Exhaustive search of permutations
with many patterns

Axel Bacher Michael Engen

April 14, 2020

Outline

@ Permutations with many patterns

© Exhaustive search algorithms

© GPU implementation

@ Conclusion

Permutations with many patterns

@ How many patterns of size k can a permutation of size n contain?
@ What are the optimal permutations like?

@ Given n and k, can we construct an optimal permutation?

Universal and prolific permutations

[Bevan—Homberger—Tanner 2017, Engen—Vatter 2020]

= . b-universal

@ Permutations with k! patterns of size k are called k-universal.
2
o They exist iff n > L, with e 2k? < [, < [%W

Universal and prolific permutations

[Bevan—Homberger—Tanner 2017, Engen—Vatter 2020]

= .| b-universal = . " 3-prolific

Permutations with k! patterns of size k are called k-universal.
2
They exist iff n > Ly, with e 2k? < [< [%W

Permutations with (Z) patterns of size n — k are called k-prolific.
They exist iff n > [k?/2 + 2k + 1].
Criterion: |/ — j| + |o; — 0j| > k + 2 for all i # j.

Universal and prolific permutations

[Bevan—Homberger—Tanner 2017, Engen—Vatter 2020]

= .| b-universal = . " 3-prolific

Permutations with k! patterns of size k are called k-universal.
2
They exist iff n > Ly, with e 2k? < [< [%W

Permutations with (Z) patterns of size n — k are called k-prolific.
They exist iff n > [k?/2 + 2k + 1].
Criterion: |/ — j| + |o; — 0j| > k + 2 for all i # j.

When ©(y/n) < k < n— ©(y/n), there are < min|k!, (})] patterns.

Optimal permutations: experimental results

13 14 15 16 17

8 S

B

universal permutations

10

11

12

13

Ranking patterns

rk(c,S) = 3 x 120 + 24 + 6 + 2 = 392

@ We rank patterns based on their inversions:

rk(o, S) = Z [Ssi|!

€S, i<j,0i>0;

Ranking patterns

rk(c,S) = 3 x 120 + 24 + 6 + 2 = 392

@ We rank patterns based on their inversions:

rk(o, S) = Z [Ssi|!

€S, i<j,0i>0;

o Computing the rank of every pattern of every permutation

(up to symmetries) can be done in time 2 x (]) x ().

Iterating over subsets: a combinatorial Gray code

{ [[} H m-n e | | | H Ecm
RN HE N [[B3| H EE<
[[I | —EE | 54 |} mE<m

HE m<— H E<Em - HEn R N
| 54 |} . EE< H<—HE RN

Theorem (Chase, 1976)

There exists an enumeration of 3x[n] moving one point at a time,
without crossing other points.

Iterating over subsets: a combinatorial Gray code

{ [[} H m-n e | | | H Ecm
RN HE N [[B3| H EE<
[[I | —EE | 54 |} mE<m

HE m<— H E<Em - HEn R N
| 54 |} . EE< H<—HE RN

Theorem (Chase, 1976)

There exists an enumeration of 3x[n] moving one point at a time,
without crossing other points.

@ At each step, going from rk(o, S) to rk(o, S’) takes time k.

Iterating over subsets: a combinatorial Gray code

{ [[} H m-n e | | | H Ecm
RN HE N [[B3| H EE<
[[I | —EE | 54 |} mE<m

HE m<— H E<Em - HEn R N
| 54 |} . EE< H<—HE RN

Theorem (Chase, 1976)

There exists an enumeration of 3x[n] moving one point at a time,
without crossing other points.

@ At each step, going from rk(o, S) to rk(o, S’) takes time k.

@ This improves the complexity to %! X (Z) X k.

lterating over permutations: another Gray code

Theorem (Johnson, 1963; Trotter, 1962)

There exists an enumeration of &,, doing only elementary transpositions.

lterating over permutations: another Gray code

Theorem (Johnson, 1963; Trotter, 1962)

There exists an enumeration of &,, doing only elementary transpositions.

@ Problem: how to iterate on permutations up to symmetries?

lterating over permutations, exploiting symmetries

@ We divide permutations into classes based on their m-border pattern.

e We discard symmetrical classes (m = 2: ~ 85% of permutations).

lterating over permutations, exploiting symmetries

@ We divide permutations into classes based on their m-border pattern.

e We discard symmetrical classes (m = 2: ~ 85% of permutations).

@ Classes are divided into batches by fixing entries to the left and right.

e Each batch has ("(gri')’?!

permutations and a Gray code.

Algorithm 1 (small patterns)

@ Swapping o; and o;41 only affects patterns containing both.
@ In Chase order, computing rk(o, S) and rk(o’, S) takes k operations.

Algorithm 1 (small patterns)

@ Swapping o; and o;41 only affects patterns containing both.
@ In Chase order, computing rk(o, S) and rk(o’, S) takes k operations.

Algorithm 1
Remember: ¢, = #{S | rk(0,S) = r} for 0 < r < k!.

Step o 5 ¢’: For all S O {i,i+ 1} in Chase order:
e compute r = rk(o,S) and r’ = rk(d’, S);
@ decrement ¢, and increment ¢,

Complexity: %! X (2:3) X k with k! space.

Algorithm 2 (large patterns)

@ Swapping o; and ;41 changes rk(c =1, S) only if {o;,0,.1} C S
and only by the contribution of the inversion (o7, 0711).

Algorithm 2 (large patterns)

@ Swapping o; and ;41 changes rk(c =1, S) only if {o;,0,.1} C S
and only by the contribution of the inversion (o7, 0711).
Algorithm 2
Remember: rs =rk(c71,S) for S € P[n].

Step 0 =5 o Initialize a hash table, then for all S € B,[n], do:

rs +|Sso|! if 0 < 0,

o if {U;,U;+1} CS, rs<« {

@ add rs to the table.

rs — |Ssoi |l if 0 > oiga;

Complexity: 2 x (7) with (}) space.

Threads and memory on a GPU

@ Threads on a GPU are organized in warps (32 threads per warp).

@ Warps are (usually) always synchronized and threads can
read each other's registers.

e Warps are organized in blocks (1-32 warps per block).
@ Blocks may be synchronized and have access to shared memory.

@ Limits: 1024 resident threads, 65536 32-bit registers and
64 kB of shared memory per multiprocessor (46 MPs per GPU).

@ Threads in different blocks cannot synchronize (except for atomics).

@ They have access to the global memory of the GPU (8 GB)
through different caches.

CUDA programming

__global__ void search(perm_t *batches) {
perm_t p = batches[blockIdx.x];
/%, .0%/

int main() {

/%, %/
search <<< num_batches, 512 >>> (batches);
k... %/

@ The above CPU code launches the kernel search() with
num_batches blocks of 512 threads each.

@ Threads have access to their block number (blockIdx.x)
and thread number within their block (threadIdx.x).

@ An API exists for memory allocation, copy, config, etc.

Algorithm 1: implementation

Algorithm 1
Remember: ¢, = #{S | rk(o,S) = r} for 0 < r < kl.

Step 0 = ¢’: For all S O {i,i+ 1} in Chase order:
e compute r = rk(o,S) and r’ = rk(d’, S);
@ decrement ¢, and increment ¢,

Complexity: %! X (2:3) X k with k! space.

We need 2k! bytes of shared memory per permutation for (c,).
If kK <6, we fit 32 permutations per MP (1 warp/permutation).
If k =7, we fit 6 permutations per MP (5 warps/permutation).
We fit 2 permutations per block (64 or 320 threads/block).

The Chase orders are precomputed and stored in global memory.

Algorithm 2: implementation

Algorithm 2
Remember: rs =rk(c71,S) for S € P[n].

Step o =% ¢’ Initialize a hash table, then for all S € Px[n], do:
rs + |Sso; |l if 0i < oi1,

rs — ‘S>z7“1|! if oi > oit1;

o if {O','.,O','_;,_l} CS, rsg <— {

@ add rs to the table.

Complexity: %! x (1) with (7) space.

@ When (Z) is large, we use 1024 threads per block.
@ We store S and rs in registers (works well for (}) < 20000).
@ The hash table is in shared memory.

@ Global memory is only needed for writing optimal permutations.

Hash table implementation

__shared__ unsigned int table[TABLE_SIZE];

for(unsigned int i = threadIdx.x; i < TABLE_SIZE; i += blockDim.x)
table[i] = 0;

__device__ void table_zero() {

__device__ unsigned int hash(unsigned int key) { /*...x/ }

// returns 1 if key was not in table, O otherwise
__device__ int table_add(unsigned int key) {
unsigned int i = hash(key);
while(1) {
unsigned int t = atomicCAS(table + i, 0, key);
if(t == 0 || t == key) return t == 0;
= (i+1) % TABLE_SIZE;

@ t = atomicCAS(p, x, y); <~ {t=x*p; if(t ==2x) *p =y; }
@ Maximum size of the table: 16384 entries (best when < 50% full).

Perspectives

@ What are the permutations with the most patterns of all sizes?
(currently found for n < 15 by adapting Algorithm 2)

@ What to do when there are > 8000 different patterns?

@ Can we find necessary conditions for optimal permutations
and discard batches a priori?

	Permutations with many patterns
	Exhaustive search algorithms
	GPU implementation
	Conclusion

