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Răzvan Gurău
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Matrix Models

A success story: Matrix Models in two dimensions

I An ab initio combinatorial statistical theory.

I Have built in scales N.

I Generate ribbon graphs ↔ discretized surfaces.

I They undergo a phase transition (“condensation”) to a continuum theory of
large surfaces.

Physics: critical phenomena, conformal field theory, the theory of strong
interactions, string theory, quantum gravity in D = 2, etc.
Mathematics: knot theory, number theory and the Riemann hypothesis, invariants
of algebraic curves, enumeration problems, etc.

All these applications rely crucially on the “1/N” expansion!

3



The 1/N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 Răzvan Gurău,
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Ribbon Graphs as Feynman Graphs

Consider the partition function.
The vertex is a ribbon vertex because the field φ has two arguments. The lines
conserve the two arguments (thus having two strands). The strands close into
faces.
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Z (Q) is a sum over ribbon Feynman graphs.
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Amplitude of Ribbon Graphs

The Amplitude of a graph with N vertices is

A = λNN−L+N
∑∏

lines

δa1b1δa2b2

A = λNNN−L+F = λNN2−2g(G)

with gG is the genus of the graph. 1/N expansion in the genus. Planar graphs
(gG = 0) dominate in the large N limit.
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Ribbon Graphs are Dual to Discrete Surfaces

3

2 2

3

1
1

1

a

a

a b

b
b

w

Place a point in the middle of each face. Draw
a line crossing each ribbon line. The ribbon
vertices correspond to triangles.

A ribbon graph encodes unambiguously a gluing of triangles.

Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman
rules). The dominant planar graphs represent spheres.
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D dimensional spaces ↔ colored
stranded graphs
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S = N
(
MabM̄ab + λMabMbcMca

) Tensors T i
a1...aD with color i

S = ND/2
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g(G) ≥ 0 genus ω(G) ≥ 0 degree

1/N expansion in the genus
A(G) = N2−2g(G)

1/N expansion in the degree

A(G) = ND− 2
(D−1)!ω(G)

leading order: g(G) = 0, spheres. leading order: ω(G) = 0, spheres.
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Introduction Colored Tensor Models Conclusion

From Matrix to COLORED Tensor Models

surfaces ↔ ribbon graphs

D dimensional spaces ↔ colored
stranded graphs

Matrix Mab,

S = N
(
MabM̄ab + λMabMbcMca

) Tensors T i
a1...aD with color i

S = ND/2
(
T i
...T̄

i
... + λT 0

...T
1
... . . .T

D
...

)
g(G) ≥ 0 genus ω(G) ≥ 0 degree

1/N expansion in the genus
A(G) = N2−2g(G)

1/N expansion in the degree

A(G) = ND− 2
(D−1)!ω(G)

leading order: g(G) = 0, spheres. leading order: ω(G) = 0, spheres.

7



The 1/N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 Răzvan Gurău,
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Action

Let T i
a1...aD , T̄ i

a1...aD tensor fields with color i = 0 . . .D .

S = ND/2
(∑

i

T̄ i
a1...aDT

i
a1...aD + λ

∏
i

T i
aii−1...ai0aiD ...aii+1

+ λ̄
∏
i

T̄ i
aii−1...ai0aiD ...aii+1

)

Topology of the Colored Graphs

Amplitude of the graphs:

I the N = 2p vertices of a graph bring each ND/2

I the L lines of a graphs bring each N−D/2

I the F faces of a graph bring each N

AG = (λλ̄)p N−L
D
2 +N

D
2 +F

= (λλ̄)p N−p
D(D−1)

2 +F

But N (D + 1) = 2L ⇒ L = (D + 1)p

Compute F !
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Jackets 1

Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

0
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2

3

1

3

02 and 13: opposing edges of the tetrahedron. But 01, 23
and 12, 03 are perfectly equivalent. Three jacket (ribbon)
graphs.
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0, 1, 2, . . .

0

π(0)

π (0)2

0, π(0), π2(0), . . .

1
2D! jackets. Contain all the vertices and
all the lines of G. A face belongs to
(D − 1)! jackets.

The degree of G is ω(G) =
∑
J gJ .
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Introduction Colored Tensor Models Conclusion

Jackets 1
Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

0

1

0

2

2

3

1

3

02 and 13: opposing edges of the tetrahedron. But 01, 23
and 12, 03 are perfectly equivalent. Three jacket (ribbon)
graphs.

0

1

2

0

1

2

33

0

1

2

3

0

1

2

0, 1, 2, . . .

0

π(0)

π (0)2

0, π(0), π2(0), . . .

1
2D! jackets. Contain all the vertices and
all the lines of G. A face belongs to
(D − 1)! jackets.

The degree of G is ω(G) =
∑
J gJ .

12



The 1/N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 Răzvan Gurău,
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Introduction Colored Tensor Models Conclusion

Jackets 1
Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph.

0

1

0

2

2

3

1

3

02 and 13: opposing edges of the tetrahedron. But 01, 23
and 12, 03 are perfectly equivalent. Three jacket (ribbon)
graphs.

0

1

2

0

1

2

33

0

1

2

3

0

1

2

0, 1, 2, . . .

0

π(0)

π (0)2

0, π(0), π2(0), . . .

1
2D! jackets.

Contain all the vertices and
all the lines of G. A face belongs to
(D − 1)! jackets.

The degree of G is ω(G) =
∑
J gJ .

12



The 1/N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 Răzvan Gurău,
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Jackets 2: Jackets and Amplitude

Theorem
F and ω(G) are related by

F =
1

2
D(D − 1)p + D − 2

(D − 1)!
ω(G)

Proof: N = 2p, L = (D + 1)p
For each jacket J , 2p − (D + 1)p + FJ = 2− 2gJ .
Sum over the jackets: (D − 1)!F =

∑
J FJ = 1

2D!(D − 1)p + D!− 2
∑
J gJ

The amplitude of a graph is given by its degree

AG = (λλ̄)p N−p
D(D−1)

2 +F = (λλ̄)p ND− 2
(D−1)!ω(G)
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Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, ’82] Any D-dimensional piecewise linear
orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing
vertices and have a color index. All the information is encoded in the colors

0

1

2

3 represented as 3

0

2

1

Conversely: expand the vertices into stranded vertices and the lines into stranded
lines with parallel strands
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Topology 2: Bubbles

The vertices of G are subgraphs with 0 colors. The lines are subgraphs with exactly
1 color. The faces are subgraphs with exactly 2 colors.

The n-bubbles are the maximally connected subgraphs with n fixed colors (denoted
Bi1...in(σ) , with i1 < · · · < in the colors).
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A colored graph G is dual to an orientable, normal, D dimensional, simplicial
pseudo manifold. Its n-bubbles are dual to the links of the D − n simplices of the
pseudo manifold.
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Introduction Colored Tensor Models Conclusion

Topology 2: Bubbles

The vertices of G are subgraphs with 0 colors. The lines are subgraphs with exactly
1 color. The faces are subgraphs with exactly 2 colors.

The n-bubbles are the maximally connected subgraphs with n fixed colors (denoted
Bi1...in(σ) , with i1 < · · · < in the colors).

1

0

1

2

3

0 0
0

1
1

1

2
2

2

3 3 3

2

1
3

0 0

2
3

3

0
1

2

3

0

1

2

A colored graph G is dual to an orientable, normal, D dimensional, simplicial
pseudo manifold. Its n-bubbles are dual to the links of the D − n simplices of the
pseudo manifold.

16



The 1/N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 Răzvan Gurău,
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Topology 3: Homeomorphisms and 1-Dipoles

DD D

v w

1

2

1
2

1
2

0

A 1-dipole: a line (say of color 0) connecting two vertices v ∈ B1...D(α) and

w ∈ B1...D(β) with B1...D(α) 6= B
1...D
(β) .

A 1-Dipole can be contracted, that is the lines together with the vertices v and w
can be deleted from G and the remaining lines reconnected respecting the coloring.
Call the graph after contraction G/d .

THEOREM: [M. Ferri and C. Gagliardi, ’82] If either B1...D(α) or B1...D(β) is dual to a

sphere, then the two pseudo manifolds dual to G and G/d are homeomorphic.

It is in principle very difficult to check if a bubble is a sphere or not.
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Jackets, Bubbles, 1-Dipoles

The D-bubbles B î(ρ) of G are graphs with D colors, thus they admit jackets and
have a degree. The degrees of G and of its bubbles are not independent.

Theorem
ω(G) = (D−1)!

2

(
p + D − B[D]

)
+
∑

i,ρ ω(B î(ρ))

Theorem
The degree of the graph is invariant under 1-Dipole moves, ω(G) = ω(G/d)
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Theorem
The degree of the graph is invariant under 1-Dipole moves, ω(G) = ω(G/d)

19



The 1/N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 Răzvan Gurău,
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Degree 0 Graphs are Spheres

ω(G) = (D−1)!
2

(
p + D − B[D]

)
+
∑

i,ρ ω(B î(ρ))

In a graph G with 2p vertices and B[D] D-bubbles I contract a full set of 1-Dipoles
and bring it to Gf with 2pf vertices and exactly one D-bubble for each colors î .
Every contraction: p → p − 1, B[D] → B[D] − 1

p − pf = B[D] − B[D]
f

= B[D] − (D + 1)⇒ p + D − B[D] = pf − 1 ≥ 0

Thus ω(G) = 0⇒ ω(B î(ρ)) = 0.

Theorem
If ω(G) = 0 then G is dual to a D-dimensional sphere.

Proof: Induction on D. D = 2: the colored graphs are ribbon graphs and the

degree is the genus. In D > 2, ω(G) = 0⇒ ω(B î(ρ)) = 0 and all ω(B î(ρ)) are a
spheres by the induction hypothesis. 1-Dipole contractions do not change the
degree and are homeomorphisms. Gf is homeomorphic with G and has pf = 1.
The only graph with pf = 1 is a sphere.
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From Matrix to COLORED Tensor Models

Tensors T i
a1...aD with color i

S = ND/2
(
T i
...T̄

i
... + λT 0

...T
1
... . . .T

D
... + λ̄T̄ 0

...T̄
1
... . . . T̄

D
...

)
ω(G) =

∑
J gJ ≥ 0 degree

1/N expansion in the degree A(G) = ND− 2
(D−1)!ω(G)

colored stranded graphs ↔ D dimensional pseudo manifolds

leading order: ω(G) = 0 are spheres
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Conclusion: A To Do List

I Is the dominant sector summable?

I Does it lead to a phase transition and a continuum theory?

I What are the critical exponents?

I Multi critical points?

I More complex models, driven to the phase transition by renormalization group
flow.

I Generalize the results obtained using matrix models in higher dimensions.
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