1/2; 2 n + 2; −1)√

π (2 n + 1) n!
T2 n+1 (x) .

Integration in the Dynamic Dictionary of Mathematical Functions.

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.
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