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Computational complexity
worst Vs average

@ K-SAT = satishability of Boolean formulas: NP
complete (Cook 1971) - concerns worst case
computational complexity.

@ Average computational complexity - in what time on
average can a large fraction of instances be solved.
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Historical note

1971 - Cook proves K-SAT to be NP-complete.

#1979 - Golberg shows that if a variable is
included in a clause with fixed probability this
ensemble is on average polynomial.

@ Until 1991 basically all computer science believes
that NP-complete problems might in fact all be
on average easy.
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Abstract

It is well known that for many NP-complete
problems, such as K-Sat, etc., typical cases are
easy to solve; so that computationally hard
cases must be rare (assuming P # NP). This
paper shows that NP-complete problems can
be summarized by at least one “order param-
eter”, and that the hard problems occur at
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so says nothing about the difficulty of typical instances.
However, this situation raises the question “where are
the really hard instances of NP problems?”. Can a sub-
class of problems be defined that is typically (exponen-
tially) hard to solve, or do worst cases appear as rare
“pathological cases” scattered unpredictably in the prob-
lem space?

In this paper we show that for many NP problems one
or more “order parameters” can be defined, and hard
instances occur around particular critical values of these
order parameters. In addition, such critical values form
a boundary that separates the space of problems into
two regions. One region is underconstrained, so the den-
sity of solutions is high, thus making it relatively easy
to find a solution. The other region is overconstrained
and very unlikely to contain a solution. If there are solu-




Random K-SAT

»N variables
»randomly choose M K-uples of variables
»negate with probability 1/2

M
@ —
N
- DO
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Definition of graph coloring

g=3: number of colors
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Random Graph Coloring

4 Erdos-Renyi random graph: Every edge present
with probability p=c/(N-1).

4 Random regular graph: every node has degree r.

4 Planted random graph: Fix a random color for
every vertex, put M edges randomly only among
different colors. Forget the "planted” coloring.




(Cheeseman, Kanefsky, Taylor'91; Mitchell, Selman, Levesque'92)

PsAT
PsaT

Psar
comp. time

comp. time
comp. time

probability of
colorability

average degree ¢
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(Cheeseman, Kanefsky, Taylor'91; Mitchell, Selman, Levesque'92)

PsAT
PsaT

Psar
comp. time

comp. time
comp. time

time to decide

average degree ¢
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Large number of colors

q — 0 cs ~2qlnqg —Inq

1st & 2nd moment on something smart (Coja-Oghian, Vilenchik, 2013)
: i 1
q

Naive algorithm which works for connectivities C < ¢ 1n q:

cIN
2

Repeatedly pick a random vertex and assign it a random color not assigned
to any of its neighbours.
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Large number of colors

q — 0 cs ~2qlnqg —Inq

1st & 2nd moment on something smart (Coja-Oghian, Vilenchik, 2013)
: i 1
q

Naive algorithm which works for connectivities C < ¢ 1n q:

cIN
2

Repeatedly pick a random vertex and assign it a random color not assigned
to any of its neighbours.
An open question (for 30 years):

Is there a polynomial algorithm which would provably color graphs of
connectivity C ~ (1 e)qlnq for some ¢ > () ?
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Physics comes info the game

@ Monasson, Zecchina’ 97 realized random K-SAT = spin
glass. Hence developed for
spin glasses useful to describe its properties.

@ Technical problems in the method for sparse graphs
resolved by Mezard, Parisi in 200l.

@ Mezard, Parisi, Zecchina 2002
@ Computed the SAT/UNSAT transition,
@ Predicted clustering of solutions causing hardness

@ Invented survey propagation - best to solve random
SAT instances for already more than 10 years.
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Conjecture: random r-regular graph
is g-colorable iff ¥ > ()

S=ln|’ (—1)i<ij1>(1—(fz+1)n)r (L)

bl Zg:_ol(_:-)i(q;l)(ﬁ_ i
S SRR

Mezard, Parisi, Zecchina, Weigt, Pagnani,
Krzakala, Ricci-Tersenghi, Montanari 2002-2004.
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More phase transitions

L. Zdeborova, F. Krzakala, Phys. Rev. E 2007, EPL 2007, PRL 2009, etc.

(I) Clustering of solutions
(II) Condensation
(III) Spinodal transition

(IV) Freezing of solutions
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The clustering transition

@ Consider a random walk (try to flip a color at random, if
still a valid coloring accept, if not try again) among
colorings starting from a coloring chosen uniformly at
random from all of them.

@ For ¢ < Cg4
the walk will go to distance close to (g-1)/q in a constant
number of steps per node. For C > Cgit will stay closer
than 1/2 forever (in large N limit).

@ The set of solutions divides in exponentially many
exponentially large clusters (= basins of attractions of
the random walk).

Tuesday, June 18, 13



The clustering transition

@ Consider a random walk (try to flip a color at random, if still a valid coloring
accept, if not try again) among colorings starting from a coloring
chosen uniformly at random from all of them. Monitor the
Hamming distance from the starting configuration.

.. .
.......

cd(q = 3) i
Cd(4) == 50
Cd(5) =+ 54 ]

Close relation with reconstruction on trees: construct a
configuration starting on the root, do the leaves contain
any information abotu the root?
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Clustering rigorously

@ Large q in coloring, large K in K-SAT: Existence of
exponentially many exponentially large geometrical

clusters proven (Mora, Mezard, Zecchina'05; Achlioptas, Ricci-
Tersenghi‘05, Achlioptas, Coja-Oghlan08).
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Clustering rigorously

@ Large q in coloring, large K in K-SAT: Existence of
exponentially many exponentially large geometrical

clusters proven (Mora, Mezard, Zecchina'05; Achlioptas, Ricci-
Tersenghi‘05, Achlioptas, Coja-Oghlan08).
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s(c)= lim E(In(Z+1))

N — 00

at the condensation transition s(c) is non-
analytic (2nd derivative dis-continuous).

InE(Z)=E(In(Z+1))+0o(N) forc< c.
de>0: InE(Z) >E(In(Z+1)) +eN forc > c.

Beyond condensation almost all solutions belong to a
finite number of clusters.

colg="o " Ce

cq(4) = 8.35 Ce

ca(5) = 12.84 c.(5) = 13.23
( (

cq(q = o0) =qlngq cc(q = 0) = 2¢qlng
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(2-coloring of k-hyper-graphs)

(A. Coja-Oghlan, LZ, arxiy, 2011, SODA 2012)

Feond = 2F " 1In2 —In 2

Theorem 1.1 There is a constant ko > 3 such that for all k > ko and r < T.ond the random hypergraph
Hy(n,m) is 2-colorable w.h.p. and

InZ ~InE|[Z] w.hp. (3)

Theorem 1.3 There exist a constant ky > 3 and a sequence =j. — 0 such that for any k > kg there are
0. > 0, (. > 0 such that the following two statements are true.

1. Whp. Hi.(n,m) is 2-colorable for all r < Twonqg + i + 0.
2. For any density r With T oond + € < T < T5 W€ have

InZ <mE[Z] — {in whp.

Conjecture 1.6 There is £ — 0 such that ooy ~ 287 11In2 — (ang + i—) + k.

(PI"OOIC of 1.6 in: A. Coja-Oghlan, K. Panagiotou, arxiv 2011)
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Two main ideas of the proof:

@ The planted ensemble is very similar to the random
ensemble (high probability properties of one are high
probability properties of the other) before the
condensation transition, and the planted ensemble is
easier to analyze.

@ In the large k regime clus’r_ellf”%look like small
“subcubes”, only fraction 2 of variables not frozen,
and their values are almost independent.

@ In the proof use subcubes to bound the expected size
of the planted cluster and look when this becomes
larger than the total expected number of solutions.
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Planted Coloring

(Krzakala, Zdeborova’'09)

L.xr..-‘

Generating planted instances: Fix a configuration. Choose
constraints randomly such that all (but fraction p) are
satisfied by the fixed configuration.

Planted coloring on average easy for
B (gm1)°
Using Belief Propagation
g 1 .
wgz_m . 7i—] H (1 —lbi_m)
kCdi\j
Rigorous bound: for g>q_0 there is a constant s.t. planted

coloring easy on average for ¢ > const.q’
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Planted 5-coloring

init. planted  -----+----
init. random -+

q=57Cin=O, N=100k

Cspinodal

Remind:

Co = Lo 208 =l o:0if




Algorithmic consequences

G <iie
inference impossible
planted = random

init. ordered
init. random - Meneer
log Z,-log Z, 5y ——

log Zp|-log Z.an

proof q=2

(Mossel, Neeman, Sly‘11)

Co' < Cspinodal
inference possible but hard Cspinodal < C
inference easy
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q=5,C,,=0, N=100k
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Hard to sample % Hard to solve

@ Algorithms (belief propagation or stochastic local
search) find solutions even in the glassy phase -
empirical evidence everywhere.

@ In 3-coloring condensation c=4, algorithms
provably work up to 4.03

L/ A ™

| ||

ST i 6% = Cs
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Freezing of variables

@ Def.: in a cluster (= set of colorings) if it
takes the same color in the whole set. if
is has a finite fraction of frozen variables.

- typical solution belongs to a frozen cluster:

@ Coloring belongs to a frozen cluster iff (N — 00) it has a
non-trivial whitening. Whitening: If a node has a neighbor
that does not have the other g-1 colors on its other
neighbors, furn this node white and iterate.

O O N
" 353 [5:33(2) [s.4600) [390102) |
5 [12.897(9) [1355(2)[13:23() [ 13.66902)

6 |[17.645(5) |15.68(2)[18.44(1) [18.580(2)|
Recent proofs about 7 [22.705(5) [24.16(2) [20.01(1) [20.455(5)|
i , s [[27.95(5) [20.93(3)[20.90(1) [30.335(5)|
freezing: (Molloy'12) o |[33.45(5) [35.658 |36.08(5)[36.490(5)]
0l[30.001) [a1.508 [42.50(5)[42.93(1) |
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cc >~ 2qlng—Inqg—2In2
cs ~2qIlng—Inqg — 1

cr ~q(lng+Inlng+ 1)
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304 Jae6() |4 4687(2) |
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[17.645(5) | 18.68(2) [18.44(1) [ 18.880(2)
(22.705(5) [24.16(2) [24.01(
|27.95(5) (29.93
|
|
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Conjecture (zdeborova, Krzakala 2007): Freezing of variables
responsible for the onset of algorithmic hardness for
a large class of algorithms.

» Algorithms never find frozen solutions. Empirically but
also predicted by the only known explanations of why
algorithms work in clustered region (state following,
Krzakala, Zdeborova‘ZOlO).

Tuesday, June 18, 13



Probability that an unfrozen solu’rlon exists in 3- SAT
(Ardelius, Zdeborova 08)

a
Q
N
(@)
~
U
c
]
>
P
-
—
-~
Q
©
Q
(@)
~
Q,

S 0]

density of constraints
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Zoom at the freezing transition
(Ardelius, Zdeborova’08) = - |
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Locked CSP

(Zdeborova, Mezard'08)

@ Definition: A closed loop of variables has to be flipped fo
go from one solution to another.

@ Examples: XOR-SAT on the core, 1-in-K SAT without
leaves.

In locked CSP
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Example: 1-or-3-in-5 SAT




Example: 1-or-3-in-5 SAT




Example: 1-or-3-in-5 SAT




Locked CSP

(1) clustering = freezing
(2) For symmetric ones SAT ’rhreshold compu’red
from 2nd moment

=
average degree

R |
[g=3.07 S,
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l-or-3-in-5 SAT

BP-reinforcement

L, -
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l-or-3-in-5 SAT

\,, I
),

BP-reinforcement

[

\)
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l-or-3-in-5 SAT

stochastic local search
[

\)
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Thank you for your attention!

QUESTIONS
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Planted COL

(Krzakala, Zdeborova’'09)

Generating planted instances:

» Fix a configuration.

» Choose constraints randomly such that all (but fraction p)
are satisfied by the fixed configuration.

Planted 3-COL easy - not a generic situation.

Properties (hardness) of planted CSP generalize to many
inference problems (LDPC, community detection,
compressed sensing, efc.)

Tuesday, June 18, 13




Tuesday, June 18, 13

Planted 5-coloring

init. planted  -----+----
init. random -+

q=57Cin=O, N=100k

Cspinodal

Remind:

Co = Lo 208 =l o:0if
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Init. ordered -
init. random -

log Z,-log 2,4,

q=5,c;,=0, N=100k

K20

16 17




Algorithmic consequences

init. ordered ----- e
init. random - Meneer
log Z,-log Z, 5y ——

e
inference impossible
planted = random

Co' < Cspinodal
inference possible but hard Cspinodal < C
inference easy
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Planting: a proof technique

@ Since (a) planted ensemble = random ensemble
before the condensation transition, and (b)
planted ensemble is easier to analyze. => One

can prove clustering, freezing and condensation
(Coja-Oghlan, et al 2010-ongoing)
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Learning from }(s)

Example of 6-coloring, connectivities 17, 18, 19, 20 (from top).

3 0.2

0.15 /

0.1 r

0.05 r

-0.05 1
-0.1 1

-0.15

_0.2 I I I I I S

0 0.05 0.1 0.15 0.2 0.25 0.3

Lenka Zdeborova
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0.2

0.15 r

0.1

0.05 r

-0.05 |

-0.1 r

-0.15 ¢

-0.2

6 coloring of regular random graph very low connectivity

Lenka Zdeborova 45
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6 coloring of regular random graph

Lenka Zdeborova

0.2

0.15

0.1

0.05 r

-0.05 |

-0.1 1

-0.15 |

-0.2

®

0.05

0.1

0.15 0.2 0.25 0.3

connectivity c=17

46
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0.2

0.15 /

0.1
0.05 /\\
0

-0.05 |

-0.1 r

0.5 | \ —
_02 1 1 1 1 1

0 0.05 0.1 0.15 0.2 0.25 0.3

6 coloring of regular random graph connectivity ¢=18

Lenka Zdeborova
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6 coloring of regular random graph

Lenka Zdeborova
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6 coloring of regular random graph

Lenka Zdeborova
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