The 1/N Expansion in Colored Tensor Models

Răzvan Gurău

Laboratoire d'Informatique de Paris-Nord, 2011

Introduction

Colored Tensor Models

Colored Graphs

Jackets and the 1/N expansion

Topology

Leading order graphs are spheres

Conclusion

A success story: Matrix Models in two dimensions

▶ An ab initio combinatorial statistical theory.

- ▶ An ab initio combinatorial statistical theory.
- ► Have built in scales *N*.

- An ab initio combinatorial statistical theory.
- ► Have built in scales *N*.
- ► Generate ribbon graphs ↔ discretized surfaces.

- ▶ An ab initio combinatorial statistical theory.
- Have built in scales N.
- ▶ Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

A success story: Matrix Models in two dimensions

- ▶ An ab initio combinatorial statistical theory.
- Have built in scales N.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics:

A success story: Matrix Models in two dimensions

- ▶ An ab initio combinatorial statistical theory.
- Have built in scales N.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena,

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- ► Have built in scales *N*.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory,

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- ► Have built in scales *N*.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions,

A success story: Matrix Models in two dimensions

- ▶ An ab initio combinatorial statistical theory.
- Have built in scales N.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory,

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- ► Have built in scales *N*.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in D=2, etc.

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- ► Have built in scales *N*.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in D=2, etc.

Mathematics:

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- Have built in scales N.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in D=2, etc.

Mathematics: knot theory,

A success story: Matrix Models in two dimensions

- ▶ An ab initio combinatorial statistical theory.
- Have built in scales N.
- ▶ Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in D = 2, etc.

Mathematics: knot theory, number theory and the Riemann hypothesis,

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- ► Have built in scales *N*.
- ► Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in D = 2, etc.

Mathematics: knot theory, number theory and the Riemann hypothesis, invariants of algebraic curves,

A success story: Matrix Models in two dimensions

- An ab initio combinatorial statistical theory.
- ► Have built in scales *N*.
- ▶ Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in D=2, etc.

Mathematics: knot theory, number theory and the Riemann hypothesis, invariants of algebraic curves, enumeration problems, etc.

A success story: Matrix Models in two dimensions

- ▶ An ab initio combinatorial statistical theory.
- Have built in scales N.
- ▶ Generate ribbon graphs ↔ discretized surfaces.
- ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong interactions, string theory, quantum gravity in D=2, etc.

Mathematics: knot theory, number theory and the Riemann hypothesis, invariants of algebraic curves, enumeration problems, etc.

All these applications rely crucially on the "1/N" expansion!

Consider the partition function.

$$Z(Q) = \int [d\phi] e^{-N\left(\frac{1}{2}\sum \phi_{a_1 a_2} \delta_{a_1 b_1} \delta_{a_2 b_2} \phi^*_{b_1 b_2} + \lambda \sum \phi_{a_1 a_2} \phi_{a_2 a_3} \phi_{a_3 a_1}\right)}$$

Consider the partition function.

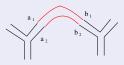
$$Z(Q) = \int [d\phi] e^{-N\left(\frac{1}{2}\sum\phi_{a_1a_2}\delta_{a_1b_1}\delta_{a_2b_2}\phi^*_{b_1b_2} + \lambda\sum\phi_{a_1a_2}\phi_{a_2a_3}\phi_{a_3a_1}\right)}$$

The vertex is a ribbon vertex because the field ϕ has two arguments.

Consider the partition function.

$$Z(Q) = \int [d\phi] e^{-N\left(\frac{1}{2} \sum \phi_{a_1 a_2} \delta_{a_1 b_1} \delta_{a_2 b_2} \phi^*_{b_1 b_2} + \lambda \sum \phi_{a_1 a_2} \phi_{a_2 a_3} \phi_{a_3 a_1}\right)}$$

The vertex is a ribbon vertex because the field ϕ has two arguments. The lines conserve the two arguments (thus having two strands).



Consider the partition function.

$$Z(Q) = \int [d\phi] e^{-N\left(\frac{1}{2}\sum \phi_{a_1a_2}\delta_{a_1b_1}\delta_{a_2b_2}\phi^*_{b_1b_2} + \lambda \sum \phi_{a_1a_2}\phi_{a_2a_3}\phi_{a_3a_1}\right)}$$

The vertex is a ribbon vertex because the field ϕ has two arguments. The lines conserve the two arguments (thus having two strands). The strands close into faces.

Consider the partition function.

$$Z(Q) = \int [d\phi] e^{-N\left(\frac{1}{2}\sum \phi_{a_1a_2}\delta_{a_1b_1}\delta_{a_2b_2}\phi^*_{b_1b_2} + \lambda \sum \phi_{a_1a_2}\phi_{a_2a_3}\phi_{a_3a_1}\right)}$$

The vertex is a ribbon vertex because the field ϕ has two arguments. The lines conserve the two arguments (thus having two strands). The strands close into faces.

Z(Q) is a sum over ribbon Feynman graphs.

$$A = \lambda^{\mathcal{N}} N^{-\mathcal{L} + \mathcal{N}} \sum_{\mathsf{lines}} \delta_{\mathsf{a}_1 b_1} \delta_{\mathsf{a}_2 b_2}$$

$$A = \lambda^{\mathcal{N}} N^{-\mathcal{L} + \mathcal{N}} \sum \prod_{\mathsf{lines}} \delta_{\mathsf{a}_1 b_1} \delta_{\mathsf{a}_2 b_2}$$

$$\sum \delta_{a_1b_1}$$

$$A = \lambda^{\mathcal{N}} N^{-\mathcal{L} + \mathcal{N}} \sum \prod_{\mathsf{lines}} \delta_{\mathsf{a}_1 b_1} \delta_{\mathsf{a}_2 b_2}$$

$$\sum \delta_{a_1b_1}\delta_{b_1c_1}$$

$$A = \lambda^{\mathcal{N}} N^{-\mathcal{L} + \mathcal{N}} \sum \prod_{\mathsf{lines}} \delta_{\mathsf{a}_1 b_1} \delta_{\mathsf{a}_2 b_2}$$

$$\sum \delta_{\mathsf{a}_1 \mathsf{b}_1} \delta_{\mathsf{b}_1 \mathsf{c}_1} \dots \delta_{\mathsf{w}_1 \mathsf{a}_1}$$

The Amplitude of a graph with ${\mathcal N}$ vertices is

$$A = \lambda^{\mathcal{N}} N^{-\mathcal{L} + \mathcal{N}} \sum \prod_{\text{lines}} \delta_{a_1 b_1} \delta_{a_2 b_2}$$

$$\sum \delta_{a_1b_1}\delta_{b_1c_1}\dots\delta_{w_1a_1}=\sum \delta_{a_1a_1}=N$$

$$A = \lambda^{\mathcal{N}} N^{\mathcal{N} - \mathcal{L} + \mathcal{F}} = \lambda^{\mathcal{N}} N^{2 - 2g(\mathcal{G})}$$

with $g_{\mathcal{G}}$ is the genus of the graph.

The Amplitude of a graph with ${\mathcal N}$ vertices is

$$A = \lambda^{\mathcal{N}} N^{-\mathcal{L} + \mathcal{N}} \sum \prod_{\text{lines}} \delta_{a_1 b_1} \delta_{a_2 b_2}$$

$$\sum \delta_{a_1b_1}\delta_{b_1c_1}\dots\delta_{w_1a_1} = \sum \delta_{a_1a_1} = N$$

$$A = \lambda^{\mathcal{N}} N^{\mathcal{N} - \mathcal{L} + \mathcal{F}} = \lambda^{\mathcal{N}} N^{2 - 2g(\mathcal{G})}$$

with g_G is the genus of the graph. 1/N expansion in the genus.

The Amplitude of a graph with ${\mathcal N}$ vertices is

$$\mathcal{A} = \lambda^{\mathcal{N}} \mathcal{N}^{-\mathcal{L} + \mathcal{N}} \sum \prod_{\mathsf{lines}} \delta_{\mathsf{a}_1 \mathsf{b}_1} \delta_{\mathsf{a}_2 \mathsf{b}_2}$$

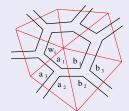
$$\sum \delta_{a_1b_1}\delta_{b_1c_1}\dots\delta_{w_1a_1} = \sum \delta_{a_1a_1} = N$$

$$A = \lambda^{\mathcal{N}} N^{\mathcal{N} - \mathcal{L} + \mathcal{F}} = \lambda^{\mathcal{N}} N^{2 - 2g(\mathcal{G})}$$

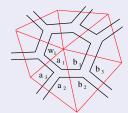
with $g_{\mathcal{G}}$ is the genus of the graph. 1/N expansion in the genus. Planar graphs $(g_{\mathcal{G}}=0)$ dominate in the large N limit.

Ribbon Graphs are Dual to Discrete Surfaces

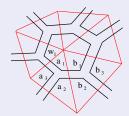
Ribbon Graphs are Dual to Discrete Surfaces



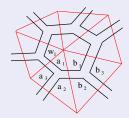
Place a point in the middle of each face.



Place a point in the middle of each face. Draw a line crossing each ribbon line.



Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles.



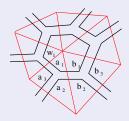
Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles.

A ribbon graph encodes unambiguously a gluing of triangles.

Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles.

A ribbon graph encodes unambiguously a gluing of triangles.

Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman rules).



Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles.

A ribbon graph encodes unambiguously a gluing of triangles.

Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman rules). The dominant planar graphs represent spheres.

surfaces ↔ ribbon graphs

surfaces ↔ ribbon graphs

D dimensional spaces \leftrightarrow colored stranded graphs

surfaces ↔ ribbon graphs

D dimensional spaces ↔ colored stranded graphs

Matrix M_{ab} , $S = N \left(M_{ab} \bar{M}_{ab} + \lambda M_{ab} M_{bc} M_{ca} \right)$

surfaces ↔ ribbon graphs

D dimensional spaces \leftrightarrow colored stranded graphs

Matrix
$$M_{ab}$$
, $S = N \Big(M_{ab} \bar{M}_{ab} + \lambda M_{ab} M_{bc} M_{ca} \Big)$

surfaces ↔ ribbon graphs

D dimensional spaces \leftrightarrow colored stranded graphs

$$\begin{aligned} & \mathsf{Matrix} \ \textit{M}_{ab}, \\ & \textit{S} = \textit{N} \Big(\textit{M}_{ab} \bar{\textit{M}}_{ab} + \lambda \textit{M}_{ab} \textit{M}_{bc} \textit{M}_{ca} \Big) \end{aligned}$$

$$S = N \Big(M_{ab} \bar{M}_{ab} + \lambda M_{ab} M_{bc} M_{ca} \Big)$$

$$g(\mathcal{G}) \geq 0$$
 genus

surfaces ↔ ribbon graphs

D dimensional spaces ↔ colored stranded graphs

Matrix
$$M_{ab}$$
, $S = N \Big(M_{ab} \bar{M}_{ab} + \lambda M_{ab} M_{bc} M_{ca} \Big)$

$$g(\mathcal{G}) \geq 0$$
 genus

Tensors
$$T^{i}_{a_{1}...a_{D}}$$
 with color i

$$S = N^{D/2} \left(T^{i}_{...} \overline{T}^{i}_{...} + \lambda T^{0}_{...} T^{1}_{...} \dots T^{D}_{...} \right)$$

$$\omega(\mathcal{G}) \geq 0$$
 degree

surfaces ↔ ribbon graphs

D dimensional spaces ↔ colored stranded graphs

$$\begin{split} & \mathsf{Matrix} \ M_{ab}, \\ & S = \mathit{N} \Big(\mathit{M}_{ab} \bar{\mathit{M}}_{ab} + \lambda \mathit{M}_{ab} \mathit{M}_{bc} \mathit{M}_{ca} \Big) \end{split}$$

$$g(\mathcal{G}) \geq 0$$
 genus

$$1/N$$
 expansion in the genus $A(G) = N^{2-2g(G)}$

Tensors $T^i_{a_1...a_D}$ with color i $S = N^{D/2} \left(T^i_{...} \overline{T}^i_{...} + \lambda T^0_{...} T^1_{...} \dots T^D_{...} \right)$

$$\omega(\mathcal{G}) \geq 0$$
 degree

surfaces ↔ ribbon graphs

D dimensional spaces ↔ colored stranded graphs

Matrix M_{ab} , $S = N \Big(M_{ab} \bar{M}_{ab} + \lambda M_{ab} M_{bc} M_{ca} \Big)$

$$g(\mathcal{G}) \geq 0$$
 genus

$$1/N$$
 expansion in the genus $A(G) = N^{2-2g(G)}$

Tensors
$$T^i_{a_1...a_D}$$
 with color i

$$S = N^{D/2} \left(T^i_{...} \overline{T}^i_{...} + \lambda T^0_{...} T^1_{...} \dots T^D_{...} \right)$$

$$\omega(\mathcal{G}) \geq 0$$
 degree

$$1/N$$
 expansion in the degree $A(\mathcal{G}) = N^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$

surfaces ↔ ribbon graphs

D dimensional spaces \leftrightarrow colored stranded graphs

Matrix M_{ab} , $S = N(M_{ab}M_{ab} + \lambda M_{ab}M_{ba})$

$$S = N \Big(M_{ab} \bar{M}_{ab} + \lambda M_{ab} M_{bc} M_{ca} \Big)$$

$$g(\mathcal{G}) \geq 0$$
 genus

$$1/N$$
 expansion in the genus $A(G) = N^{2-2g(G)}$

leading order:
$$g(\mathcal{G}) = 0$$
, spheres.

Tensors
$$T^i_{a_1...a_D}$$
 with color i

$$S = N^{D/2} \left(T^i_{...} \overline{T}^i_{...} + \lambda T^0_{...} T^1_{...} \dots T^D_{...} \right)$$

$$\omega(\mathcal{G}) \geq 0$$
 degree

1/N expansion in the degree $A(\mathcal{G}) = N^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$

surfaces ↔ ribbon graphs

D dimensional spaces ↔ colored stranded graphs

Matrix M_{ab} , $S = N(M_{ab}\bar{M}_{ab} + \lambda M_{ab}M_{bc}M_{ca})$

$$g(\mathcal{G}) \geq 0$$
 genus

1/N expansion in the genus $A(G) = N^{2-2g(G)}$

leading order:
$$g(G) = 0$$
, spheres.

Tensors
$$T^i_{a_1...a_D}$$
 with color i

$$S = N^{D/2} \left(T^i_{...} \overline{T}^i_{...} + \lambda T^0_{...} T^1_{...} \dots T^D_{...} \right)$$

$$\omega(\mathcal{G}) \geq 0$$
 degree

1/N expansion in the degree $A(\mathcal{G}) = N^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$

leading order: $\omega(\mathcal{G}) = 0$, spheres.

Introduction

Colored Tensor Models

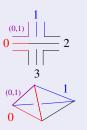
Colored Graphs

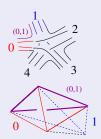
Jackets and the 1/N expansion Topology

Conclusion

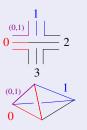
Clockwise and anticlockwise turning colored vertices (positive and negative oriented D simplices).

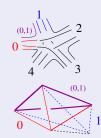
Clockwise and anticlockwise turning colored vertices (positive and negative oriented *D* simplices).





Clockwise and anticlockwise turning colored vertices (positive and negative oriented *D* simplices).

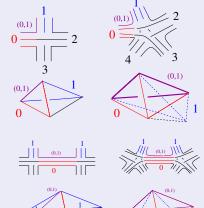




Lines have a well defined color and D parallel strands (D-1 simplices).

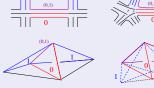
Clockwise and anticlockwise turning colored vertices (positive and negative oriented *D* simplices).

Lines have a well defined color and D parallel strands (D-1 simplices).



Clockwise and anticlockwise turning colored vertices (positive and negative oriented *D* simplices).

Lines have a well defined color and D parallel strands (D-1 simplices).



Strands are identified by a couple of colors (D-2 simplices).

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

$$S = N^{D/2} \Big(\sum_{i} \bar{T}^{i}_{a_{1} \dots a_{D}} T^{i}_{a_{1} \dots a_{D}} + \lambda \prod_{i} T^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} + \bar{\lambda} \prod_{i} \bar{T}^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} \Big)$$

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color i=0...D.

$$S = N^{D/2} \Big(\sum_{i} \bar{T}^{i}_{a_{1} \dots a_{D}} T^{i}_{a_{1} \dots a_{D}} + \lambda \prod_{i} T^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} + \bar{\lambda} \prod_{i} \bar{T}^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} \Big)$$

Topology of the Colored Graphs

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color i=0...D.

$$S = N^{D/2} \Big(\sum_i \bar{T}^i_{\mathsf{a}_1 \dots \mathsf{a}_D} \, T^i_{\mathsf{a}_1 \dots \mathsf{a}_D} + \lambda \prod_i T^i_{\mathsf{a}_{ii-1} \dots \mathsf{a}_{i0} \, \mathsf{a}_{iD} \dots \mathsf{a}_{ii+1}} + \bar{\lambda} \prod_i \bar{T}^i_{\mathsf{a}_{ii-1} \dots \mathsf{a}_{i0} \, \mathsf{a}_{iD} \dots \mathsf{a}_{ii+1}} \Big)$$

Topology of the Colored Graphs

Let $T^i_{a_1...a_D}, \ \bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

$$S = N^{D/2} \Big(\sum_{i} \bar{T}^{i}_{a_{1} \dots a_{D}} T^{i}_{a_{1} \dots a_{D}} + \lambda \prod_{i} T^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} + \bar{\lambda} \prod_{i} \bar{T}^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} \Big)$$

Topology of the Colored Graphs

Amplitude of the graphs:

• the $\mathcal{N}=2p$ vertices of a graph bring each $N^{D/2}$

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

$$S = N^{D/2} \Big(\sum_{i} \bar{T}^{i}_{a_{1} \dots a_{D}} T^{i}_{a_{1} \dots a_{D}} + \lambda \prod_{i} T^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} + \bar{\lambda} \prod_{i} \bar{T}^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} \Big)$$

Topology of the Colored Graphs

- ▶ the $\mathcal{N} = 2p$ vertices of a graph bring each $N^{D/2}$
 - ▶ the \mathcal{L} lines of a graphs bring each $N^{-D/2}$

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

$$S = N^{D/2} \Big(\sum_i \bar{T}^i_{\mathsf{a}_1 \dots \mathsf{a}_D} \, T^i_{\mathsf{a}_1 \dots \mathsf{a}_D} + \lambda \prod_i T^i_{\mathsf{a}_{ii-1} \dots \mathsf{a}_{i0} \, \mathsf{a}_{iD} \dots \mathsf{a}_{ii+1}} + \bar{\lambda} \prod_i \bar{T}^i_{\mathsf{a}_{ii-1} \dots \mathsf{a}_{i0} \, \mathsf{a}_{iD} \dots \mathsf{a}_{ii+1}} \Big)$$

Topology of the Colored Graphs

- ▶ the $\mathcal{N} = 2p$ vertices of a graph bring each $N^{D/2}$
- ▶ the \mathcal{L} lines of a graphs bring each $N^{-D/2}$
- \blacktriangleright the $\mathcal F$ faces of a graph bring each N

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

$$S = N^{D/2} \Big(\sum_i \bar{T}^i_{\mathsf{a}_1 \dots \mathsf{a}_D} \, T^i_{\mathsf{a}_1 \dots \mathsf{a}_D} + \lambda \prod_i T^i_{\mathsf{a}_{ii-1} \dots \mathsf{a}_{i0} \, \mathsf{a}_{iD} \dots \mathsf{a}_{ii+1}} + \bar{\lambda} \prod_i \bar{T}^i_{\mathsf{a}_{ii-1} \dots \mathsf{a}_{i0} \, \mathsf{a}_{iD} \dots \mathsf{a}_{ii+1}} \Big)$$

Topology of the Colored Graphs

- ▶ the $\mathcal{N} = 2p$ vertices of a graph bring each $N^{D/2}$
 - ▶ the \mathcal{L} lines of a graphs bring each $N^{-D/2}$
 - \blacktriangleright the \mathcal{F} faces of a graph bring each N

$$A^{\mathcal{G}} = (\lambda \bar{\lambda})^p N^{-\mathcal{L}\frac{D}{2} + \mathcal{N}\frac{D}{2} + \mathcal{F}}$$

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

$$S = \mathit{N}^{D/2} \Big(\sum_i \bar{\mathit{T}}^i_{\mathit{a}_1 \ldots \mathit{a}_D} \mathit{T}^i_{\mathit{a}_1 \ldots \mathit{a}_D} + \lambda \prod_i \mathit{T}^i_{\mathit{a}_{ii-1} \ldots \mathit{a}_{i0} \mathit{a}_{iD} \ldots \mathit{a}_{ii+1}} + \bar{\lambda} \prod_i \bar{\mathit{T}}^i_{\mathit{a}_{ii-1} \ldots \mathit{a}_{i0} \mathit{a}_{iD} \ldots \mathit{a}_{ii+1}} \Big)$$

Topology of the Colored Graphs

- ▶ the $\mathcal{N} = 2p$ vertices of a graph bring each $N^{D/2}$
 - ▶ the \mathcal{L} lines of a graphs bring each $N^{-D/2}$
 - \blacktriangleright the \mathcal{F} faces of a graph bring each N

$$A^{\mathcal{G}} = (\lambda \bar{\lambda})^p N^{-\mathcal{L}\frac{D}{2} + \mathcal{N}\frac{D}{2} + \mathcal{F}}$$

But
$$\mathcal{N}(D+1)=2\mathcal{L}\Rightarrow\mathcal{L}=(D+1)p$$

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

$$S = N^{D/2} \Big(\sum_i \bar{T}^i_{\mathsf{a}_1 \dots \mathsf{a}_D} \, T^i_{\mathsf{a}_1 \dots \mathsf{a}_D} + \lambda \prod_i T^i_{\mathsf{a}_{ii-1} \dots \mathsf{a}_{i0} \, \mathsf{a}_{iD} \dots \mathsf{a}_{ii+1}} + \bar{\lambda} \prod_i \bar{T}^i_{\mathsf{a}_{ii-1} \dots \mathsf{a}_{i0} \, \mathsf{a}_{iD} \dots \mathsf{a}_{ii+1}} \Big)$$

Topology of the Colored Graphs

- ▶ the $\mathcal{N} = 2p$ vertices of a graph bring each $N^{D/2}$
 - ▶ the \mathcal{L} lines of a graphs bring each $N^{-D/2}$
 - \blacktriangleright the \mathcal{F} faces of a graph bring each N

$$A^{\mathcal{G}} = (\lambda \bar{\lambda})^p N^{-\mathcal{L}\frac{D}{2} + \mathcal{N}\frac{D}{2} + \mathcal{F}} = (\lambda \bar{\lambda})^p N^{-p\frac{D(D-1)}{2} + \mathcal{F}}$$

But
$$\mathcal{N}(D+1)=2\mathcal{L}\Rightarrow\mathcal{L}=(D+1)p$$

Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$.

$$S = N^{D/2} \Big(\sum_{i} \bar{T}^{i}_{a_{1} \dots a_{D}} T^{i}_{a_{1} \dots a_{D}} + \lambda \prod_{i} T^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} + \bar{\lambda} \prod_{i} \bar{T}^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} \Big)$$

Topology of the Colored Graphs

- the $\mathcal{N}=2p$ vertices of a graph bring each $N^{D/2}$
- ▶ the \mathcal{L} lines of a graphs bring each $N^{-D/2}$
- \blacktriangleright the \mathcal{F} faces of a graph bring each N

$$A^{\mathcal{G}} = (\lambda \bar{\lambda})^p N^{-\mathcal{L}\frac{D}{2} + \mathcal{N}\frac{D}{2} + \mathcal{F}} = (\lambda \bar{\lambda})^p N^{-p\frac{D(D-1)}{2} + \mathcal{F}}$$

But
$$\mathcal{N}(D+1)=2\mathcal{L}\Rightarrow\mathcal{L}=(D+1)p$$

Introduction

Colored Tensor Models

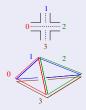
Jackets and the 1/N expansion
Topology

Conclusion

Define simpler graphs.

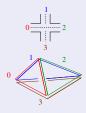
Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

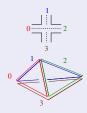


Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

02 and 13: opposing edges of the tetrahedron.



Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.



02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent.

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

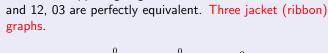
02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

0 2



02 and 13: opposing edges of the tetrahedron. But 01, 23

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

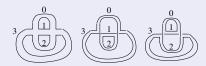
02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.

0, 1, 2, . . .

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

0 2

02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.



$$0 \xrightarrow{\pi(0)} \pi^2(0)$$

0, 1, 2, ...

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

0 _____2

02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.

$$0 \xrightarrow{\pi(0)} \pi^2(0)$$

$$0, \pi(0), \pi^2(0), \dots$$

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

0 _____2

02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.



$$0 \xrightarrow{\pi(0)} \pi^2(0)$$

 $\frac{1}{2}D!$ jackets.

$$0, \pi(0), \pi^2(0), \dots$$

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.

 $\frac{1}{2}D!$ jackets. Contain all the vertices and all the lines of \mathcal{G} .

$$0, 1, 2, \dots$$

$$0, \pi(0), \pi^2(0), \dots$$

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.

$$0 \xrightarrow{\pi(0)} \pi^2(0)$$

 $\frac{1}{2}D!$ jackets. Contain all the vertices and all the lines of \mathcal{G} . A face belongs to (D-1)! jackets.

$$0, \pi(0), \pi^2(0), \dots$$

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs.

$$0 \xrightarrow{\pi(0)} \pi^2(0)$$

$$0, 1, 2, \dots$$

$$0, \pi(0), \pi^2(0), \dots$$

 $\frac{1}{2}D!$ jackets. Contain all the vertices and all the lines of \mathcal{G} . A face belongs to (D-1)! jackets.

The degree of \mathcal{G} is $\omega(\mathcal{G}) = \sum_{\mathcal{J}} g_{\mathcal{J}}$.

Theorem

 \mathcal{F} and $\omega(\mathcal{G})$ are related by

$$\mathcal{F} = \frac{1}{2}D(D-1)p + D - \frac{2}{(D-1)!}\omega(\mathcal{G})$$

Theorem

 \mathcal{F} and $\omega(\mathcal{G})$ are related by

$$\mathcal{F} = \frac{1}{2}D(D-1)p + D - \frac{2}{(D-1)!}\omega(\mathcal{G})$$

Proof:
$$\mathcal{N} = 2p$$
, $\mathcal{L} = (D+1)p$

Theorem

 \mathcal{F} and $\omega(\mathcal{G})$ are related by

$$\mathcal{F} = \frac{1}{2}D(D-1)p + D - \frac{2}{(D-1)!}\omega(\mathcal{G})$$

Proof: $\mathcal{N}=2p$, $\mathcal{L}=(D+1)p$ For each jacket \mathcal{J} , $2p-(D+1)p+\mathcal{F}_{\mathcal{J}}=2-2g_{\mathcal{J}}$.

Theorem

 \mathcal{F} and $\omega(\mathcal{G})$ are related by

$$\mathcal{F} = \frac{1}{2}D(D-1)p + D - \frac{2}{(D-1)!}\omega(\mathcal{G})$$

Proof: $\mathcal{N} = 2p$, $\mathcal{L} = (D+1)p$

For each jacket \mathcal{J} , $2p - (D+1)p + \mathcal{F}_{\mathcal{J}} = 2 - 2g_{\mathcal{J}}$.

Sum over the jackets: $(D-1)!\mathcal{F} = \sum_{\mathcal{J}} \mathcal{F}_{\mathcal{J}} = \frac{1}{2}D!(D-1)p + D! - 2\sum_{\mathcal{J}} g_{\mathcal{J}}$

Theorem

 \mathcal{F} and $\omega(\mathcal{G})$ are related by

$$\mathcal{F} = \frac{1}{2}D(D-1)p + D - \frac{2}{(D-1)!}\omega(\mathcal{G})$$

Proof: $\mathcal{N} = 2p$, $\mathcal{L} = (D+1)p$

For each jacket \mathcal{J} , $2p - (D+1)p + \mathcal{F}_{\mathcal{J}} = 2 - 2g_{\mathcal{J}}$.

Sum over the jackets:
$$(D-1)!\mathcal{F}=\sum_{\mathcal{J}}\mathcal{F}_{\mathcal{J}}=\frac{1}{2}D!(D-1)p+D!-2\sum_{\mathcal{J}}g_{\mathcal{J}}$$

The amplitude of a graph is given by its degree

$$A^{\mathcal{G}} = (\lambda \bar{\lambda})^p N^{-p\frac{D(D-1)}{2} + \mathcal{F}} = (\lambda \bar{\lambda})^p N^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$$

Introduction

Colored Tensor Models

Colored Graphs

Jackets and the 1/N expansion

Topology

Leading order graphs are spheres

Conclusion

THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices.

THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

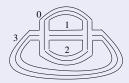
We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index.

THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors

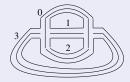
THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors



THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

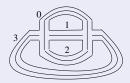
We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors



represented as

THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

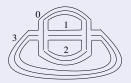
We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors



represented as

THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors

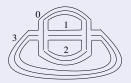


represented as

Conversely: expand the vertices into stranded vertices and the lines into stranded lines with parallel strands

THEOREM: [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors



represented as

Conversely: expand the vertices into stranded vertices and the lines into stranded lines with parallel strands

Topology 2: Bubbles

Topology 2: Bubbles

The vertices of \mathcal{G} are subgraphs with 0 colors.

The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color.

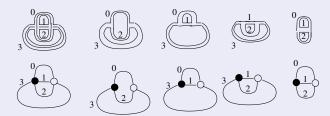
The vertices of $\mathcal G$ are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors.

The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors.

The *n*-bubbles are the maximally connected subgraphs with n fixed colors (denoted $\mathcal{B}_{(\sigma)}^{i_1...i_n}$, with $i_1 < \cdots < i_n$ the colors).

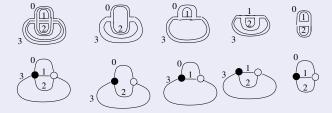
The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors.

The *n*-bubbles are the maximally connected subgraphs with n fixed colors (denoted $\mathcal{B}_{(\sigma)}^{i_1...i_n}$, with $i_1 < \cdots < i_n$ the colors).

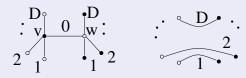


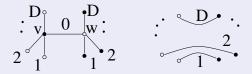
The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors.

The *n*-bubbles are the maximally connected subgraphs with n fixed colors (denoted $\mathcal{B}_{(\sigma)}^{i_1...i_n}$, with $i_1 < \cdots < i_n$ the colors).

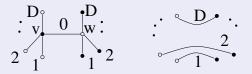


A colored graph $\mathcal G$ is dual to an orientable, normal, D dimensional, simplicial pseudo manifold. Its n-bubbles are dual to the links of the D-n simplices of the pseudo manifold.



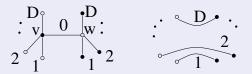


A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1...D}$ and $w \in \mathcal{B}_{(\beta)}^{1...D}$ with $\mathcal{B}_{(\alpha)}^{1...D} \neq \mathcal{B}_{(\beta)}^{1...D}$.



A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1...D}$ and $w \in \mathcal{B}_{(\beta)}^{1...D}$ with $\mathcal{B}_{(\alpha)}^{1...D} \neq \mathcal{B}_{(\beta)}^{1...D}$.

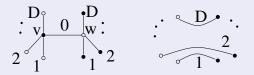
A 1-Dipole can be contracted, that is the lines together with the vertices v and w can be deleted from $\mathcal G$ and the remaining lines reconnected respecting the coloring. Call the graph after contraction $\mathcal G/d$.



A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1...D}$ and $w \in \mathcal{B}_{(\beta)}^{1...D}$ with $\mathcal{B}_{(\alpha)}^{1...D} \neq \mathcal{B}_{(\beta)}^{1...D}$.

A 1-Dipole can be contracted, that is the lines together with the vertices v and w can be deleted from \mathcal{G} and the remaining lines reconnected respecting the coloring. Call the graph after contraction \mathcal{G}/d .

THEOREM: [M. Ferri and C. Gagliardi, '82] If either $\mathcal{B}_{(\alpha)}^{1...D}$ or $\mathcal{B}_{(\beta)}^{1...D}$ is dual to a sphere, then the two pseudo manifolds dual to \mathcal{G} and \mathcal{G}/d are homeomorphic.



A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1...D}$ and $w \in \mathcal{B}_{(\beta)}^{1...D}$ with $\mathcal{B}_{(\alpha)}^{1...D} \neq \mathcal{B}_{(\beta)}^{1...D}$.

A 1-Dipole can be contracted, that is the lines together with the vertices v and w can be deleted from \mathcal{G} and the remaining lines reconnected respecting the coloring. Call the graph after contraction \mathcal{G}/d .

THEOREM: [M. Ferri and C. Gagliardi, '82] If either $\mathcal{B}_{(\alpha)}^{1...D}$ or $\mathcal{B}_{(\beta)}^{1...D}$ is dual to a sphere, then the two pseudo manifolds dual to \mathcal{G} and \mathcal{G}/d are homeomorphic.

It is in principle very difficult to check if a bubble is a sphere or not.

Introduction

Colored Tensor Models

Colored Graphs Jackets and the 1/N expansion Topology

Leading order graphs are spheres

Conclusion

The *D*-bubbles $\mathcal{B}^{\widehat{i}}_{(\rho)}$ of \mathcal{G} are graphs with D colors, thus they admit jackets and have a degree.

The D-bubbles $\mathcal{B}_{(\rho)}^{\widehat{i}}$ of \mathcal{G} are graphs with D colors, thus they admit jackets and have a degree. The degrees of \mathcal{G} and of its bubbles are not independent.

The D-bubbles $\mathcal{B}^{\widehat{i}}_{(\rho)}$ of \mathcal{G} are graphs with D colors, thus they admit jackets and have a degree. The degrees of \mathcal{G} and of its bubbles are not independent.

Theorem

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \left(p + D - \mathcal{B}^{[D]} \right) + \sum_{i,\rho} \omega(\hat{\mathcal{B}}_{(\rho)}^{\hat{i}})$$

The D-bubbles $\mathcal{B}_{(\rho)}^{\widehat{i}}$ of \mathcal{G} are graphs with D colors, thus they admit jackets and have a degree. The degrees of \mathcal{G} and of its bubbles are not independent.

Theorem

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \left(p + D - \mathcal{B}^{[D]} \right) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$

Theorem

The degree of the graph is invariant under 1-Dipole moves, $\omega(\mathcal{G}) = \omega(\mathcal{G}/d)$

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \left(p + D - \mathcal{B}^{[D]} \right) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\widehat{i}})$$

In a graph \mathcal{G} with 2p vertices and $\mathcal{B}^{[D]}$ D-bubbles I contract a full set of 1-Dipoles and bring it to \mathcal{G}_f with $2p_f$ vertices and exactly one D-bubble for each colors \hat{i} .

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\widehat{i}})$$

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$

$$p-p_f=\mathcal{B}^{[D]}-\mathcal{B}_f^{[D]}$$

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$

$$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\hat{\mathcal{B}_{(\rho)}^i})$$

$$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$

Thus
$$\omega(\mathcal{G}) = 0 \Rightarrow \omega(\mathcal{B}_{(\rho)}^{\hat{i}}) = 0.$$

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$

In a graph $\mathcal G$ with 2p vertices and $\mathcal B^{[D]}$ D-bubbles I contract a full set of 1-Dipoles and bring it to $\mathcal G_f$ with $2p_f$ vertices and exactly one D-bubble for each colors \widehat{i} . Every contraction: $p \to p-1$, $\mathcal B^{[D]} \to \mathcal B^{[D]} - 1$

$$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$

Thus
$$\omega(\mathcal{G}) = 0 \Rightarrow \omega(\mathcal{B}_{(\rho)}^{\widehat{i}}) = 0$$
.

Theorem

If $\omega(\mathcal{G}) = 0$ then \mathcal{G} is dual to a D-dimensional sphere.

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\widehat{i}})$$

In a graph $\mathcal G$ with 2p vertices and $\mathcal B^{[D]}$ D-bubbles I contract a full set of 1-Dipoles and bring it to $\mathcal G_f$ with $2p_f$ vertices and exactly one D-bubble for each colors \widehat{i} . Every contraction: $p \to p-1$, $\mathcal B^{[D]} \to \mathcal B^{[D]} - 1$

$$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$

Thus
$$\omega(\mathcal{G}) = 0 \Rightarrow \omega(\mathcal{B}_{(\rho)}^{\widehat{i}}) = 0$$
.

Theorem

If $\omega(\mathcal{G}) = 0$ then \mathcal{G} is dual to a D-dimensional sphere.

Proof: Induction on D.

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\widehat{i}})$$

In a graph $\mathcal G$ with 2p vertices and $\mathcal B^{[D]}$ D-bubbles I contract a full set of 1-Dipoles and bring it to $\mathcal G_f$ with $2p_f$ vertices and exactly one D-bubble for each colors \widehat{i} . Every contraction: $p \to p-1$, $\mathcal B^{[D]} \to \mathcal B^{[D]} -1$

$$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$

Thus
$$\omega(\mathcal{G}) = 0 \Rightarrow \omega(\mathcal{B}_{(\rho)}^{\widehat{i}}) = 0.$$

Theorem

If $\omega(\mathcal{G}) = 0$ then \mathcal{G} is dual to a D-dimensional sphere.

Proof: Induction on D. D=2: the colored graphs are ribbon graphs and the degree is the genus.

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$

In a graph $\mathcal G$ with 2p vertices and $\mathcal B^{[D]}$ D-bubbles I contract a full set of 1-Dipoles and bring it to $\mathcal G_f$ with $2p_f$ vertices and exactly one D-bubble for each colors \widehat{i} . Every contraction: $p \to p-1$, $\mathcal B^{[D]} \to \mathcal B^{[D]} - 1$

$$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$

Thus
$$\omega(\mathcal{G}) = 0 \Rightarrow \omega(\mathcal{B}_{(\rho)}^{\widehat{i}}) = 0.$$

Theorem

If $\omega(\mathcal{G}) = 0$ then \mathcal{G} is dual to a D-dimensional sphere.

Proof: Induction on D. D=2: the colored graphs are ribbon graphs and the degree is the genus. In D>2, $\omega(\mathcal{G})=0\Rightarrow\omega(\mathcal{B}_{(\rho)}^{\widehat{i}})=0$ and all $\omega(\mathcal{B}_{(\rho)}^{\widehat{i}})$ are a spheres by the induction hypothesis.

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\widehat{i}})$$

In a graph $\mathcal G$ with 2p vertices and $\mathcal B^{[D]}$ D-bubbles I contract a full set of 1-Dipoles and bring it to $\mathcal G_f$ with $2p_f$ vertices and exactly one D-bubble for each colors \widehat{i} . Every contraction: $p \to p-1$, $\mathcal B^{[D]} \to \mathcal B^{[D]} - 1$

$$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$

Thus
$$\omega(\mathcal{G}) = 0 \Rightarrow \omega(\mathcal{B}_{(\rho)}^{\widehat{i}}) = 0.$$

Theorem

If $\omega(\mathcal{G}) = 0$ then \mathcal{G} is dual to a D-dimensional sphere.

Proof: Induction on D. D=2: the colored graphs are ribbon graphs and the degree is the genus. In D>2, $\omega(\mathcal{G})=0\Rightarrow\omega(\mathcal{B}_{(\rho)}^{\hat{i}})=0$ and all $\omega(\mathcal{B}_{(\rho)}^{\hat{i}})$ are a spheres by the induction hypothesis. 1-Dipole contractions do not change the degree and are homeomorphisms. \mathcal{G}_f is homeomorphic with \mathcal{G} and has $p_f=1$.

$$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$

In a graph $\mathcal G$ with 2p vertices and $\mathcal B^{[D]}$ D-bubbles I contract a full set of 1-Dipoles and bring it to $\mathcal G_f$ with $2p_f$ vertices and exactly one D-bubble for each colors \widehat{i} . Every contraction: $p \to p-1$, $\mathcal B^{[D]} \to \mathcal B^{[D]} - 1$

$$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$

Thus
$$\omega(\mathcal{G}) = 0 \Rightarrow \omega(\mathcal{B}_{(\rho)}^{\widehat{i}}) = 0$$
.

Theorem

If $\omega(\mathcal{G}) = 0$ then \mathcal{G} is dual to a D-dimensional sphere.

Proof: Induction on D. D=2: the colored graphs are ribbon graphs and the degree is the genus. In D>2, $\omega(\mathcal{G})=0\Rightarrow\omega(\mathcal{B}_{(\rho)}^{\widehat{i}})=0$ and all $\omega(\mathcal{B}_{(\rho)}^{\widehat{i}})$ are a spheres by the induction hypothesis. 1-Dipole contractions do not change the degree and are homeomorphisms. \mathcal{G}_f is homeomorphic with \mathcal{G} and has $p_f=1$. The only graph with $p_f=1$ is a sphere.

Tensors $T^{i}_{a_{1}...a_{D}}$ with color i

$$S = N^{D/2} \left(T^{i}_{\cdots} \bar{T}^{i}_{\cdots} + \lambda T^{0}_{\cdots} T^{1}_{\cdots} \dots T^{D}_{\cdots} + \bar{\lambda} \bar{T}^{0}_{\cdots} \bar{T}^{1}_{\cdots} \dots \bar{T}^{D}_{\cdots} \right)$$

Tensors $T^{i}_{a_{1}...a_{D}}$ with color i

$$S = N^{D/2} \left(T_{...}^{i} \bar{T}_{...}^{i} + \lambda T_{...}^{0} T_{...}^{1} \dots T_{...}^{D} + \bar{\lambda} \bar{T}_{...}^{0} \bar{T}_{...}^{1} \dots \bar{T}_{...}^{D} \right)$$

$$\omega(\mathcal{G}) = \sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$$
 degree

Tensors $T^{i}_{a_{1}...a_{D}}$ with color i

$$S = N^{D/2} \left(T_{...}^{i} \bar{T}_{...}^{i} + \lambda T_{...}^{0} T_{...}^{1} \dots T_{...}^{D} + \bar{\lambda} \bar{T}_{...}^{0} \bar{T}_{...}^{1} \dots \bar{T}_{...}^{D} \right)$$

$$\omega(\mathcal{G}) = \sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$$
 degree

$$1/N$$
 expansion in the degree $A(\mathcal{G}) = N^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$

Tensors $T^{i}_{a_{1}...a_{D}}$ with color i

$$S = N^{D/2} \left(T_{...}^{i} \bar{T}_{...}^{i} + \lambda T_{...}^{0} T_{...}^{1} \dots T_{...}^{D} + \bar{\lambda} \bar{T}_{...}^{0} \bar{T}_{...}^{1} \dots \bar{T}_{...}^{D} \right)$$

$$\omega(\mathcal{G}) = \sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$$
 degree

$$1/N$$
 expansion in the degree $A(\mathcal{G}) = N^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$

colored stranded graphs $\leftrightarrow D$ dimensional pseudo manifolds

Tensors $T^{i}_{a_{1}...a_{D}}$ with color i

$$S = N^{D/2} \left(T_{...}^{i} \bar{T}_{...}^{i} + \lambda T_{...}^{0} T_{...}^{1} \dots T_{...}^{D} + \bar{\lambda} \bar{T}_{...}^{0} \bar{T}_{...}^{1} \dots \bar{T}_{...}^{D} \right)$$

$$\omega(\mathcal{G}) = \sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$$
 degree

$$1/N$$
 expansion in the degree $A(G) = N^{D - \frac{2}{(D-1)!}\omega(G)}$

colored stranded graphs $\leftrightarrow D$ dimensional pseudo manifolds

leading order: $\omega(\mathcal{G}) = 0$ are spheres

▶ Is the dominant sector summable?

- Is the dominant sector summable?
- ▶ Does it lead to a phase transition and a continuum theory?

Conclusion

- Is the dominant sector summable?
- ▶ Does it lead to a phase transition and a continuum theory?
- ▶ What are the critical exponents?

- ▶ Is the dominant sector summable?
- ▶ Does it lead to a phase transition and a continuum theory?
- What are the critical exponents?
- Multi critical points?

- ▶ Is the dominant sector summable?
- ▶ Does it lead to a phase transition and a continuum theory?
- What are the critical exponents?
- Multi critical points?
- More complex models, driven to the phase transition by renormalization group flow.

- ▶ Is the dominant sector summable?
- Does it lead to a phase transition and a continuum theory?
- What are the critical exponents?
- Multi critical points?
- More complex models, driven to the phase transition by renormalization group flow.
- ▶ Generalize the results obtained using matrix models in higher dimensions.

