Combinatorial state sum invariant from categories

Aristide Baratin

LPT Orsay - CPHT Ecole Polytechnique - IPhT Saclay

Paris-Nord, April 2011




State sum model is a discrete functional integral on a triangulated manifold:

A. Baratin — State sum invariant from a 2-category Introduction 2/37



Introduction
State sum models

State sum model is a discrete functional integral on a triangulated manifold:

o Simplicial set S of algebraic data, or states labeling each simplex.
0;: S(on) — S(on—-1)

A. Baratin — State sum invariant from a 2-category Introduction 2/37



Introduction
State sum models

State sum model is a discrete functional integral on a triangulated manifold:

o Simplicial set S of algebraic data, or states labeling each simplex.
0;: S(on) — S(on—-1)

o Weights w: S(o,) — C give an amplitude to a state

A. Baratin — State sum invariant from a 2-category Introduction 2/37



Introduction
State sum models

State sum model is a discrete functional integral on a triangulated manifold:

o Simplicial set S of algebraic data, or states labeling each simplex.
0;: S(on) — S(on—-1)

o Weights w: S(o,) — C give an amplitude to a state

o Partition function:  Z =37 _o ], w(s(o))

A. Baratin — State sum invariant from a 2-category Introduction 2/37



Introduction
State sum models

State sum model is a discrete functional integral on a triangulated manifold:

o Simplicial set S of algebraic data, or states labeling each simplex.
0;: S(on) — S(on—-1)

o Weights w: S(o,) — C give an amplitude to a state

o Partition function:  Z =37 _o ], w(s(o))

> 3D: Rep(SU(2)) , Rep(Uq(su(2))
> 4D: (finite groups), Rep(SU(2)), Rep(Uq(su(2))
> Models of 4d quantum gravity:
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Introduction
State sum invariants

Constructing manifold invariants:

o Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to
convert a topological problem into an algebraic one.
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Introduction
State sum invariants

Constructing manifold invariants:
o Philosophy: use combinatorics of the local 'Pachner moves' of the triangulation to
convert a topological problem into an algebraic one.
Why state sum invariants?
o Combinatorial construction of manifold invariants, TQFT's

e Models of quantum geometry:

> Triangulation independent models of quantum geometry ?
Issue tied to diffeomorphism symmetry

> ‘Metric’ models: explicit data on the edges of the triangulation ?
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Introduction
State sum invariants: why categories?

Constructing manifold invariants:

o Philosophy: use combinatorics of the local 'Pachner moves’ of the triangulation to
convert a topological problem into an algebraic one.

1. Solution in 2D: use semi-simple associative algebra

2. Going up dimensions: algebra elements — objects in a monoidal category
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Introduction
State sum invariants: why categories?

Constructing manifold invariants:

o Philosophy: use combinatorics of the local 'Pachner moves’ of the triangulation to
convert a topological problem into an algebraic one.

1. Solution in 2D: use semi-simple associative algebra

2. Going up dimensions: algebra elements — objects in a monoidal category

o Categorical miracle: Coherence laws «— Pachner moves

‘Categorification’ boosts dimensions

o Going up to 4 dimensions: monoidal 2-categories

[ Need examples... ]
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Introduction
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New set of examples:

Representation 2-category of a 2-group
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Introduction
Which 2-category?

New set of examples:

[ Representation 2-category of a 2-group ]

o Finite dimensional representations on 2-Vect:

o Infinite dimensional representations on ‘measurable categories’ Meas:

e Possible relevance for models of quantum geometry: 2-Poincaré group

[ Explicit model 7 ... ]
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Introduction
Overview

1. Further development of the representation theory of measurable 2-groups

— we can now (if not) understand, (at least) compute things.
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Introduction
Overview

1. Further development of the representation theory of measurable 2-groups

— we can now (if not) understand, (at least) compute things.

2. Explicit example of a state sum model using the 2-category representation of the
'Euclidean 2-group’

3. The model shows up in a combinatorial (state sum) reformulation of the Feynman
graph amplitudes in ordinary QFT on flat Euclidean spacetime
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Outline

Introduction

Representation of 2-groups

The model

‘Quantum flat space’

Conclusion
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Outline

Representation of 2-groups
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2-group representation
From groups to 2-groups

o A group is a category with a single object and all morphisms invertible.

g1 92 9291
* —= k ——> % = * ———> %
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o A group is a category with a single object and all morphisms invertible.

g1 92 9291
* — k —> % = * ——> %

e A 2-group is a 2-category with a unique object such that all morphisms and
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2-group representation
From groups to 2-groups

o A group is a category with a single object and all morphisms invertible.

g1 92 9291
* ——> 4k —> % = * ———> %

e A 2-group is a 2-category with a unique object such that all morphisms and
2-morphisms are invertible.

n - 9291
* \U,hl * \U,hQ * = * ho(go>hy) *
~_ VM T V"2 5 \M/
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2-group representation
From groups to 2-groups

o A group is a category with a single object and all morphisms invertible.

g1 92 9291
* ——> 4k —> % = * ———> %

e A 2-group is a 2-category with a unique object such that all morphisms and
2-morphisms are invertible.

g
/"‘\
* NZ3 *
\'/
g9'=goh
9 g
o Y
——> % = * s *
n’
1"
g// g
n - 9291
* \U,hl * \U,hQ * = * ho(go>hy) *
~ V' T V2 > ~_ et~
’ /
9 g 17
1 2 abah

2-group data: ‘crossed module’ (G, H, >, )
d(g>h) =gd(h)g~*  8(h)>h' =hh'h"
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2-group representation
From groups to 2-groups

g1 92

AR T

1"
92

e 2-groups allows to define 'surface holonomies’ on discretized surfaces.

o Algebraic structure underlying ‘higher gauge theory’
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2-group representation
From groups to 2-groups

Example: the Poincaré 2-group

o G =S0¢(3,1): the group of Lorentz transformations,
o H =R*: the group of translations of Minkowski space,
o the obvious action of SO (3,1) on R*.

e 0 =1 (source = target)
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2-group representation
From group to 2-group representations

Groups are usually represented in the category on vector spaces.

o A representation is a functor p: G — Vect.

p(g)

p(x) =V, V—>V
o An intertwiner is a natural transformation:

p1(9)

Vi————W

Vo ——— V&
2 p2(9) 2

Group representations and intertwiners between these form a monoidal category.
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2-group representations
From groups to 2-groups

A 2-group G may be represented on suitable '2-vector spaces’.
» A representation is a '2- functor’ p: G — 2Vect

p(g)

o —
p(x)=V, VvV Yo(a,n_ V
\———‘j

plg")
e An intertwiner is a 'pseudo-natural transformation’.

p1(9)

Vi——W;

(9)

Vo——=W

p2(9)
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2-group representations
From groups to 2-groups

o Novelty: there are also 2-intertwiners between interwiners:

Representations of a given 2-group, intertwiners and 2-intertwiners between these, form a
monoidal 2-category.
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2-group representations
2-vector spaces: a flavor

ordinary higher
linear algebra | linear algebra
C Vect
+ )
X ®
0 {0}
1 C
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2-vector spaces: a flavor

ordinary higher
linear algebra | linear algebra
C Vect
+ )
X ®
0 {0}
1 C

e Finite dimensional

> 2-vector space Vect’V
> ‘linear maps’: T: Vect™ — Vect: matrices of vector spaces
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e Finite dimensional

> 2-vector space Vect’V
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2-group representations
2-vector spaces: a flavor

ordinary higher
linear algebra | linear algebra
C Vect
+ )
X ®
0 {0}
1 C

e Finite dimensional

> 2-vector space Vect’V

> ‘linear maps’: T: Vect™ — Vect: matrices of vector spaces
TV = @D, Trnn ® Vi

> ‘2-map’ an,m: Tn,m — T}, m

e Infinite dimensional
» 2-Hilbert space HX

> ‘l-map’ T': HX — HY: field of Hilbert spaces T}, + measures y, on X
> ‘2-map’ ay,z: Tye — Téyz
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Representations of 2-groups
Euclidean 2-group

Let's focus on the Euclidean 2-group &:

G=S014), H=R* >,0=1
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Representations of 2-groups
Euclidean 2-group: representations

r(9)
T T
A representation HX elg,h) - X G =50(4), H=R*
~—— 7

r(9)
is determined by:

o a space X with an action of SO(4):  p(9)Hs = Hye
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Representations of 2-groups
Euclidean 2-group: representations

r(9)
T T
A representation HX elg,h) - X G =S0(4), H=R*
~— T

p(9)
is determined by:

o a space X with an action of SO(4):  p(9)Hs = Hye
o an SO(4)-equivariant map x: X — H* ~ R*:

p(1,h): Hy — Ha, Pr e'iX(m)‘h'@m
Geometrically: equivariant fiber bundle X
lx
R4

Irreducible: X transitive space, x one-to-one
— X isomorphic to a SO(4)-single orbit in R*: 3-sphere of radius /.
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Representations of 2-groups
Euclidean 2-group: representations

r(9)
T T
A representation HX elg,h) - X G =S0(4), H=R*
~—— 7

p(9)
is determined by:

o a space X with an action of SO(4):  p(9)Hs = Hye
o an SO(4)-equivariant map x: X — H* ~ R*:

p(1,h): Hy — Ha, Pr e'iX(m)‘h'wm
Geometrically: equivariant fiber bundle X
lx
R4

Irreducible: X transitive space, x one-to-one
— X isomorphic to a SO(4)-single orbit in R*: 3-sphere of radius /.

[ Irreducible representations labelled by ¢ € R ]
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Representations of 2-groups
Euclidean 2-group: representations

Tensor product of two representations gives the bundle:

X1 X XQ
lX1+x2
H*
determined by:

e the direct product X; x X2 with diagonal action: g(zi1,z2) := (g1, gz2)

o the SO(4)-equivariant map (z1,z2) — x1(z1) + x2(z2)

Tensor product of Irreps: z; € R*, |z;| = 4;, (z1,72) = 71 + T2
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Representations of 2-groups
Euclidean 2-group: intertwiners

An intertwiner between two reps (X, x) and (Y, &):

X r1(9) X

#(9)

Y ———— > pgv
r2(9)

52]
oHy :/ dpy () Vy,o ® Ha, ‘I’Z,x? Vy,e = Vg(y,2)
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Representations of 2-groups
Euclidean 2-group: intertwiners

An intertwiner between two reps (X, x) and (Y, &):
p1(9)

X ————— > pgX

#(9)

Y ———— > pgv
r2(9)
(5]
PHy :/ dpy (@) Vy,e @ Ha, Yo Ve = Vo)
is determined by
® a SO(4)-Hilbert bundle (V, ®7) over the pullback Z = {(y,z) € Y x X : x(z) = &(y)}
9 V. — V.

’
99 = <I>gz o &Y (cocycle)
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Representations of 2-groups
Euclidean 2-group: intertwiners

An intertwiner between two reps (X, x) and (Y, &):
p1(9)

X ————— > pgX

#(9)

Y ———— > pgv
r2(9)

(5]
PHy = / dpy (@) Vy,e @ Ha, Yo Ve = Vo)
is determined by
® a SO(4)-Hilbert bundle (V, ®7) over the pullback Z = {(y,z) € Y x X : x(z) = &(y)}
9 V. — V.

’
99 = <I>gz o &Y (cocycle)

® a SO(4)-equivariant family of measures p,, supported on Z.
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Representations of 2-groups
Euclidean 2-group: intertwiners

An intertwiner between two reps (X, x) and (Y, &)
r1(9)

HX ———— > pgX

é(9)

HY ————— > pgY
p2(9)

<I>Z: V. = Vg2

’ ’
B =7 o] (cocycle)
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Representations of 2-groups
Euclidean 2-group: intertwiners

An intertwiner between two reps (X, x) and (Y, &)
r1(9)

HX ———— > pgX

é(9)

HY ————— > pgY
p2(9)

<I>Z: V. = Vg2

’ ’
B =7 o] (cocycle)

Remark: (V, ®9)gecq, representation of stabilizer G, C SO(4) of z.

Mackey's induced representation theory
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Representations of 2-groups
Euclidean 2-group: intertwiners

An intertwiner between two reps (X, x) and (Y, &)
r1(9)

HX ———— > pgX

é(9)

HY ————— > pgY
p2(9)

<I>Z: V. = Vg2

’ ’
B =7 o] (cocycle)

Remark: (V, ®9)gecq, representation of stabilizer G, C SO(4) of z.

Mackey's induced representation theory
When Z is a transitive space:

Irreducible intertwiners: representation of stabilizer G, irreducible
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Representations of 2-groups
Euclidean 2-group: intertwiners
An intertwiner between two reps (X, x) and (Y, &)
r1(9)

HX ———— > pgX

é(9)

HY ————— > pgY
p2(9)

<I>g: V. = Vg2

’ ’
B =7 o] (cocycle)

Remark: (V, ®9)gecq, representation of stabilizer G, C SO(4) of z.
Mackey's induced representation theory

When Z is a transitive space:

Irreducible intertwiners: representation of stabilizer G, irreducible

[ Irreducible intertwiners labelled by an irreducible group representation of stabilizer G, ]
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Representations of 2-groups
Euclidean 2-group: 2-intertwiners

Two intertwiners ¢ = (V, ®9),¢ = (W., U) give two SO(4)-Hilbert bundles over

Z={(y;z) €Y x X : x(z) = &(v)}-
A 2-intertwiner:

is determined by a map of SO(4)-Hilbert bundle:

m,: V, — W, Y om, =mg, o DI
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Representations of 2-groups
Euclidean 2-group: 2-intertwiners

Two intertwiners ¢ = (V, ®9),¢ = (W., U) give two SO(4)-Hilbert bundles over
Z=A{ly,z) €Y x X : x(z) = £(¥)}-
A 2-intertwiner:

is determined by a map of SO(4)-Hilbert bundle:
mz:Vz*)Wz, \IlzomzzngOCI)g

each m, intertwines the representations of the stabilizer G, of z.

m defines an intertwiner between the two induced representations of SO(4) defined

by ¢, 1.

A. Baratin — State sum invariant from a 2-category Representation of 2-groups 21/37



Outline

The model
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The model
Building up the categorical state sum

irreducible
representation

irreducible
intertwiner
from X @ X' to Y

N

.j <><
Bg

2-intertwiner

{2
T\ ahs
(S -\I/-

The model

23/37

A. Baratin — State sum invariant from a 2-category



o for each edge:  a positive number l;; € Ry (3-sphere radius)
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o for each edge:  a positive number l;; € Ry (3-sphere radius)

o for each triangle:  a spin s € Z (representation of U(1))
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The model

Building up the categorical state sum

e for each edge: a positive number [;; € R (3-sphere radius)

o for each triangle:  a spin s € Z (representation of U(1))

1. SO(4)-bundle
> Base space: Tjjk = {(zij, Tjr, Tir) € (R*)3 . |miz| = lij, ®i5 + x5k = Trr}

> Stabilizer Gpo = U(1)
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The model

Building up the categorical state sum

e for each edge: a positive number [;; € R (3-sphere radius)

e for each triangle:  a spin s € Z (representation of U(1))

1. SO(4)-bundle
> Base space: Tik = {(zij, Tk, Tix) € (R*)3 . |miz| = lij, ®i5 + x5k = Trr}
> Stabilizer Gyo = U(1)

» Line bundle: V, = C, N )
pho — ois0 he € U(1)

A0

’ ’
99 _ g g
207 =99,

24/37
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o for each edge:  a positive number l;; € Ry (3-sphere radius)

o for each triangle:  a spin s € Z (representation of U(1))
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The model

Building up the categorical state sum

e for each edge: a positive number [;; € R (3-sphere radius)

e for each triangle:  a spin s € Z (representation of U(1))

1. Family of measures

> unique up to equivalence — this is a normalization choice.
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The model

Building up the categorical state sum

e for each edge: a positive number [;; € R (3-sphere radius)

e for each triangle:  a spin s € Z (representation of U(1))

1. Family of measures
> unique up to equivalence — this is a normalization choice.

> Let djz := d*z §(|z| — 1), choose:

4
dptesy (ij, Tjk) = diy; @i di Tk 07 (25 + T — Tik)
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The model

Building up the categorical state sum

e for each edge: a positive number [;; € R (3-sphere radius)

o for each triangle:  a spin s € Z (representation of U(1))

1. Family of measures
> unique up to equivalence — this is a normalization choice.

> Let djz := d*z §(|z| — 1), choose:

4
dptesy (ij, Tjk) = diy; @i di Tk 07 (25 + T — Tik)

> du(r) := dijzik ® dpe,, invariant measure in 7y
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The model

Building up the categorical state sum

e for each edge: a positive number [;; € R (3-sphere radius)

e for each triangle:  a spin s € Z (representation of U(1))

1. Family of measures
> unique up to equivalence — this is a normalization choice.
> Let djz := d*z §(|z| — 1), choose:
dpte;y (ij, Tjr) = diy; 25 di;, Tk 8% (i + ik — Tik)
> du(r) := dijzik ® dpe,, invariant measure in 7y

Representation of SO(4) on IGD dp(a)Va induced by the U(1) representation s.
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defines a (reducible) intertwiner:
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The model

Building up the categorical state sum

® Gluing Triangles :

defines a (reducible) intertwiner:

1. SO(4)-bundle

> Base space: Q;;‘M = {quadrangles with fixed length(ik)}
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The model

Building up the categorical state sum

® Gluing Triangles :

defines a (reducible) intertwiner:
1. SO(4)-bundle

k

> Base space: Q;’]M = {quadrangles with fixed length(ik)}

> Line bundle: Wiz :=V; ® V4~ C; cocyle \I/% o= @; ® CIZ" = fbé(bg
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The model

Building up the categorical state sum

® Gluing Triangles :

defines a (reducible) intertwiner:
1. SO(4)-bundle

k

> Base space: Q;’]M = {quadrangles with fixed length(ik)}

> Line bundle: Wiz :=V; ® V4~ C; cocyle \I/% o= @; ® CIZ" = fbé(bg
2. Family of measures

> dpg,, (Tij, Tik, Thi) =
digywigdig, @i dig, Tk 8*(@i5 + Tk + Trr — zi)0(|zsj + x| — Lik)

> use dp = di,; i ® dus,, to get a representation of SO(4) on fGB du@)Viy ® V4
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LD mg = m g P DY

ik v
®€ Tiju = Qijr N Qi
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The model

Building up the categorical state sum

o for each tetrahedron: a 2-intertwiner

9 HI — 9 HI
(I)V(I)A mg = Myx (T)B(I)Q
_ ik jl
®E Tijr = Qijrr N Qi
o m fully determined by the value mg. on a given ‘reference tetrahedron’ R° € T';jx;:
X°, mygo normalization choices

Myge = LD mge (DL L)~
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The model
Simplex weight: ‘20j-symbol’

3 / ! 5 3
'4
1 5
s A
2 4 2 4
<—
5

N\
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The model
Result

The model is written formally as

ZA:/ Hzaz ZWA ey St)

st €N

where

cos So(le, St
e,sf ||At ||7

o'
o
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The model
Result

The model is written formally as

ZA:/ Hldl ZWA ey St)

st €N

where

o

So(le, s
e,sf H-At Hcosyf((]()s/)

o
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The model
Result

The model is written formally as

Za :/ [tedic > Wa(le,s:)
Ry

e stEN

where

Watysi) = [T 401 ] <2502

o A.(l.) area triangle t with edge lengths .
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The model
Result

The model is written formally as

Za :/ [tedic > Wa(le,s:)
Ry

e stEN

where

Wa(le, s¢) = HA'(lr) H M((]/:),s,)

o A.(l.) area triangle t with edge lengths .
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The model
Result

The model is written formally as

Za :/ [tedic > Wa(le,s:)
R

+ e st €N

where

Wa(le,se) = [J A () [[ =2 So ((]/) st)

o A.(l.) area triangle t with edge lengths .

o S,(le, st) first order Regge action:

So(le,st) ==Y _ se0? (le), $? dihedral angle ¢t C o

tCo
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The model
Result

The model is written formally as

ZA:/ Hldl > Walle, st)

st €N

where

Wa(le, st) HAf HCOSS” £ 3t)

o

16151 67,6252 625333 zeDSO 67,6454 67,655’5
E E Agas E E Anzs s
1 0

Va2 Vs Vi Vs
€1,€2,€3 S045

€0,€4,€5 S123
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The model
Result

The model is written formally as

ZA:/ Hldl > Walle, st)

st €N

where

Wa(le, 5¢) HA/ HCOSS” £ 3t)

o

16151 67,6252 625333 ZCOSO 67,6454 67,655’5
E E Agas E E Anzs s
1 0

Va2 V3 Vi Vs
€1,€2,€3 S045

€0,€4,€5 S123

[ Invariance under Pachner moves ]
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Outline

‘Quantum flat space’
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'Quantum flat space’:

Feynman amplitudes QFT on 4d Euclidean space-time:
Ir = / dPzy---dPz, [[ GF (@ - 1)) (1)
RD e
(ij)er
formulated as background free as state sums:

Ir = / [T tede. S Walsi t) [] Gt @)
gauge fixing jcA

{s¢} eeT
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'Quantum flat space'’:

Ir = dDajl d Tn H G ) (3)

D
R (ij)er

Limit of quantum gravity amplitudes?
A /Dg In(g)eSe=lel o o Ip

State sum structure of I+ may tell us something about the structure of the quantum
gravity amplitude
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Outline

Conclusion
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Conclusion
Summary

o Explicit example state sum model based on the representation 2-category of the
'Euclidean 2-group’
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Conclusion
Summary

Explicit example state sum model based on the representation 2-category of the
'Euclidean 2-group’

Clear geometrical content, ‘metric’ data on the edges of the triangulation
Formal invariance under Pachner moves: state sum invariant.

Models flat space: shows up in state sum formulation of QFT Feynman amplitudes
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o Conjecture: related to higher gauge theory functional integral

/ DADB §(F(A)) §(dsB)
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Conclusion
Perspectives

o Conjecture: related to higher gauge theory functional integral
/DADB(S(F(A))é(dAB)

e Topological invariance: generic feature of 2-group state sum models? Can one get
interesting invariants out of this?
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Conclusion
Perspectives

o Conjecture: related to higher gauge theory functional integral
/DADB(S(F(A))é(dAB)

e Topological invariance: generic feature of 2-group state sum models? Can one get
interesting invariants out of this?

o Algebraic ways to think of deformations of field theory structure

o Basis for gravity models?
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