Quelques aspects combinatoires des marches aléatoires

Philippe Marchal

CNRS et Université Paris Nord

 $(S_k, 0 \le k \le n)$ marche aléatoire réelle : quantité réelle évoluant aléatoirement dans le temps.

 $(S_k, 0 \le k \le n)$ marche aléatoire réelle : quantité réelle évoluant aléatoirement dans le temps.

Hypothèse classique : les accroissements

$$X_1 = S_1 - S_0, \ X_2 = S_2 - S_1 \dots$$

sont des variables aléatoires indépendantes de même loi.

 $(S_k, 0 \le k \le n)$ marche aléatoire réelle : quantité réelle évoluant aléatoirement dans le temps.

Hypothèse classique : les accroissements

$$X_1 = S_1 - S_0, \ X_2 = S_2 - S_1 \dots$$

sont des variables aléatoires indépendantes de même loi. Si les X_i sont à valeurs entières, on retrouve des modèles combinatoires classiques (chemins de Dyck, Motzkin, Lukasiewicz).

 $(S_k, 0 \le k \le n)$ marche aléatoire réelle : quantité réelle évoluant aléatoirement dans le temps.

Hypothèse classique : les accroissements

$$X_1 = S_1 - S_0, \ X_2 = S_2 - S_1 \dots$$

sont des variables aléatoires indépendantes de même loi. Si les X_i sont à valeurs entières, on retrouve des modèles combinatoires classiques (chemins de Dyck, Motzkin, Lukasiewicz). Pour toute permutation σ de $\{1,2,\ldots n\}$, $X_1,X_2,\ldots X_n$ a même loi que $X_{\sigma(1)},X_{\sigma(2)},\ldots X_{\sigma(n)}$.

 $(S_k, 0 \le k \le n)$ marche aléatoire réelle : quantité réelle évoluant aléatoirement dans le temps.

Hypothèse classique : les accroissements

$$X_1 = S_1 - S_0, \ X_2 = S_2 - S_1 \dots$$

sont des variables aléatoires indépendantes de même loi. Si les X_i sont à valeurs entières, on retrouve des modèles combinatoires classiques (chemins de Dyck, Motzkin, Lukasiewicz). Pour toute permutation σ de $\{1, 2, \dots n\}$,

 $X_1, X_2, \dots X_n$ a même loi que $X_{\sigma(1)}, X_{\sigma(2)}, \dots X_{\sigma(n)}$.

Traduction visuelle : si on découpe un trajectoire en morceaux qu'on recolle dans un ordre différent, la nouvelle trajectoire a la même probabilité \rightarrow de nombreux résultats peuvent se démontrer de manière combinatoire.

Marche aléatoire simple (chemin de Dyck aléatoire)

On considère le cas ou $X_i=\pm 1$ avec probabilité 1/2-1/2. Vocabulaire probabiliste :

- excursion : trajectoire partant de 0, terminant en 0 mais ne touchant pas 0 entretemps.
- pont : trajectoire partant de 0, terminant en 0 (suite d'excursions).
- méandre : trajectoire partant de 0 en ne touchant jamais 0 par la suite.

Une trajectoire : pont suivi d'un méandre.

Mouvement brownien

À partir de la marche aléatoire en n pas, on trace les points

$$(0, S_0), (1/n, S_1/\sqrt{n}), (2/n, S_2/\sqrt{n}), \dots (1, S_n/\sqrt{n})$$

Mouvement brownien

À partir de la marche aléatoire en n pas, on trace les points

$$(0, S_0), (1/n, S_1/\sqrt{n}), (2/n, S_2/\sqrt{n}), \dots (1, S_n/\sqrt{n})$$

Par interpolation linéaire, on obtient une fonction continue aléatoire \rightarrow loi de probabilités μ_n sur l'espace des fonctions continues.

Mouvement brownien

À partir de la marche aléatoire en n pas, on trace les points

$$(0, S_0), (1/n, S_1/\sqrt{n}), (2/n, S_2/\sqrt{n}), \dots (1, S_n/\sqrt{n})$$

Par interpolation linéaire, on obtient une fonction continue aléatoire \rightarrow loi de probabilités μ_n sur l'espace des fonctions continues.

Théorème de Donsker : si la loi des accroissement vérifie

$$\mathbb{E}(X_i)=0,\ \mathbb{E}(X_i^2)=1$$

alors

$$\mu_n \rightarrow \mu$$

 μ (mesure de Wiener) : mesure de probabilités sur l'espace des fonctions continues, ne dépend pas de la loi des X_i . Mouvement brownien : fonction tirée au hasard suivant la loi μ .

Convergence forte vers le mouvement brownien

Dans le cas des chemins de Dyck, on voudrait obtenir une convergence forte : convergence d'une suite de fonctions vers une fonction \neq convergence d'une suite de mesures de probabilités vers une mesure de probabilités.

Convergence forte vers le mouvement brownien

Dans le cas des chemins de Dyck, on voudrait obtenir une convergence forte : convergence d'une suite de fonctions vers une fonction \neq convergence d'une suite de mesures de probabilités vers une mesure de probabilités.

Idée : utiliser un construction récursive d'arbres binaires (algorithme de Rémy). Par la correspondance de Lukasiewicz, on obtient une suite d'excursions (mots de Dyck) qui, après renormalisation, converge fortement avec probabilité 1.

Convergence forte vers le mouvement brownien

Dans le cas des chemins de Dyck, on voudrait obtenir une convergence forte : convergence d'une suite de fonctions vers une fonction \neq convergence d'une suite de mesures de probabilités vers une mesure de probabilités.

Idée : utiliser un construction récursive d'arbres binaires (algorithme de Rémy). Par la correspondance de Lukasiewicz, on obtient une suite d'excursions (mots de Dyck) qui, après renormalisation, converge fortement avec probabilité 1.

Diverses adaptations permettent d'obtenir une suite de ponts, de méandres ou de trajectoires complètes.

Outil de preuve : notion de martingale

Martingale M_n : représente la fortune au temps n d'un joueur jouant dans un casino équitable.

$$\mathbb{E}(M_{n+1}|M_n)=M_n$$

Outil de preuve : notion de martingale

Martingale M_n : représente la fortune au temps n d'un joueur jouant dans un casino équitable.

$$\mathbb{E}(M_{n+1}|M_n)=M_n$$

Sous certaines hypothèses (positivité, bornitude dans L^2) on a : avec probabilité 1, il existe M_{∞} tel que $M_n \to M_{\infty}$.

Outil de preuve : notion de martingale

Martingale M_n : représente la fortune au temps n d'un joueur jouant dans un casino équitable.

$$\mathbb{E}(M_{n+1}|M_n)=M_n$$

Sous certaines hypothèses (positivité, bornitude dans L^2) on a : avec probabilité 1, il existe M_{∞} tel que $M_n \to M_{\infty}$. On peut montrer que chaque point de la trajectoire renormalisée

$$(0, S_0), (1/n, S_1/\sqrt{n}), (2/n, S_2/\sqrt{n}), \dots (1, S_n/\sqrt{n})$$

converge vers un point de \mathbb{R}^2 .

On peut se demander si $\limsup_{n} (S_n)$ tend on non vers $+\infty$ et à quelle vitesse. Pour cela, il faut au moins dépasser une fois S_0 .

On peut se demander si $\limsup_n (S_n)$ tend on non vers $+\infty$ et à quelle vitesse. Pour cela, il faut au moins dépasser une fois S_0 . Un *temps d'échelle* est un temps ou la marche aléatoire bat un record vers le haut.

Visuellement : point "visible de la gauche".

On peut se demander si $\limsup_n (S_n)$ tend on non vers $+\infty$ et à quelle vitesse. Pour cela, il faut au moins dépasser une fois S_0 . Un *temps d'échelle* est un temps ou la marche aléatoire bat un record vers le haut.

Visuellement : point "visible de la gauche".

 L_n : nombre de points visibles de la gauche $(1 \le L_n \le n+1.)$

 \hat{L}_n : nombre de points visibles de la droite.

On peut se demander si $\limsup_n (S_n)$ tend on non vers $+\infty$ et à quelle vitesse. Pour cela, il faut au moins dépasser une fois S_0 . Un *temps d'échelle* est un temps ou la marche aléatoire bat un record vers le haut.

Visuellement : point "visible de la gauche".

 L_n : nombre de points visibles de la gauche $(1 \le L_n \le n+1.)$

 \hat{L}_n : nombre de points visibles de la droite.

Théorème

$$\mathbb{E}(L_n\hat{L}_n)=n+1$$

Théorème

$$\mathbb{E}(L_n \dots (L_n+k-1)\hat{L}_n \dots (\hat{L}_n+k-1)) = k!(n+1) \dots (n+k)$$

Théorème

$$\mathbb{E}(L_n \dots (L_n + k - 1)\hat{L}_n \dots (\hat{L}_n + k - 1)) = k!(n+1) \dots (n+k)$$

variable exponentielle : variable aléatoire positive ${\bf e}$ telle que

$$\mathbb{P}(\mathbf{e} > t) = e^{-t}$$

Théorème

$$\mathbb{E}(L_n \dots (L_n+k-1)\hat{L}_n \dots (\hat{L}_n+k-1)) = k!(n+1) \dots (n+k)$$

variable exponentielle : variable aléatoire positive e telle que

$$\mathbb{P}(\mathbf{e} > t) = e^{-t}$$

$$egin{aligned} M_n &= \mathbf{e}_1 + \ldots + \mathbf{e}_{L_n} \ \widehat{M}_n &= \hat{\mathbf{e}}_1 + \ldots + \hat{\mathbf{e}}_{\hat{L}_n} \ \mathbf{e}_i, \hat{\mathbf{e}}_i \text{ variables iid, exponentielles} \end{aligned}$$

Théorème

$$\mathbb{E}(L_n \dots (L_n+k-1)\hat{L}_n \dots (\hat{L}_n+k-1)) = k!(n+1) \dots (n+k)$$

variable exponentielle : variable aléatoire positive e telle que

$$\mathbb{P}(\mathbf{e} > t) = e^{-t}$$

$$M_n = \mathbf{e}_1 + \ldots + \mathbf{e}_{L_n}$$

 $\widehat{M}_n = \widehat{\mathbf{e}}_1 + \ldots + \widehat{\mathbf{e}}_{\widehat{L}_n}$
 $\mathbf{e}_i, \widehat{\mathbf{e}}_i$ variables iid, exponentielles

Théorème

$$M_n\widehat{M}_n \stackrel{(loi)}{=} (e_1 + \ldots + e_{n+1})\hat{e}_1$$

