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Asymmetric Exclusion Process. A paradigm for non-equilibrium
Statistical Mechanics.

EXCLUSION : Hard core-interaction ; at most 1 particle per site.

ASYMMETRIC : External driving ; breaks detailed-balance

PROCESS : Stochastic Markovian dynamics; no Hamiltonian




ORIGINS

e Interacting Brownian Processes (Spitzer, Harris, Liggett).

e Driven diffusive systems (KLS).

e Transport of Macromolecules through thin vessels.
Motion of RNA templates.
e Hopping conductivity in solid electrolytes.

e Directed Polymers in random media. Reptation models.

APPLICATIONS
e Traffic flow.

e Sequence matching. Brownian motors.




1. Spectral Properties of the Markov Matrix (O. Golinelli)

2. Fluctuations of the current (S. Prolhac)

3. Multispecies exclusion processes and Matrix Ansatz (M. Evans, P.
Ferrari and S. Prolhac)




Markov Equation for the ASEPI
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‘ASEP : An Integrable System'

MAPPING TO A NON-HERMITTAN SPIN CHAIN
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Complex Eigenvalues My = E :
e Ground State : E =0, P =Q"! (non-degenerate).
e Excited States : R(F) < 0 (Perron-Frobenius).

Excitations correspond to relaxation times

TASEP : 2 =0 '




‘ 1. TASEP on a ring : Spectral Properties'

e SPECTRAL GAP : Largest relaxation time 7. How does it depend
on the size L of the system : T' ~ L*7

e DEGENERACIES in the Markov Matrix : Hidden symmetries.




Example of a spectrum

Spectre de la matrice de Markov
L =10; 5 particules Parkievnles DiST/INGUWABLES




Bethe Ansatz for TASEP'

Eigenvectors of M as linear combinations of plane waves, with
pseudo-momenta given by z1,...2n :

95 (2, + 1)1 %3
(2 — 1)/

e ¢ is an eigenfunction with eigenvalue E = (=N + 5 Zj)-

w(atl,...,a:N):det( ) for 1<i,j <N

e Cancellation of the two-particle collision terms (xx_1 =z — 1).
e Bethe Equations

(1—z)N(1 +2) " N=-2 '_1 for i=1,...N

Note that the r.h.s. is a constant independent of 1.




‘Procedure for solving the Bethe Equations'

For any given value of Y, SOLVE (1 — )™ (1 + 2z;)~

The roots are located on Cassini Ovals

CHOOSE N ro0ts z.(1),---zc(n) amongst the L available roots,
with a choice set ¢ : {c(1),...,¢(N)} C {1,...,L}.

SOLVE the self-consistent equation A.(Y) =Y where

_ _9L “e(§)
H Ze) 1

DEDUCE from the value of Y, the z.(;)’s and the energy
corresponding to the choice set ¢ :

2E.(Y) = —N+ ) zy).
=1




‘Labelling the roots of the Bethe Equations'

The loci of the roots are remarquable curves : Cassini Ovals




Calculation of the GAP'

An original method : EXACT combinatorial formulae for Aq(Y")
and Fy(Y) for any finite values of L and N :

Ao(Y) i KL\ Y
Y —~\ kN 2k L

log

> kL — 2 Yk

Eo(Y) - Z

kL
—\ kEN—1 | k2

These expressions are analytically continued in C' — [1,00). When
L — oo, Ap(Y) and Ey(Y') become the polylogarithm functions Lig /o
and Lis /o, respectively.




Calculation of the first excited state by solving transcendental

equations. For a density p :

6.509189337 ...  2im(2p — 1)

RELAXATION OSCILLATIONS

Higher excitations. Opposite side of the spectrum. Tagged particle.




‘ SPECTRAL DEGENERACIES '

NATURAL SYMMETRIES OF TASEP :

e Translation 7' : MT =TM. Momentum £k
e Charge-conjugation C' + Reflection R : M(CR) = (CR)M.

These natural symmetries do not commute (CR)T = T~ 1(CR) —
The spectrum of M is composed of singlets for (k = £1) and

doublets (k, k*) for (k # +£1).

A NUMERICAL OBSERVATION FOR TASEP :

Unexpected degeneracies of certain orders with specific
numbers of multiplets appear.

The highest degeneracy order ~ 2/6 (at half-filling).
Can we calculate these numbers? Can we explain their origin ?
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Spectral degeneracies in the TASEP at half filling.

m(d) is the number of multiplets with degeneracy d.
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FExamples of spectral degeneracies in the TASEP at filling p # 1/2.




‘A symmetry of the Bethe equations'

Let us call § = ged(L, N).
The L Bethe roots form § packages, each of cardinality L/§.

The roots composing the package Ps have the indices
{s,s+08,s+20,...,s+ (L/6d —1)d} with 1 < s < 9.

Consider a choice set ¢ (i.e., a choice of N roots amongst the L
available ones). Suppose there exist packages Py and P; such that

P.Cc and P,Nec=40.

The choice set ¢ = (c\Ps) U P; obtained from ¢ by exchanging P, and

P, corresponds to the same self-consistent equation and to the same
eigenvalue as c.

Equivalence classes of choice sets by ‘Package-swapping’.




L=10 and N=5: 5 PACKAGES EACH OF 2 ROC
CHOOSE 5 ROOTS AMONGST THE 10 AVAILABLE
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‘Calculation of the degeneracies'

The number €2 of possible choice sets is the same as the dimension of
the matrix M.

We suppose that there is a one to one correspondence :

choice sets < solutions of the Bethe Equations.

e ‘package swapping’ equivalence classes < multiplets in spectrum

e cardinality of a class «» order of the multiplet

e # of classes of cardinality d < # of multiplets of order d.

Calculation of the degeneracies : a problem in combinatorics.
All the numbers in the tables can be determined.

Halt-filling : d, =




2. Current Fluctuations and Large Deviations'

e TRANSPORT PROPERTIES : modified because of interactions

Drasepr 7# Drree

e LONG RANGE CORRELATIONS : Non-Gaussian behaviour,

non-vanishing higher cumulants.




‘Current statistics as an eigenvalue problem'

Statistics of Y}, total distance covered by all the particles between 0
and t.

Deformation of the Markov Matrix M by adding a jump-counting
fugacity v : M(y) = My +e"M,y +e "M_

In the long time limit, ¢ — oo

<e'7Yt > ~ eE(W)t

E(v) eigenvalue of M (vy) with maximal real part.
Equivalently, F'(j), the large-deviation function of the current

is the Legendre transform of E(v).




Bethe Ansatz for current statistics.

The Bethe Equations are given by

N 11—[ “Vzizg— (1+2x)z + €

re Vziz; — (1 +x)z; + €7

The eigenvalues of M (v) are

E(y;z1,22. .. —eVZZ +xe_72zz— (14 x).

=1 =1

The Bethe equations do not decouple unless x = 0.




‘ TASEP CASE x =0 (Derrida Lebowitz 1998) I

E(7) is calculated by Bethe Ansatz to all orders in 7, thanks to the
decoupling property of the Bethe equations.

Mean Total current :

;) n(L—n)

J:hm< —
t

Diffusion Constant :

Do i YO =W Ln(L—n) C3
T t (L-1)(2L — 1) (Cp)?

Exact formula for the large deviation function.




In the general case z # 0, NO DECOUPLING.

1ez
—zxe  Vz;)

eL7<1_yi> :—Hyz tYi for 1=1...N.
1 — xy;

After a change of variable, y; = the Bethe equations read

1 YYi —

Let T be auxiliary variable playing a symmetric role w.r.t. all the y; :

L N
1-1T 1T — xy;
¢ (1—:1:T> HxT Y; ot

71=1

i.e. P(T) = el (1 — T)LH(Q;T — i)+ (1 — :UT)LH(T — xy;) = 0.
But P(y;) = 0 (Bethe Eqgs.). Thus, Q(T) = IJX[ (T — y;) divides P(T) :

Q(T) DIVIDES e (1 -T)LQ(2T) + (1 — 2T) 2N Q(T /x).




There exists a polynomial R(7T') such that

QT)R(T) = e (1 = T)"Q(aT) + & (1 — 2T)"Q(T/x)

Functional Bethe Ansatz (Baxter’s TQ equation).

This equation is solved perturbatively w.r.t. ~.

e Mean Current : J = (1 —x)% ~ (1—x)Lp(1—p) for L — ¢

e Diffusion Constant :

Cr el ™" (1 +aF
— 2
D_(l_xL Zk cy b (1—xk)

U2 2

D ~ 4¢Lp(1 — d —u
¢ Lp( p)/o U anhou

when L — oo and x — 1 with fixed value of ¢ = (1-2) Vsz(l_p).




Third cumulant '

(Y7) —3(Y; >t<Yt>+2<Yt> F

Non-vanishing Skewness E'3 — Non Gaussian fluctuations.

(1—50)\/2Lp(1—p) fixed,

When time ¢t — oo,

When L — oo and © — 1 keeping ¢ =

Eg N 4 .
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For ¢ — oo, we recover the known TASEP limit :

) wlol1— p2L
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The weakly symmetric case r =1 — =

Odd moments, such as the mean current vanish. For L — oo,

L

P (7) _pL=p)(y* +v)  p(L—p)y*y

e Leading order (in 1/L) : Gaussian fluctuations.

e Subleading (in 1/L?) : Non-Gaussian correction.
21

vV P(1—p)

e Phase transition when v > v, =




‘ 3. Multispecies Exclusion Models.'

e Stationary state of generalized exclusion processes.
e Relation to the Matrix Ansatz for the stationary measure.




Definition of the N-TASEP'

N classes of particles and holes with hierarchical priority rules.
During an infinitesimal time step dt, the following processes take
place on each bond with probability dt :

I10—01 for 1<I<N

I1J—JI for 1<I<J<N

Particles can always overtake holes (= 0-th class particles).

First-class particles have highest priority etc...
There are P; particles of class I. Total number of configurations :

L!

0 —
PP\ P! ... Py

Stationary Measure 7




‘Matrix Ansatz for the 2-TASEP'

Algebraic description of the Stationary Measure (DEHP, DJLS ’93).
Configuration represented by a string e.g. 01220211.
Stationary weight :

p(01220211) = %Tr(EDAAEADD)

Replace 0 by E, 1 by D and 2 by A.
The operators A, D and E satisfy the quadratic algebra

DE D+ E
DA A
AFE A

e.g. p(01220211) oc Tr(D?*EA3) = Tr((D? + D + E)A3) o< 3Tr(A?)




Representations of the quadratic algebra'

Infinite dimensional : D = 1 + 0 where 0 =right-shift.
E =1+ € where € =left-shift.
A = |1)(1]| = |0, €] projector on first coordinate.

(1100
01 1 0

0 0 1 1




Matrix Ansatz : Stationary state properties (currents, correlations,

fluctuations).

Proof that the stationary measure is not given by a
Boltzmann-Gibbs measure (E. Speer).

Combinatorial Interpretation of these operators?

No Matrix Ansatz was known for N-TASEP models (for N > 3.)




Geometric Construction of the 2-TASEP stationary measure

(Omer Angel, Pablo Ferrari, James Martin)

A procedure to construct a configuration of the 2-TASEP with P;
First Class Particles and P, Second Class Particles starting from two

independent configurations of the 1 species TASEP.

O O O O p
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Geometric Construction of the 2-TASEP stationary measure

(Omer Angel, Pablo Ferrari, James Martin)

A procedure to construct a configuration of the 2-TASEP with P;
First Class Particles and P, Second Class Particles starting from two

independent configurations of the 1 species TASEP.
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Geometric Construction of the 2-TASEP stationary measure

(Omer Angel, Pablo Ferrari, James Martin)

A procedure to construct a configuration of the 2-TASEP with P;
First Class Particles and P, Second Class Particles starting from two

independent configurations of the 1 species TASEP.
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Geometric Construction of the 2-TASEP stationary measure

(Omer Angel, Pablo Ferrari, James Martin)

A procedure to construct a configuration of the 2-TASEP with P;
First Class Particles and P, Second Class Particles starting from two
independent configurations of the 1 species TASEP.
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Geometric Construction of the 2-TASEP stationary measure

(Omer Angel, Pablo Ferrari, James Martin)

A procedure to construct a configuration of the 2-TASEP with P;
First Class Particles and P, Second Class Particles starting from two

independent configurations of the 1 species TASEP.
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FROM 2 LINES OF TASEP TO 2-TASEP

O O O

0 0O
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This construction is NOT one-to one : the weight of a 2-TASEP
configuration is proportional to the total number of ways you can

generate it by this construction.




Fundamental Remarks :

e A1 (on the 1st line) can not be located above a 2 (on the 2nd

line).

Factorisation Property : All the 1’s (on the 2nd line) situated
between two 2’s MUST be linked to 1’s (on the 1st line) that are

located between the positions of the two 2’s (No Crossing

Condition,).

‘Pushing’ Procedure : The ‘ancestors’ of a string of the type
210102 are the strings obtained by pushing the 1’s to the right i.e.,
210102, 210012, 201102, 201012, 200112.

These properties uniquely characterize the stationary

weights.




THE MATRIX ANSATZ PERFORMS AUTOMATICALLY
THE COMBINATORICS UNDERLYING THE
GEOMETRIC CONSTRUCTION OF THE WEIGHTS.

e Factorisation Property : A is a PROJECTOR.

e Pushing Procedure : D and E are SHIFT OPERATORS
(right-shift and left-shift, respectively).




‘From 3 lines of TASEP to a 3-TASEP'

The weight of a 3-TASEP configuration is proportional to the total
number of ways you can generate it by this construction.




e REVERT the graphical procedure — ALGORITHM for

constructing all ancestors of a given N-TASEP configuration.

e ENCODE this reverse algorithm into operators — ALGEBRA.

e CALCULATE the stationary weights — TRACES over this
algebra.




‘NESTED MATRIX ANSATZ'

Hierarchical construction based upon tensor products of the original
algebra, using the D, A and F matrices and the shift operators.

For the 3-TASEP :

I1R1IE+10e®A4+e®1®D.
1R193D4+0ReRA4+0R1QFE
ARIRA+ARIQE
ARARE




For the N-TASEP :

e EXPLICIT construction of all the matrices.
e DIRECT PROOF that the Matrix Ansatz leads to the stationary

measure : independent and purely algebraic proof.
o FACTORISATION properties of the stationary measure.

EXACT SOLUTION OF THE N SPECIES ASEP :

Backward jumps allowed (rate x # 0)

— Tensor products of a deformation of the initial quadratic
algebra. Replace the shift-operators by deformed shift-operators :

bde =1 — de — xed = 1.

The stationary measure was not known in this case (NO

GRAPHICAL CONSTRUCTION,).




‘ CONCLUSIONS '

The asymmetric exclusion process can be studied by using a variety
of techniques : Bethe Ansatz, Matrix Product Ansatz, Combinatorics,
Orthogonal polynomials, Random Matrix Theory...

Relevant for mathematics (interacting particle processes,

generalization of the Brownian Motion) and for Statistical Mechanics

(classical N-Body problem out of equilibrium).

Can be used as a paradigm to study the behaviour of systems far
from equilibrium in low dimensions : Dynamical phase transitions,
Non-Gaussian fluctuations, Non-Gibbs measures, Fluctuations

Theorems.




