Regulated Grammars and Automata

Alexander Meduna

Brno University of Technology, Faculty of Information Technology Božetěchova 2, 612 00 Brno, Czech Republic http://www.fit.vutbr.cz/~meduna

Prepared in cooperation with Petr Zemek based on

Regulated Grammars and Automata

Springer, New York, pp. 694, 2014, ISBN 978-1-4939-0368-9 http://www.fit.vutbr.cz/~meduna/books/rga

Supported by IT4I Centre of Excellence CZ.1.05/1.1.00/02.0070.

Outline

Part I: An Introduction to the Book

Basic Idea General Info Contents

Part II: A Sample: One-Sided Random Context Grammars

Basic Concept
Definitions and Examples
Generative Power
Normal Forms
Reduction

Applications

 a grammar or an automaton based upon a finite set of rules R

Example

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

A context-free grammar with the set of rules R:

 $R: 1: S \rightarrow ABC$

 $2: A \rightarrow aA$

 $3: B \rightarrow bB$

4: $C \rightarrow cC$

 $5: A \rightarrow a$

6: B → b

7: $C \rightarrow c$

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

R: 1:
$$S \rightarrow ABC$$

2: $A \rightarrow aA$
3: $B \rightarrow bB$
4: $C \rightarrow cC$
5: $A \rightarrow a$
6: $B \rightarrow b$
7: $C \rightarrow c$

$$S \Rightarrow ABC$$
 [1]

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

R: 1:
$$S \rightarrow ABC$$

2: $A \rightarrow aA$
3: $B \rightarrow bB$
4: $C \rightarrow cC$
5: $A \rightarrow a$
6: $B \rightarrow b$
7: $C \rightarrow c$

$$\begin{array}{ccc} S & \Rightarrow & ABC & [1] \\ & \Rightarrow & \alpha ABC & [2] \end{array}$$

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

$$R: 1: S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

6:
$$B \rightarrow b$$

$$7: C \rightarrow c$$

$$S \Rightarrow ABC$$
 [1 $\Rightarrow aABC$ [2

$$\Rightarrow$$
 aAbBC [3

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

$$R\colon \ 1\colon S \ \to ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

$$4\colon\thinspace C\to cC$$

6:
$$B \rightarrow b$$

$$7: C \rightarrow c$$

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4$$

$$\begin{array}{ccc} S & \Rightarrow & ABC & [1] \\ & \Rightarrow & aABC & [2] \\ & \Rightarrow & aAbBC & [3] \\ & \Rightarrow & aAbBcC & [4] \end{array}$$

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

$$R: 1: S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

$$4: C \rightarrow cC$$

$$6: B \rightarrow b$$

$$7: C \rightarrow c$$

$$\begin{array}{ccc} S & \Rightarrow & ABC & [1] \\ & \Rightarrow & aABC & [2] \\ & \Rightarrow & aAbBC & [3] \\ & \Rightarrow & aAbBcC & [4] \end{array}$$

$$\Rightarrow aAbBC$$
 [3]

$$\Rightarrow$$
 aAbBcC [4

$$\Rightarrow$$
 aabBcC [5]

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

$$R\colon \ 1\colon S \ \to ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

$$4\colon\thinspace C\to cC$$

$$6: B \rightarrow b$$

$$7: C \rightarrow c$$

$$S \Rightarrow ABC$$
 [1]
 $\Rightarrow aABC$ [2]

$$\Rightarrow$$
 aAbBcC [4]

$$\Rightarrow$$
 aabBcC [5]

$$\Rightarrow$$
 aabbcC [6]

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

$$R: 1: S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

$$4: C \rightarrow cC$$

6:
$$B \rightarrow b$$

7:
$$C \rightarrow c$$

$$\begin{array}{cccc} S & \Rightarrow & ABC & [1] \\ & \Rightarrow & aABC & [2] \\ & \Rightarrow & aAbBC & [3] \\ & \Rightarrow & aAbBcC & [4] \\ & \Rightarrow & aabBcC & [5] \\ & \Rightarrow & aabbcC & [6] \\ & \Rightarrow & aabbcc & [7] \end{array}$$

- a grammar or an automaton based upon a finite set of rules R
- a regulation over R

Example

$$R: 1: S \rightarrow ABC$$

 $2: A \rightarrow gA$

$$3: B \rightarrow bB$$

$$4: C \rightarrow cC$$

$$6: B \rightarrow b$$

$$7: C \rightarrow c$$

$$\begin{array}{c}
1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \\
\downarrow \\
5 \longrightarrow 6 \longrightarrow 7
\end{array}$$

$$L(G) = \{a^n b^n c^n : n \ge 1\}$$

General Info

Alexander Meduna and Petr Zemek Regulated Grammars and Automata

Springer, New York, pp. 694, 2014, ISBN 978-1-4939-0368-9 http://www.fit.vutbr.cz/~meduna/books/rga

Motivation and Subject

- an important trend in formal language theory
- since 1990, no book has been published on the subject although many papers have discussed it

General Info

Alexander Meduna and Petr Zemek Regulated Grammars and Automata

Springer, New York, pp. 694, 2014, ISBN 978-1-4939-0368-9 http://www.fit.vutbr.cz/~meduna/books/rga

Motivation and Subject

- an important trend in formal language theory
- since 1990, no book has been published on the subject although many papers have discussed it

Purpose

- theoretical: to summarize key results on the subject
- practical: to demonstrate applications of regulated grammars and automata

Focus

- power
- transformation
- reduction

Focus

- power
- transformation
- reduction

Organization

- 9 parts
- 22 chapters

Approach and Features

- theoretically oriented treatment of regulated grammars and automata
- emphasis on algorithms
- intuitive explanation
- many examples
- application perspectives

Approach and Features

- theoretically oriented treatment of regulated grammars and automata
- emphasis on algorithms
- intuitive explanation
- many examples
- application perspectives

Book Audience

- computer scientists: professionals, professors, Ph.D. students
- mathematicians
- linguists

Contents (1/4)

Part I Introduction and Terminology

- 1 Introduction
- 2 Mathematical Background
- 3 Rudiments of Formal Language Theory

Contents (1/4)

Part I Introduction and Terminology

- 1 Introduction
- 2 Mathematical Background
- 3 Rudiments of Formal Language Theory

Part II Regulated Grammars: Fundamentals

- 4 Context-Based Grammatical Regulation
- 5 Rule-Based Grammatical Regulation

Contents (2/4)

Part III Regulated Grammars: Special Topics

- 6 One-Sided Versions of Random Context Grammars
- 7 On Erasing Rules and Their Elimination
- 8 Extension of Languages Resulting from Regulated Grammars
- 9 Sequential Rewriting over Word Monoids

Contents (2/4)

Part III Regulated Grammars: Special Topics

- 6 One-Sided Versions of Random Context Grammars
- 7 On Erasing Rules and Their Elimination
- 8 Extension of Languages Resulting from Regulated Grammars
- 9 Sequential Rewriting over Word Monoids

Part IV Regulated Grammars: Parallelism

- 10 Regulated ETOL Grammars
- 11 Uniform Regulated Rewriting in Parallel
- 12 Parallel Rewriting over Word Monoids

Contents (3/4)

Part V Regulated Grammar Systems

- 13 Regulated Multigenerative Grammar Systems
- 14 Controlled Pure Grammar Systems

Contents (3/4)

Part V Regulated Grammar Systems

- 13 Regulated Multigenerative Grammar Systems
- 14 Controlled Pure Grammar Systems

Part VI Regulated Automata

- 15 Self-Regulating Automata
- 16 Automata Regulated by Control Languages

Contents (3/4)

Part V Regulated Grammar Systems

- 13 Regulated Multigenerative Grammar Systems
- 14 Controlled Pure Grammar Systems

Part VI Regulated Automata

- 15 Self-Regulating Automata
- 16 Automata Regulated by Control Languages

Part VII Related Unregulated Automata

- 17 Jumping Finite Automata
- 18 Deep Pushdown Automata

Contents (4/4)

Part VIII Applications

- 19 Applications: Overview
- 20 Case Studies

Contents (4/4)

Part VIII Applications

- 19 Applications: Overview
- 20 Case Studies

Part IX Conclusion

- 21 Concluding Remarks
- 22 Summary

Part II: A Sample: One-Sided Random Context Grammars

| Random Context Grammars: Basic Concept | | | |

- a modification of context-free grammars
- $(A \rightarrow x, U, W) \in P$

Random Context Grammars: Basic Concept | 🚟

- a modification of context-free grammars
- $(A \rightarrow x, U, W) \in P$

$$\leftarrow A$$

Random Context Grammars: Basic Concept | 👑

- a modification of context-free grammars
- $(A \rightarrow x, U, W) \in P$

$$\underbrace{\dots}$$
 A \dots

Illustration

$$(A \to X, \{B, C\}, \{D\}) \in P$$

bBcECbAcB

Random Context Grammars: Basic Concept | 👑

- a modification of context-free grammars
- $(A \rightarrow x, U, W) \in P$

$$\longleftrightarrow$$
 A

Illustration

$$(A \rightarrow X, \{B, C\}, \{D\}) \in P$$

$$\overleftarrow{bBcECb} \overrightarrow{A} \overrightarrow{cB}$$

Random Context Grammars: Basic Concept | 👑

- a modification of context-free grammars
- $(A \rightarrow x, U, W) \in P$

$$\longleftrightarrow$$
 $A \longleftrightarrow$

Illustration

$$(A \rightarrow X, \{B, C\}, \{D\}) \in P$$

$$\overleftarrow{bBcECb}$$
 \overrightarrow{A} \overrightarrow{cB} \Rightarrow $bBcECb \times cB$

One-Sided RCGs: Basic Concept

- a variant of random context grammars
- $(A \rightarrow X, U, W) \in P$

One-Sided RCGs: Basic Concept

- a variant of random context grammars
- $(A \rightarrow x, U, W) \in P$
- $P = P_L \cup P_R$

- a variant of random context grammars
- $(A \rightarrow X, U, W) \in P_L$
- $P = P_L \cup P_R$

- a variant of random context grammars
- $(A \rightarrow X, U, W) \in P_R$
- $P = P_L \cup P_R$

$$A \longrightarrow A$$

- a variant of random context grammars
- $(A \rightarrow X, U, W) \in P_R$
- $P = P_L \cup P_R$

$$A \longrightarrow A$$

Illustration

$$(A \rightarrow X, \{B, C\}, \{D\}) \in P_L$$

bBcECbAcD

- a variant of random context grammars
- $(A \rightarrow X, U, W) \in P_R$
- $P = P_L \cup P_R$

Illustration

$$(A \to X, \{B, C\}, \{D\}) \in P_L$$

- a variant of random context grammars
- $(A \rightarrow X, U, W) \in P_R$
- $P = P_l \cup P_R$

$$A \longrightarrow A$$

Illustration

$$(A \rightarrow X, \{B, C\}, \{D\}) \in P_L$$

$$bBcECb A cD \Rightarrow bBcECb x cD$$

Definitions

Definition

A one-sided random context grammar is a quintuple

$$G = (N, T, P_L, P_R, S)$$

where

- N is an alphabet of nonterminals;
- T is an alphabet of terminals $(N \cap T = \emptyset)$;
- P_L and P_R are two finite sets of *rules* of the form

$$(A \rightarrow X, U, W)$$

where $A \in N$, $x \in (N \cup T)^*$, and $U, W \subseteq N$;

• $S \in N$ is the starting nonterminal.

Definitions

Definition

A one-sided random context grammar is a quintuple

$$G = (N, T, P_L, P_R, S)$$

where

- N is an alphabet of nonterminals;
- T is an alphabet of terminals $(N \cap T = \emptyset)$;
- P_L and P_R are two finite sets of *rules* of the form

$$(A \rightarrow X, U, W)$$

where $A \in N$, $x \in (N \cup T)^*$, and $U, W \subseteq N$;

• $S \in N$ is the starting nonterminal.

Definition

If $(A \rightarrow x, U, W) \in P_L \cup P_R$ implies that $|x| \ge 1$, then G is propagating.

Definitions (Continued)

Definition

The *direct derivation* ⇒ is defined as

$$uAv \Rightarrow uxv$$

if and only if

$$(A \rightarrow X, U, W) \in P_L, U \subseteq alph(u), \text{ and } W \cap alph(u) = \emptyset$$

or

$$(A \rightarrow x, U, W) \in P_R, U \subseteq alph(v), \text{ and } W \cap alph(v) = \emptyset$$

Note: alph(y) denotes the set of all symbols appearing in string y

Definitions (Continued)

Definition

The *direct derivation* ⇒ is defined as

$$uAv \Rightarrow uxv$$

if and only if

$$(A \rightarrow X, U, W) \in P_L, U \subseteq alph(u), \text{ and } W \cap alph(u) = \emptyset$$

or

$$(A \rightarrow X, U, W) \in P_{\mathbb{R}}, U \subseteq alph(v), \text{ and } W \cap alph(v) = \emptyset$$

Note: alph(y) denotes the set of all symbols appearing in string y

Definition

The language of G is defined as

$$L(G) = \{ w \in T^* : S \Rightarrow^* w \}$$

where \Rightarrow^* is the reflexive-transitive closure of \Rightarrow .

Example

Example

Consider the one-sided random context grammar

$$G = (\{S, A, B, \bar{A}, \bar{B}\}, \{a, b, c\}, P_L, P_R, S)$$

where P_L contains

$$\begin{array}{ll} (\mathcal{S} \rightarrow \mathcal{A}\mathcal{B}, \emptyset, \emptyset) & (\bar{\mathcal{B}} \rightarrow \mathcal{B}, \{\mathcal{A}\}, \emptyset) \\ (\mathcal{B} \rightarrow \mathcal{b}\bar{\mathcal{B}}\mathcal{C}, \{\bar{\mathcal{A}}\}, \emptyset) & (\mathcal{B} \rightarrow \varepsilon, \emptyset, \{\mathcal{A}, \bar{\mathcal{A}}\}) \end{array}$$

and P_R contains

$$\begin{array}{ll} (A \to \alpha \bar{A}, \{B\}, \emptyset) & (A \to \varepsilon, \{B\}, \emptyset) \\ (\bar{A} \to A, \{\bar{B}\}, \emptyset) & \end{array}$$

$$P_{L}: (S \to AB, \emptyset, \emptyset) \qquad P_{R}: (A \to \alpha \bar{A}, \{B\}, \emptyset)$$

$$(B \to b\bar{B}c, \{\bar{A}\}, \emptyset) \qquad (\bar{A} \to A, \{\bar{B}\}, \emptyset)$$

$$(\bar{B} \to B, \{A\}, \emptyset) \qquad (A \to \varepsilon, \{B\}, \emptyset)$$

$$(B \to \varepsilon, \emptyset, \{A, \bar{A}\}) \qquad (S \to AB, \emptyset, \emptyset)]$$

$$P_{L}: (S \rightarrow AB, \emptyset, \emptyset) \qquad P_{R}: (A \rightarrow \alpha \overline{A}, \{B\}, \emptyset)$$

$$(B \rightarrow b \overline{B}c, \{\overline{A}\}, \emptyset) \qquad (\overline{A} \rightarrow A, \{\overline{B}\}, \emptyset)$$

$$(B \rightarrow E, \emptyset, \{A, \overline{A}\}) \qquad (A \rightarrow E, \{B\}, \emptyset)$$

$$S \Rightarrow AB \qquad [(S \rightarrow AB, \emptyset, \emptyset)]$$

$$\Rightarrow \alpha \overline{A}B \qquad [(A \rightarrow \alpha \overline{A}, \{B\}, \emptyset)]$$

$$\begin{array}{lll} P_{L} \colon & (S \to AB, \emptyset, \emptyset) & P_{R} \colon & (A \to \alpha \bar{A}, \{B\}, \emptyset) \\ & (B \to b \bar{B} c, \{\bar{A}\}, \emptyset) & (\bar{A} \to A, \{\bar{B}\}, \emptyset) \\ & (\bar{B} \to B, \{A\}, \emptyset) & (A \to \varepsilon, \{B\}, \emptyset) \\ & (B \to \varepsilon, \emptyset, \{A, \bar{A}\}) & \\ & S & \Rightarrow & AB \\ & \Rightarrow & \alpha \bar{A} B \\ & \Rightarrow & \alpha \bar{A} b \bar{B} c & [(S \to AB, \emptyset, \emptyset)] \\ & \Rightarrow & \alpha \bar{A} b \bar{B} c & [(B \to b \bar{B} c, \{\bar{A}\}, \emptyset)] \end{array}$$

$$\begin{array}{lll} P_L\colon & (S\to AB,\emptyset,\emptyset) & P_R\colon & (A\to \alpha\bar{A},\{B\},\emptyset) \\ & (B\to b\bar{B}c,\{\bar{A}\},\emptyset) & (\bar{A}\to A,\{\bar{B}\},\emptyset) \\ & (\bar{B}\to B,\{A\},\emptyset) & (A\to \varepsilon,\{B\},\emptyset) \\ & (B\to \varepsilon,\emptyset,\{A,\bar{A}\}) & & & & & & & & & & \\ S & \Rightarrow & AB & & & & & & & & & & \\ & \Rightarrow & \alpha\bar{A}B & & & & & & & & & & \\ & \Rightarrow & \alpha\bar{A}b\bar{B}c & & & & & & & & & & \\ & \Rightarrow & \alpha Ab\bar{B}c & & & & & & & & & \\ & \Rightarrow & \alpha Ab\bar{B}c & & & & & & & & & \\ \end{array}$$

$$\begin{array}{lll} P_L\colon & (S\to AB,\emptyset,\emptyset) & P_R\colon & (A\to \alpha\bar{A},\{B\},\emptyset) \\ & (B\to b\bar{B}c,\{\bar{A}\},\emptyset) & (\bar{A}\to A,\{\bar{B}\},\emptyset) \\ & (\bar{B}\to B,\{A\},\emptyset) & (A\to\varepsilon,\{B\},\emptyset) \\ & (B\to\varepsilon,\emptyset,\{A,\bar{A}\}) & & & & & & & & \\ S & \Rightarrow & AB & & & & & & & \\ & & \Rightarrow & \alpha\bar{A}B & & & & & & & \\ & \Rightarrow & \alpha\bar{A}b\bar{B}c & & & & & & & \\ & \Rightarrow & \alpha Ab\bar{B}c & & & & & & & \\ & \Rightarrow & \alpha AbBc & & & & & & & \\ & & \Rightarrow & \alpha AbBc & & & & & & \\ \end{array}$$

$$P_{R}: (S \rightarrow AB, \emptyset, \emptyset) \qquad P_{R}: (A \rightarrow \alpha \bar{A}, \{B\}, \emptyset) \\ (B \rightarrow b\bar{B}c, \{\bar{A}\}, \emptyset) \qquad (\bar{A} \rightarrow A, \{\bar{B}\}, \emptyset) \\ (\bar{B} \rightarrow B, \{A\}, \emptyset) \qquad (A \rightarrow \varepsilon, \{B\}, \emptyset) \\ (B \rightarrow \varepsilon, \emptyset, \{A, \bar{A}\}) \qquad (S \Rightarrow AB \qquad [(S \rightarrow AB, \emptyset, \emptyset)] \\ \Rightarrow \alpha \bar{A}B \qquad [(A \rightarrow \alpha \bar{A}, \{B\}, \emptyset)] \\ \Rightarrow \alpha \bar{A}b\bar{B}c \qquad [(B \rightarrow b\bar{B}c, \{\bar{A}\}, \emptyset)] \\ \Rightarrow \alpha Ab\bar{B}c \qquad [(\bar{A} \rightarrow A, \{\bar{B}\}, \emptyset)] \\ \Rightarrow \alpha Ab\bar{B}c \qquad [(\bar{B} \rightarrow B, \{\bar{A}\}, \emptyset)] \\ \Rightarrow \alpha Bb\bar{B}c \qquad [(\bar{B} \rightarrow B, \{\bar{A}\}, \emptyset)]$$

$$\begin{array}{lll} P_{L} \colon & (S \to AB, \emptyset, \emptyset) & P_{R} \colon & (A \to a\bar{A}, \{B\}, \emptyset) \\ & (B \to b\bar{B}c, \{\bar{A}\}, \emptyset) & (\bar{A} \to A, \{\bar{B}\}, \emptyset) \\ & (\bar{B} \to B, \{A\}, \emptyset) & (A \to \varepsilon, \{B\}, \emptyset) \\ & (B \to \varepsilon, \emptyset, \{A, \bar{A}\}) & & & & & \\ S & \Rightarrow & AB & & & & & \\ & & \Rightarrow & a\bar{A}B & & & & & \\ & & \Rightarrow & a\bar{A}B\bar{B}c & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & \\ & & \Rightarrow & aAbBc & & & & & \\ & & \Rightarrow & a^nAb^nBc^n & & & & \\ & & \Rightarrow & a^nb^nBc^n & & & & \\ & & \Rightarrow & a^nb^nBc^n & & & & \\ \end{array}$$

$$\begin{array}{lll} P_L\colon & (S\to AB,\emptyset,\emptyset) & P_R\colon & (A\to a\bar{A},\{B\},\emptyset) \\ & (B\to b\bar{B}c,\{\bar{A}\},\emptyset) & (\bar{A}\to A,\{\bar{B}\},\emptyset) \\ & (\bar{B}\to B,\{A\},\emptyset) & (A\to \varepsilon,\{B\},\emptyset) \\ & (B\to \varepsilon,\emptyset,\{A,\bar{A}\}) & (A\to \varepsilon,\{B\},\emptyset) \\ & & \Rightarrow & AB & [(S\to AB,\emptyset,\emptyset)] \\ & \Rightarrow & a\bar{A}B & [(A\to a\bar{A},\{B\},\emptyset)] \\ & \Rightarrow & a\bar{A}b\bar{B}c & [(B\to b\bar{B}c,\{\bar{A}\},\emptyset)] \\ & \Rightarrow & aAbBc & [(\bar{A}\to A,\{\bar{B}\},\emptyset)] \\ & \Rightarrow & a^nAb^nBc^n & [(B\to B,\{\bar{A}\},\emptyset)] \\ & \Rightarrow & a^nb^nBc^n & [(A\to \varepsilon,\{B\},\emptyset)] \\ & \Rightarrow & a^nb^nC^n & [(B\to \varepsilon,\emptyset,\{A,\bar{A}\})] \\ \end{array}$$

$$\begin{array}{lll} P_L\colon & (S\to AB,\emptyset,\emptyset) & P_R\colon & (A\to a\bar{A},\{B\},\emptyset) \\ & (B\to b\bar{B}c,\{\bar{A}\},\emptyset) & (\bar{A}\to A,\{\bar{B}\},\emptyset) \\ & (\bar{B}\to B,\{A\},\emptyset) & (A\to \varepsilon,\{B\},\emptyset) \\ & (B\to \varepsilon,\emptyset,\{A,\bar{A}\}) & & & & & & & \\ S & \Rightarrow & AB & & & & & & & \\ & & \Rightarrow & a\bar{A}B & & & & & & & \\ & & \Rightarrow & a\bar{A}b\bar{B}c & & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & \Rightarrow & aAb\bar{B}c & & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & & \Rightarrow & aAb\bar{B}c & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & & \Rightarrow & aAb\bar{B}c & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & & \Rightarrow & aAb\bar{B}c & & & \\ & & \Rightarrow & aAb\bar{B}c &$$

Generative Power

RE the family of recursively enumerable languages

CS the family of context-sensitive languages

CF the family of context-free languages

Generative Power

ORC the language family generated by one-sided random context grammars

 $\mathsf{ORC}^{-\varepsilon}$ the language family generated by propagating one-sided random context grammars

Generative Power

- **RC** the language family generated by random context grammars
- $\mathbf{RC}^{-\varepsilon}$ the language family generated by propagating random context grammars

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Normal Form I

$$P_L = P_R$$

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Normal Form I

$$P_L = P_R$$

Normal Form II

$$P_L \cap P_R = \emptyset$$

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Normal Form I

$$P_L = P_R$$

Normal Form II

$$P_L \cap P_R = \emptyset$$

Normal Form III

$$(A \rightarrow x, U, W) \in P_L \cup P_R$$
 implies that $x \in NN \cup T \cup \{\varepsilon\}$

Results Structure

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying one of the following normal forms.

Normal Form I

$$P_L = P_R$$

Normal Form II

$$P_L \cap P_R = \emptyset$$

Normal Form III

$$(A \rightarrow x, U, W) \in P_L \cup P_R$$
 implies that $x \in NN \cup T \cup \{\varepsilon\}$

Normal Form IV

$$(A \rightarrow X, U, W) \in P_L \cup P_R$$
 implies that $U = \emptyset$ or $W = \emptyset$

Reduction

with respect to the total number of nonterminals

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 10 nonterminals.

Reduction

with respect to the total number of nonterminals

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 10 nonterminals.

 with respect to the number of right random context nonterminals

Definition

If $(A \rightarrow x, U, W) \in P_R$, then A is a right random context nonterminal.

Reduction

with respect to the total number of nonterminals

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 10 nonterminals.

 with respect to the number of right random context nonterminals

Definition

If $(A \rightarrow x, U, W) \in P_R$, then A is a right random context nonterminal.

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 2 right random context nonterminals.

Reduction (Continued)

with respect to the number of right random context rules

Definition

If $p \in P_R$, then p is a right random context rule.

Reduction (Continued)

with respect to the number of right random context rules

Definition

If $p \in P_R$, then p is a right random context rule.

Theorem

Any one-sided random context grammar can be converted to an equivalent one having no more than 2 right random context rules.

Applications

General Application Area

 information processing based on the existence or absence of some information parts

Specific Scientific Disciplines

- genetics: modification of genetic codes in which some prescribed sequences of nucleotides occur while some others do not
- linguistics: generation or verification of texts that contain no forbidding passages, such as vulgarisms or classified information
- computer science: syntax analysis of complicated non-context-free structures during language translation

