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Introduction

Notations

In this talk,

Let (A, µ, u) and (C,∆, ε) denote respectively an associative algebra
with unit u and a coalgebra (coassociative with counit ε), k the
ground field.

A∗ denotes the algebraic dual of the vector space A.

For V ,W two vector spaces, f ∈ Hom(V ,W ) and v ∈ V , 〈f |v〉
denotes the value of f (v).

Transpose of a linear map : we denote by t f : W ∗ → V ∗ the
transpose of f :

〈t f (w)|v〉 = 〈w |f (v)〉, ∀v ∈ V .
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Introduction

Useful properties 1/3

(i) Let U,V and W be vector spaces and φ : U × V →W a bilinear
map. Then if z ∈ Im(φ) and if

z =
n∑

i=1

φ(xi , yi )

with n minimal, the families (xi )1≤i≤n and (yi )1≤i≤n are free in their
respective spaces.

Application to the tensor product : Let y be an element of V ⊗W .
Then there exists n ∈ N and two families (ai )i ⊂ V , (bi )i ⊂W , (ai )i
being free such that

y =
n∑

i=0

ai ⊗ bi

If n minimal then both families are free.
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Introduction

Proof : Assume, without loss of generality, that xn =
∑n−1

i=1 αixi . Then

z =
n−1∑
i=1

φ(xi , yi ) + φ(xn, yn)

=
n−1∑
i=1

φ(xi , yi ) + φ(
n−1∑
j=1

αjxj , yn)

=
n−1∑
i=1

φ(xi , yi ) +
n−1∑
j=1

αjφ(xj , yn)

since φ is bilinear. The same argument allows us to “factor” the xi ’s in the
two sums :

z =
n−1∑
i=1

φ(xi , yi + αiyn)

Therefore, there would be another decomposition of z with n′ = n− 1 < n
terms. This is impossible since n is minimal. Therefore, (xi )i is a free
family. The same argument also applies for (yi )i .
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Useful properties 2/3

(ii) If C is a coalgebra, then C∗ is an algebra for the following maps :

µ = t∆ : 〈µ(f ⊗ g)|z〉 = 〈f ⊗ g |∆(z)〉;
Indeed, µ = t∆ρ with

ρ : C∗ ⊗ C∗ → (C⊗ C)∗

f ⊗ g 7→ ρ(f ⊗ g) : c ⊗ c ′ 7→ f (c)g(c ′)

u = ε∗φ where φ : k → k∗ is the canonical isomorphism.

C
ε // k

k∗
t ε // C∗

k

∼
OO

u

>>||||||||

k∗ → k

f 7→ f (1k)

k → k∗

k 7→ (u 7→ uk)
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Introduction

Useful properties 2/3

(iii) If A is a finite dimensional algebra, then A∗ has a coalgebra
structure for the following maps :

∆ = j−1
nat ◦ tµ where jnat is the canonical isomorphism between A∗ ⊗A∗

and (A⊗ A)∗ :

jnat(f ⊗ g)(a⊗ a′) = f (a)g(a′).

ε = ψ tu where ψ is the canonical isomorphism that associates to a
linear form its value at 1k .

Remark : The two following properties are equivalent :

A is of finite dimension;

jnat is an isomorphism.
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Introduction

Useful properties 3/3

(iv) The correspondences C 7→ C∗ and f 7→ t f define a
(contravariant) functor from the category k-Cog of all coalgebras to
the category k-Alg of algebras.
Proof : On the black(/white?)board.
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The problem

The problem

If A is an infinite dimensional algebra, A∗ is not in general a coalgebra.
The transpose of the multiplication µ takes its values in (A⊗ A)∗ :

〈tµ(f )|x ⊗ y〉 = 〈f |µ(x ⊗ y)〉 = f (xy)

and jnat is no more an isomorphism between (A⊗ A)∗ and A∗ ⊗ A∗. The
previous construction does not work anymore.

Some diagrams :

(C⊗ C)∗ // C∗

C∗ ⊗ C∗
?�

jnat

OO

t∆

;;vvvvvvvvvv

C∗ has an algebra structure.

A∗

?

$$I
I

I
I

I

tµ// (A⊗ A)∗

?
?�

OO

tµ

// A∗ ⊗ A∗
?�

jnat

OO

A∗ does not have a coalgebra
structure.
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The problem

Definition : Finite dual (Sweedler’s dual)

A◦ =
(
tµ
)−1

(A∗ ⊗ A∗)

A priori, ∀f ∈ A◦, tµ(f ) ∈ A◦ ⊗ A◦. Therefore,

A∗

?

%%J
J

J
J

J

tµ // (A⊗ A)∗

A◦1
?�

OO

tµ

// A∗ ⊗ A∗
?�

jnat

OO

A◦2
?�

OO

tµ

// A◦1 ⊗ A◦1
?�

OO

�
�
�

�
�
�

and the interesting set is
⋂
i

A◦i . In fact, A◦1 ⊗ A◦1 = A◦2 ⊗ A◦2.
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The problem

Finite dual (Sweedler’s dual)

Properties

If (A, µ) is an algebra, (A◦, tµ) is a coalgebra.

If, morever, A admits a unit 1, then (A◦, tµ, ε) is coalgebra with
counit ε such that ε(f ) = f (1).

If A is associative, then A◦ is coassociative.

A◦ is the biggest coalgebra contained in A∗ and induced by µ.
The mappings A 7→ A◦ and f 7→ f ◦ define a contravariant functor from
k-Alg to k-Cog (f ◦ denotes the morphism induced by f ∗ on B◦ for
f ∈ Hom(A,B)).
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The problem

Notations for shifts

Let A be an algebra and f ∈ A∗. Then we define :

fx : y 7→ f (xy) = 〈f |xy〉 (left shift);

x f : y 7→ f (yx) (right shift);

x fy : z 7→ f (yzx).
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Theorem by Abe (extended by Schützenberger’s condition) Theorem

Theorem by Abe (extended by Schützenberger’s condition)
Characterization of the elements of A◦

Let A be an algebra and f ∈ A∗. The following properties are equivalent :

(i) tµ(f ) ∈ A∗ ⊗ A∗;

(ii) The family (fx)x∈A is of finite rank;

(iii) The family (x f )x∈A is of finite rank;

(iv) The family (x fy )x ,y∈A is of finite rank;

(v) f (xy) =
n∑

i=1

fi (x)gi (y);

(vi) ∃ α : A→ kn×n and (λ, γ) ∈ k1×n × kn×1 such that

∀x ∈ A, f (x) = λα(x) γ;

(vii) Ker(f ) contains an ideal of finite codimension (i.e. there exists
an ideal I such that dim(Ker(f )/I ) <∞).
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Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

Proof (elements) 1/4 :(i)⇒ (v) and (v)⇒ (ii), (iii)

We assume that tµ(f ) ∈ A∗ ⊗ A∗. Therefore tµ(f ) =
∑n

i=1 fi ⊗ gi . Now

〈tµ(f )|x ⊗ y〉 = f (xy) =
n∑

i=1

〈fi ⊗ gi |xi ⊗ yi 〉 =
n∑

i=1

fi (x)gi (y) (2)

which is the condition (v).
Hence we can write that

(y f ) =
n∑

i=1

gi (y)fi ;

(fx) =
n∑

i=1

fi (x)gi ;

Af ⊂ span(fi ).

fA ⊂ span(gi ).

The orbits and Af and fA are of finite rank.
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Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

Proof 2/4 : (v)⇒ (iv)

If the gi ’s are in fA, their shifts are also in this orbit (which is finite

dimensional). Thus, they are of finite rank and gi (yz) =
m∑
j=1

g1
ij (y)g2

ij (z).

f (yzx) =
n∑

i=1

m∑
j=1

fi (y)g1
ij (y)g2

ij (z), ∀ z ∈ A.

This is equivalent to the following equation:

x fy =
n∑

i=1

m∑
j=1

fi (y)g1
ij (y)g2

ij (5)

Do we have (gi )i ⊂ fA?
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Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

Proof 3/4 : (v)⇒ (iv)

We assume now that n is minimal.
Since tµ is bilinear, the first lemma applied to eq. (2) implies that the fi ’s
and gi ’s form free families.

(gi )i is a free family of minimal rank. Hence, (gi )i is a basis of
spanx∈A(fx) and the gi ’s are in fA.

Eq. (5) implies that

(x fy )x ,y∈A is of finite rank.
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Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

Proof 3/4 : (iii)⇒ (vi)

Let x1
f , x2

f , . . . , xn f be a basis of the orbit Af of f under the action of A.

1f = f ∈ Af . Thus,

1f = (λ1 . . . λn)

x1
f

...

xn f


and

1f (y) = (λ1 . . . λn)

x1
f (y)
...

xn
f (y)

 .
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Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

Proof 3/4 : (iii)⇒ (vi)

Now, if we do another shift on the left, we stay in the same space
generated by x1

f , x2
f , . . . , xn f and we have another decomposition which

involves a (uniquely defined) matrix α(y) :

y

x1
f (y)
...

xn
f (y)

 =

yx1
f (y)
...

yxn
f (y)



with yxi
f (y) =

n∑
j=1

αij(y) xj
f . Therefore,

y

x1
f (y)
...

xn
f (y)

 =

α11(y) . . . α1n(y)
...

...
αn1(y) . . . αnn(y)


x1

f (y)
...

xn
f (y)


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Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

Proof 3/4 : (iii)⇒ (vi)

f (z) = z f (1) thus

z

(λ1 . . . λn)

x1
f

...

xn f



∣∣∣∣∣∣∣y=1 = (λ1 . . . λn)

z

x1
f (y)
...

xn
f (y)


∣∣∣∣∣∣∣y=1

=

(λ1 . . . λn)α(z)

x1
f (y)
...

xn
f (y)



∣∣∣∣∣∣∣y=1

Finally,

f (z) = (λ1 . . . λn)α(z)

x1
f (1)
...

xn
f (1)

 .
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Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

Proof 4/4 : (iii)⇒ (i)

If (x f )x∈A is of finite rank, there exists a linear representation (λ, α, γ) of
f :

f (z) = (λ1 . . . λn)α(z)

x1
f (1)
...

xn
f (1)


with :

α(x + y) = α(x) + α(y),

α(δx) = δα(x),

α(xy) = α(x)α(y).

Hence f (z) =
n∑

k,`=1

λkαk`(z)γ`.
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Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

Proof 4/4 : (iii)⇒ (i)

Therefore,

f (xy) =
n∑

k,`=1

λkαk`(xy)γ`

=
n∑

k,`=1

m∑
j=1

λkαkj(x)αj`(y)γ`

=
m∑
j=1

(
n∑

k=1

λkαkj(x)

)(
n∑
`=1

αj`(y)γ`

)

This equation tells us that f (xy) and therefore tµ(f ) belongs to A∗ ⊗ A∗.

M. Deneufchâtel (LIPN - P13) Shifts and Algebras 26/10/2010 20 / 21



Theorem by Abe (extended by Schützenberger’s condition) Elements of the proof

What was proved so far ?

(i)

�
 

































(vi) (ii)

(v)

2:mmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmm +3

�%
CCCCCCC

CCCCCCC
(iii)

dl QQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQ ��

T\222222222222222

222222222222222

(iv)

The proofs of the following implications are straightforward now :
(ii)⇒ (i), (iv)⇒ (i) and (vi)⇒ (i).
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