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What is the algebraic (geometric) structure underlying renormalization?

» Perturbative renormalization in gft is a Birkhoff decomposition
— Hopf algebra of Feynman diagrams.( Connes-Kreimer 2000)

» Exact renormalization is an algebraic Birkhoff decomposition
— Hopf algebra of decorated rooted trees.



» Birkhoff decomposition
» Exact Renormalization Group equations as fixed point equation
> Power series of trees

» Algebraic Birkhoff decomposition for the ERG

Algebraic Birkhoff decomposition for the continuous renormalization
group, with F. Girelli and T. Krajewski, J. Math. Phys. 45 (2004)
4679-4697.

Wilsonian renormalization, differential equations and Hopf algebras,
with T. Krajewski, to appear in Contemporary Mathematics Series of the
AMS.



Birkhoff decomposition

Complex plane Lie group G

<

v(z) = 7= (2)v4(z), z € C|whereyi :Cs — G are holomorphic.

— G nice enough: exists for any loop =, unique assuming v_(c0) = 1.
— v defined on C with pole at D:

v = 7+(D)
is a natural principle to extract finite value from singular expression (D).

— dimensional regularization in QFT: D is the dimension of space time,
G is the group of characters of the Hopf algebra of Feynman diagrams.



Birkhoff decomposition: Hopf algebra of Feynman

diagrams

Coalgebra C,: reverse the arrow !

Coproduct A : Cg+— Co ®@Cpy, counity n:Co— C,
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Birkhoff decomposition: Hopf algebra of Feynman

diagrams

Bialgebra B: algebra + coalgebra.

Antipode S : B — B,

idg*S =m(idg® S)A =nl, S=xidg=m(Sx*idg)A =nl.

‘ Bialgebra with antipode = Hopf algebra H. ‘

— 1PI-Feynman diagrams form an Hopf algebra,

— Combinatorics of perturbative renormalization is encoded within the
coproduct A.



Birkhoff decomposition: Hopf algebra of Feynman

diagrams

The Hopf algebra Hr of Feynman diagrams:

Algebra structure:
-product: disjoint union of graphs,
-unity: the empty set.

Hopf algebra structure:
-counity: n(0) =1, n(I') = 0 otherwise,

-coproduct:
AM=Tel+1el+ §r7®l‘/v
V=

Ore1410 O
A(—@‘) = —@‘®1+1®—@—+2%®—Q‘
AT = 180+ a1+ Ore

-antipode: built by induction.
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Birkhoff decomposition: perturbative renormalization

A : complex functions in C, pole in D (=4).
A holomorphic functions in C.
A_: polynémial in —D without constant term.

Feynman rules : Hr N
Conterterms : He < A
Renormalized theory : He £ Ay

Compose with character y, of A,
Yz) =xz0U, 7-(2)=xz0C, 74(2) =xz0R,
v(z), z € C is a loop within the group G of characters of Hg,
Y(2) =721 (2) 74 (2).

The renormalized theory is the evaluation at D of the positive part of the
Birkhoff decomposition of the bare theory.




Birkhoff decomposition: algebraic formulation

The Exact Renormalization Group equations govern the evolution of the
parameters of the theory with respect to the scale of observation (e.g.

energie A),
0
AN—S=0(NS
S5 =B(N.S)
where S(A) € £, vector space of "actions”.
» no analogous to the dimension D where to localize the pole

> analogous to C x U = R.

Definition(Connes, Kreimer, Kastler): H commutative Hopf algebra, A
commutative algebra. p_ projection onto a subalgebra A_.

An algebra morphism v : H — A has a unique algebraic Birkhoff
decomposition if there exist two algebra morphisms ., v_ from H to A
such that

T+ =7-*7
P+7Y+ =7+, P-7-=17-
with p, the projection on

A, = Ker p_.



ERG as fixed point equation

Dimensional analysis : A — t, S — x, f— X,
Ox

T Dx + X(x)

x(t) € €, D diagonal matrix of dimensions, X smooth operator £ — €&,
X(xty) = X0+ XU+ X y) 4ot =Xy, )+ Oy
where XX["] is a linear symmetric application from £I" to &.
x(t) = elt70)Dx; 4 /t (=P X (x(u))du.
to
x belongs to the space £ of smooth maps from R*" to &, as well as
(t—t0)D

X: t—e X0.

Define xo, smooth map from & to &,

Xo(X) : t /t t et =P X (x(u))du.



ERG as fixed point equation

Fixed point equation

x = X + Xo(x)
> x(t) represents the parameters at a scale t.

» Xp encodes the initial conditions at a fixed scale tg.

Wilson's ERG context: tp is an UV cutoff. One interested in tg — +oo.



ERG as fixed point equation: mixed initial conditions

converges on £T
%o(t) = elt=0)0x is constantly zero on % as ty — +oo
diverges on £~

where £, €09, £~ are proper subspaces of D corresponding to positive,
zero and negative eigenvalues (irrelevant, marginal, relevant).

» Finiteness of x(t) at high scale by imposing initial conditions for
relevant sector at scale t; # tg.

» P orthogonal projection £ — £~ allows mixed initial conditions
XR = P)?l +(]I* P))?o .

» xr=Px1+ (I — P)xo with x;(x):t— f; =P X (x(u))du

| x(6) = xr + xr() |

Renormalization deals with change of initial condition in fixed point equation.




Power series of trees: smooth non linear operators

X is a smooth operator from Etoé:

X(x+y) = X(x) + X5 ) + X y) + ,X[X”]( Yo y) +O(ly[™)

[

where x¥" is a linear symmetric application from &Il to &.

» Physicists’ notations: x = {x"}, x(x) = {x*(x)},

X)) =0y, v", XiWn,y2) = OupX, Y5 -

» Coordinate free notations: x'(x) is the map & — &

y = Xy (x(¥))-



Power series of trees: smooth non linear operators

. . - . 1
=L X =x x =X XC& = 5X"06X) -
Taylor expansion: g O&3
x(I+x) = x"+x +x
= Zo(T)x T)x"
= flx]

where ¢(T) = 1 for any rooted tree T, except ¢(0) = 0.



Power series of trees: characters of the Hopf algebra

simple cut simple cut non simple cut
Hr is a Hopf algebra with counit € = 0 except ¢(1) = 1, the antipode
S: e~ —oe
Te T % S(PATIRAT)

and the coproduct

AT =Tel+loT+ ¥
ce

o Pe(M@R(T), A =101

A(Of\o):l®&+&®l+20®g+oo®o



Proposition:Butcher group, B-series; T.K, PM..

The group of formal power series starting with I (i.e. ¢(0) = 1) is
isomorphic to the opposite group of characters of Hr.

falxd o fulx] = > o(T)x (Zw 'T'> hlT!
T

= (o) (T nlT
-

= fues[X]-



Power series of trees: solution of fixed point equation

> x = x0 + xo(x) <= x0 = (I — x0)(x).

[x = (1= x0) "1 (x) = fylx0] " (x0) = i [xol(x0)

where ¢ = 0 except p(0) =1, p(¢) = —-land p1=p 1 =1.
> x = xg + XR(X) = x = fy, [XR](Xr)

> E=1—(I-xr)o(I-x0) " == (I—xr) ™' = (I—x0) o (I-&)"



Power series of trees: rooted trees with two decorations

for [XR] = Tgu[x0] © 5, [€]
1 character, 2 operators = 1 operator, 2 characters :

fo [Y] = fo[Y]o fy_[Y]

Y" = e, YU=¢ YR = (€0,

¢=¢ ' xpy
.| ¢(T)ifT € H, .| o1(T)ifT € Hu
¢—(T)_{ 0it T ¢ H, 0 T = 007 ¢ Ha
where H,, Hg are the set of trees decorated with one decoration only so

that

for[xrl = f5. [Y],  fo,[€] = fs Y]
Proposition: . IinJ: fs, [xr|(xg) is finite order by order and does not
— ty— 40

depend on xg.



Algebraic Birkhoff decomposition for the ERG

Feyman rules A evaluation at z G

Perturbative renormalization: Hf
evaluation on decorations G

Exact renormalization: Hy

— No Birkhoff decomposition since no loop in G.
— Algebraic Birkhoff decomposition on which algebra ?

As U, C, R map a Feynman diagram to a meromorphic funtion,
characters map a decorated rooted tree to a monomial in Y7,

AWT) = HT)YT, 4(T) = 6(T) Y.
Unfortunately 7y, v+ do not define an algebraic Birkhoff decomposition.
(%) =0
(—=N(8) = (ronlie 8 + 8 @lteqn)

g + Y°ym



Algebraic Birkhoff decomposition for the ERG

— Algebraic Birkhoff decomposition with

> target

A={1,e.m}, A_={1e}
» projection p_ : A — A_
p-(1)=1, p_(e)=e p_(u)=0
> Algebra homorphism Hy — A
NT) = H(T)(T), 7£(T) = o+(T)I(T).

where ¢ = ¢~ 1 % ¢+ and [ counts the decoration



Conclusion

Perturbative renormalization with dimensional regularization has a nice
description in terms of Birkhoff decomposition of a loop around the
dimension D of space time

> geometrical interpretation (bundles on the Riemann sphere),

» Galois theory for the renormalization group (Connes, Marcolli).

Analogous formulation for ERG, only at the algebraic level
> Is the algebra of decorations an artificial tool 7
» Deeper structure (Rota-Baxter operator, cf Ebrahimi-Fard) ?

» Signification of the characters ?



