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Introduction

Notations

In this talk,

o Let (2, p,u) and (€, A, €) denote respectively an associative algebra
with unit u and a coalgebra (coassociative with counit €), k the
ground field.

@ 2A* denotes the algebraic dual of the vector space 2.

e For V, W two vector spaces, f € Hom(V, W) and v € V, (f|v)
denotes the value of f(v).

@ Transpose of a linear map : we denote by f : W* — V* the
transpose of f :

(FF(w)|v) = (w|f(v)), Vv e V.
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Introduction

Useful properties 1/3

o (i) Let U,V and W be vector spaces and ¢ : U x V — W a bilinear
map. Then if z € Im(¢) and if

2= ¢(xi, )
i—1

with n minimal, the families (x;)1<i<n and (yi)1<i<n are free in their
respective spaces.

Application to the tensor product : Let y be an element of V & W.
Then there exists n € N and two families (a;); C V/, (b;); C W, (ai)i

being free such that
n
y= Z a; ® b;
i=0

If n minimal then both families are free.
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Introduction

Proof : Assume, without loss of generality, that x, = .7~ a;x;. Then

n—1

z = Z¢(XI'7yI') + ¢(X"’yn)
i=1

n—1 n—1
=" 6(xi.yi) + 6> i, ya)
i=1 j=1

n—1
:Z Xn)// +ZQJ¢(Xjayn
i=1 j=1

since ¢ is bilinear. The same argument allows us to “factor” the x;’s in the

two sums :
n—1

7= ¢(xi,yi + aiyn)
i=1
Therefore, there would be another decomposition of z with ' =n—1<n
terms. This is impossible since n is minimal. Therefore, (x;); is a free

family. The same argument also applies for (y;);.
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Introduction

Useful properties 2/3

e (ii) If €is a coalgebra, then €* is an algebra for the following maps :

o n="A: (u(f ® g)|2) = (f ® g|A(2));
Indeed, ;1 = *Ap with

p: R - (€ Q)
fog—p(fog):cacd — f(c)g(c)

o u=€*¢ where ¢ : k — k* is the canonical isomorphism.

C——k

k* — k
f— f(lk)

NT/ k — k*
! k — (u > uk)
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Introduction

Useful properties 2/3

o (iif) If 2 is a finite dimensional algebra, then 2* has a coalgebra
structure for the following maps :

o A :jn’alt o'y where j,.¢ is the canonical isomorphism between A* @ 2*
and (A ®@A)* :

Jnat(f @ g)(a® a') = f(a)g(a).

e ¢ = 1) 'u where 1) is the canonical isomorphism that associates to a
linear form its value at 1.
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Introduction

Useful properties 2/3

o (iif) If 2 is a finite dimensional algebra, then 2* has a coalgebra
structure for the following maps :

o A :jn’alt o'y where j,.¢ is the canonical isomorphism between A* @ 2*
and (A ®@A)* :

Jnat(f @ g)(a® a') = f(a)g(a).

e ¢ = 1) 'u where 1) is the canonical isomorphism that associates to a
linear form its value at 1.

Remark : The two following properties are equivalent :
@ 2 is of finite dimension;

@ Jjuat IS an isomorphism.
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Introduction

Useful properties 3/3

e (iv) The correspondences € — €* and f — 'f define a
(contravariant) functor from the category k-Cog of all coalgebras to
the category k-Alg of algebras.

Proof : On the black(/white?)board.
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The problem

The problem

If 2L is an infinite dimensional algebra, 2* is not in general a coalgebra.
The transpose of the multiplication 4 takes its values in (2@ 0)* :

Fu(f)lx@y) = (flu(x ® y)) = f(xy)

and jnat is no more an isomorphism between (2 ® 2A)* and A* @ A*. The
previous construction does not work anymore.
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The problem

The problem

If 2L is an infinite dimensional algebra, 2* is not in general a coalgebra.
The transpose of the multiplication 4 takes its values in (2@ 0)* :

Fu(f)lx@y) = (flu(x ® y)) = f(xy)

and jnat is no more an isomorphism between (2 ® 2A)* and A* @ A*. The
previous construction does not work anymore.

Some diagrams :

t
"
(Qt ® Q:) -5 Q:* N - ( )
. \.\ jnat
Jnat tA ) QT* 22[*
—_—
o o ‘ ‘ ®
€* has an algebra structure. A* does not have a coalgebra
structure.
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The problem

Definition : Finite dual (Sweedler's dual)

A° = (fp) (A @ AY)

A priori, Vf € A°, tu(f) € A° @ A°. Therefore,

ty
~ 7 .
~ ~ Jnat
A
o —— A @ A*
o

9102 4t> Q[ol ® 9101
| K I
| I

and the interesting set is ﬂQlO’. In fact, A°! @ A°L = Y2 © A°2.
i
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The problem

Finite dual (Sweedler's dual)

Properties

o If (A, 1) is an algebra, (2A°,*u) is a coalgebra.

@ If, morever, 2 admits a unit 1, then (2A°, *u, €) is coalgebra with
counit € such that e(f) = f(1).

o If 2 is associative, then 2A° is coassociative.

2A° is the biggest coalgebra contained in 2* and induced by pu.

The mappings A — 2A° and f — f° define a contravariant functor from
k-Alg to k-Cog (f° denotes the morphism induced by f* on B° for

f € Hom(A, B)).
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The problem

Notations for shifts

Let 2 be an algebra and f € 2*. Then we define :

o iy f(xy) = (flxy) (left shift);
o .y f(yx) (right shift);
o f, iz f(yzx)
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Theorem by Abe (extended by Schiitzenberger's condition) Theorem

Theorem by Abe (extended by Schiitzenberger's condition)

Characterization of the elements of 2°

Let 2 be an algebra and f € 2*. The following properties are equivalent :
o (i) tu(f) e A* @ A*;
o (ii) The family (f),cq is of finite rank;
o (iii) The family (f),cq is of finite rank;
° (

iv) The family (,fy), < is of finite rank;

o (v) flxy) =>_filx)aily);
i=1
o (vi) 3 a:A— k™M and (), 7) € k1" x k"1 such that
Vx e, f(x)=Xa(x)y

o (vii) Ker(f) contains an ideal of finite codimension (i.e. there exists
an ideal / such that dim(Ker(f)//) < c0).
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Theorem by Abe (extended by Schiitzenberger's condition) Elements of the proof

Proof (elements) 1/4 :(i) = (v) and (v) = (ii), (iii)

We assume that fu(f) € A* @ A*. Therefore 'u(f) =>." ; i ® gi. Now

n

(u(Hlx@y) =flxy) =Y (Fogkoy) =Y filxe&ly) (2
i=1 i=1
which is the condition (v).
Hence we can write that
= Zgi()/)fi; of C span(f;).

Zf

The orbits and Qlf and fy are of finite rank.

fu C span(g;).
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Theorem by Abe (extended by Schiitzenberger's condition) Elements of the proof

Proof 2/4 : (v) = (iv)

If the g;'s are in fy, their shifts are also in this orbit (Which is finite

dimensional). Thus, they are of finite rank and gi(yz) Zgu gU(z

f(yzx) ZZf gu gU z),Vze

i=1 j=1

This is equivalent to the following equation:

Y_sz gu gu

i=1 j=1

Do we have (g;)i C fy?
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Theorem by Abe (extended by Schiitzenberger's condition) Elements of the proof

Proof 3/4 : (v) = (iv)

We assume now that n is minimal.

Since *u is bilinear, the first lemma applied to eq. (2) implies that the f;'s
and gi's form free families.
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Theorem by Abe (extended by Schiitzenberger's condition) Elements of the proof

Proof 3/4 : (v) = (iv)

We assume now that n is minimal.

Since f is bilinear, the first lemma applied to eq. (2) implies that the f;'s
and gi's form free families.

(gi)i is a free family of minimal rank. Hence, (g;); is a basis of
span, o (fx) and the gj's are in fy.

Eq. (5) implies that

(fy)x.yen is of finite rank.

M. Deneufchatel (LIPN - P13) Shifts and Algebras 26/10/2010 15 /21



Theorem by Abe (extended by Schiitzenberger's condition)

Proof 3/4 . (iii) = (vi)

Elements of the proof

Let .. f,,,f,---,x, be a basis of the orbit o f of f under the action of .
1f = f < Q[f ThUS,

X1 f
=M1 )|
Xn f
and

wf ()

1 fy) = (M An)
ol ()
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Theorem by Abe (extended by Schiitzenberger's condition)
Proof 3/4 . (iii) = (vi)

Now, if we do another shift on the left, we stay in the same space

generated by , f, f,...,, f and we have another decomposition which
involves a (unlquely deﬂned) matrix a(y) :

Elements of the proof

) X2

WD) )
) )
with Zau - Therefore,
WO\ (o) e (F0)
) \ant) - amtn) )

n

M. Deneufchatel (LIPN - P13) Shifts and Algebras 26/10/2010 17 /21



Theorem by Abe (extended by Schiitzenberger's condition) Elements of the proof

Proof 3/4 . (iii) = (vi)

f(z) = ,f(1) thus

af wf (V)
(A1-..An) y=1 = (A1...An) : y=1
z o L\ f()
wf ()
= |(A1-.- An)a(2) : y=1
wf(Y)
Finally,
wf(1)
f(z)=(A1...A\n)a(2) 5
(1)
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Theorem by Abe (extended by Schiitzenberger's condition) Elements of the proof

Proof 4/4 : (iii) = (i)
If (f) cq is of finite rank, there exists a linear representation (A, a, ) of

f(z) =(M\1...A\n)a(2)

with :
alx +y) = a(x) + a(y),
a(dx) = da(x),

a(xy) = a(x)aly).

Hence f(z) = Z Akke(Z)ve.
k=1
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Theorem by Abe (extended by Schiitzenberger's condition) Elements of the proof

Proof 4/4 : (iii) = (i)

Therefore,

fxy) = Z Akake(xy )ve

Ki=1
= Z Z)\kakj aJZ )FYE
k=1 j=1
=> <Z )\kakj(X)) (Z Oéjz()/)’w)
=1 \k=t =

This equation tells us that f(xy) and therefore *u(f) belongs to 2A* @ 2A*.
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Theorem by Abe (extended by Schiitzenberger's condition) Elements of the proof

What was proved so far ?

(iv)

The proofs of the following implications are straightforward now :
(i) = (i), (iv) = (i) and (vi) = (i).
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