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Plan

© Ladder of polylogarithmic map Li,

@ Noncommutative series

@ A small tribute to MPS

@ Multiplicity automata and Sweedler’s duals
© Conc-bialgebras

@ Further extensions of Lie

@ Some concluding remarks
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Aim of the talk

The main objective of this talk is to introduce concepts, objects and
results concerning the following ladder

(C(X), w, 1) ——2* & C{Liy}wex-

l o 1

(CX), s, 1x ) (—0)*, 4] ——=— Co{Liw}wex-

[ . 1

C(X) w C=* {(x)) w C**((x1)) ——=— Cc{Liw }wex-

C(X) &c C**((x0)) ®c C™* ()

Also, general tools for exploring enlarged indexation (and identities) are provided.
In passing, we will introduce tools about rational series and rational expressions.
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Li, : C(X) —— C{Liy}wex-

Polylogarithms

e With (s1,...s,) € C" (and |z| < 1)

n

Li(sy,...s) = PR
m>m>..n>0 1 T

They are a priori coded by lists (si,...s,) but, when s; € N, admit an
iterated integral representation and are better coded by words with letters in
X = {x0,x1}. We will use the one-to-one correspondence (see CAP 17).

s1—1 s,—1

(s1,-.-,5) ENL & x5 x1 ... x5 x1 € X*xq (1)

e Li(s)[z] is Jonquiere and, for (s) > 1, one has Li(s)[1] = {(s)

o Completed by Li(x{) = log lg"(2) this provides a family of independant

functions admitting an analytlc continuation on the cleft plane
C\ (] = 00,0]U[1,+0o0[) or C\ {0,1}.
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Li From Noncommutative Diff Eq (CAP 17)

The generating series S = ) . Li(w) satisfies (and is unique to do so)

(2)
im . —xolog(z) _
I|mz€£ S(Z)e 1H(Q)(<X)>
with X = {xo, x1}. This is, up to the sign of xi, the solution Gy of
Drinfel'd [1] for KZ3. We define this unique solution as Li. All Li,, are C-
and even C(z)-linearly independant (see CAP 17 Linear independance
without monodromy).

1. V. Drinfel'd, On quasitriangular quasi-hopf algebra and a group closely
connected with Gal(Q/Q), Leningrad Math. J., 4, 829-860, 1991.
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Linear independence without monodromy: theorem
Theorem

Let S € H(Q)({(X)) be a solution of the (LM) equation

d(S)=MS; (S|1x-) =1.
The following are equivalent :

@ the family ((S | w))wex~ of coefficients is independant (linearly) over C.

@ the family of coefficients ((S | X))xexu{iy.} s independant (linearly) over C.
@ the family (ux)xex is such that, for f € C et ay € C

= ot = (Vx € X)(ax = 0).

xeX

M. Deneufchatel, GHED, Hoang Ngoc Minh, A. I. Solomon, Independence of
hyperlogarithms over function fields via algebraic combinatorics, Lecture Notes in
Computer Science (2011), Volume 6742 (2011), 127-139.
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Explicit construction of Li
Given a word w, we note |w|y, the number of occurrences of x; within w

Joad(u)= if w=xu

z —S
ap(w) = L oz(s)(u)% if w=xuand|ul,, =0 (3)
o ag(u)% if w=xuand|ul,, >0.

Of course, the third line of this recursion implies

i n log(z)"
Oéo(Xo)_rE!)

one can check that (a) all the integrals (although improper for the fourth
line) are well defined (b) the series S =3 . af(w) w satisfies (2). We
then have af = Li.
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3 2 2 2 2 3
Xy X0X{ X1X0X1 X5 X1 X{ X0 X0X1X0 X1Xg Xy
N/ N/ N/ N/
x2 XoX1 X1X0 x3
X1 X0

As an example, we compute some coefficients

log(z)" —log(1 — z))"
L A

(Li | xox) = Lio(2) = 3 5 (Li | xax0) = (Li | xaix0 — x01)(2)
n>1 n

(Li ) =Lis(2) = 32 = 5 (Li|xax0) = (—log(1 — 2))log(2) — Lia(2)
n>1 "

n 1
(L) =Li@) = 5 (i) = (Li | S Gaisanise) = (auxon) +x0xd)

n>1 "
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A simple transition system: weighted graphs

Figure: Directed graph weighted by numbers which can be lengths, time
(durations), costs, fuel consumption, probabilities. This graph is equivalent to a
square matrix. Coefficients are taken in different semirings (i.e. rings without the
“minus” operation, as tropical or [max,+]) according to the type of computations
to be done. Tropical mathematics were so called by MPS school because they

were founded by the Hungarian-born Brazilian mathematician and computer
scientist Imre Simon.
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A small tribute to MPS or Marco as we used to call him

Figure: Marcel-Paul Schiitzenberger at Oberwolfach (1973)?

!Contrary to 1972 (Wikipedia)
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Multiplicity Automaton (Eilenberg, Schiitzenberger)

1 S. Eilenberg, Automata, Languages, and Machines (Vol. A) Acad. Press, New York,
1974

2 M.P. Schiitzenberger, On the definition of a family of automata, Inf. and Contr., 4
(1961), 245-270.
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Multiplicity automaton (linear representation) & behaviour

Linear representation

v=@w v 0 0 0), n=0 0 71 0 )T

ag oy 0o o0 0 0o o0 0 ap 0

0 0 0 0 0 0 0 a3 0 0

p@ =120 0 0 0 0 pub)=10 0 0 0 0
0 0 0 0 og 0 0 0 0 0

0 0 0 o0 0 0 0 0 0 0

oocooo

cocococo
L0

o5 § oo

~————

=
~
a
2
Il
—
coooo
Soococo

IS

v

Behaviour

Aw)=vuw)n=d" (i) (Y weight(p))  n())
stes weight of all paths () — @
with label w

v
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Operations and definitions on series

Addition, Scaling: as for functions because R{(X)) = RX"
Concatenation: f.g(w)=> _,  f(u)g(v)

Polynomials: Series s.t. supp(f) = {w} ()0 is finite.

The set of polynomials will be denoted R(X).

Pairing: (S| P) =3 cx- S(w)P(w) (S series, P polynomial)
Summation: A family )., S; is said summable iff f or all w € X*,
i — (S; | w) is finitely supported. This corresponds to the product
topology (with R discrete). In particular, we have

Y Si=> O (SiIw)w
iel weX* el

Star: For all series S s.t. (S| 1x+) =0, the family (5")n>0 is summable
and weset $* =3 ., S"=1 +S+S%2 4+ (=(1-9)71).
Shifts: (u™1S | w) = (S| uw), (Su™!| w) = (S| wu)

G.H.E. Duchamp, Hoang Ngoc Minh, Karol AAbout the arrow can: Tensor product of serie CIP seminar, 12 January 2021 14 /43



Rational series (Sweedler & Schiitzenberger)

Theorem [A]

Let k be a field, X a finite set and S € k{(X)) TFAE

i) The family (Su=!),cx- is of finite rank.

i) The family (u=1S),ex+ is of finite rank.

i) The family (u=1Sv~1), ,ex+ is of finite rank.

iv) It exists n € N, A € k}*", p : X* — k™" (a multiplicative morphism)
and 7 € k™! such that, for all w € X*

(5, w) = Au(w)T (4)
v) The series S is in the closure of k(X) for (4, conc,* ) within k({({X)).

A series which fulfill one of the conditions of Theorem [A] will be called
rational. The set of these series will be denoted by k" ((X)).
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Sweedler's duals

O (i « iii) needs k to be a field (see below for an extension).

@ (iv) needs X to be finite, (iv <> v) is known as the theorem of
Kleene-Schiitzenberger (M.P. Schiitzenberger, On the definition of a
family of automata, Inf. and Contr., 4 (1961), 245-270.)

© For the sake of Combinatorial Physics (where the alphabets can be
infinite), (iv) has been extended to infinite alphabets and replaced by
iv') The series S is in the rational closure of kX (linear series) within
k(X

@ This theorem is linked to the following: Representative functions on
X* (see Eichii Abe, Chari & Pressley), Sweedler's duals &c.

@ In the vein of (v) expressions like ab* or identities like
(ab*)*a* = (a+ b)* (Lazard's elimination) will be called rational.
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Sweedler's duals/2

Extension of the transpose of a law

We start with a k — AAU (k a field) A, dualizing

A\/

can]

AO

can]

AOO

t

w: ARk A— A, we have

# y (A®k A)Y
Jo
= A @y A
]‘j@ﬂ
= A° @ A°

In fact, one can prove that the “descent” stops at first step

and then A°° = A°.
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Sweedler's duals/3

@ Due to the fact that k is a field, the arrow

AV @ AY ® (A A)Y

is into, we will return to this crucial point in the case when k is a ring.
When one bluntly writes Aconc(R) = >_7_; S; ® T;, there is already an
indentification. If we set, as usual, A, =t 1, in perfect rigor one should write

Aconc(R)=(>_ Si®T))
i=1

But, in the case when & is into (k field or noetherian ring), one can define
(A°,A,) as the only arrow (with dom) that closes the upper square.

@ Let us define left-right actions >(?)< of the k-algebra A on AV by setting
(us (F)aw | v) =(f | vuw) forall f € AY and u,v,w € A.
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Sweedler's duals/4

Proof /2

© These two actions commute, thus, A is a A — A bimodule.

@ For a given u € A, we shall refer to the operator AY — AV, f i+ ubf as

shifting by u or the u-left shift operator; it generalizes Schiitzenberger's
right u~! in automata theory [BeRe88, Schiitz61].

© We first prove (exercise) that TFAE

0 feA
@ (up f),ca is of finite rank
© There exists a linear representation (i.e. A € k<", 7 € k™! and

w: A— k™" a morphism of k — AAU) of dimension n (A, u, 7) such

that for all v e A, (f | v) = Au(v)T.
Q Letuse:=(--- ,1, ---)€ k™" and e =! (e). One remarks that
N

place i n
Inscn =i eief.
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Sweedler's duals/5

Proof/3

@ (Minh’s trick) Now, for u,v € A

= A R R O =
Z eief)p(v)r =Y (Mu(u)er)(ef p(v)T) =

i=1
n

Yo leluhi|v)=> (g®@h|ucv)®
i=1 i=1
in other words A, (f) =>"" ; g ® h; where
gi: (A e) and hi: (e, u,7)

this proves that, for all f € A°, in fact A, (f) € A° ® A°
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Sweedler's duals/6

Q (A°,A,) is called the Sweedler’s dual of (A, i) (it is a coalgebra)

@ Please check throughly the Threefold Conditions above @ .

@ Remark. — In the construction, the arrow ® plays a crucial réle, but
it may not be into. There is a old lemma by Gérard Jacob which can
salvage partially the situation in the case of a general semiring and of
A = k(X). In this case, condition 5.2 is replaced by
“(u> f)yea lies within a finite-type left k(X)-module” (similar
condition can be stated with a finite-type right module).
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From theory to practice: Schitzenberger's calculus

From series to automata

Starting from a series S, one has a way to construct an automaton
(finite-stated iff the series is rational) providing that we know how to
compute on shifts and one-letter-shifts will be sufficient due to the formula
u=tv71S = (vu)~1S. In automata theory, we note u=1S for S<u

Calculus on rational expressions

| \

In the following, x is a letter, E, F are rational expressions (i.e. expressions
built from letters by scalings, concatenations and stars)

@ x1lis (left and right) linear
Q x YE.F)=x"YE).F+ (E|1x)xY(F)
Q@ x YE*)=x"1(E).E*

A
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Examples

With (2a)*(3b)* ; X ={a, b}

Xo’t

tx1 ( t2X0X1 )*

X1|t

.
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From theory to practice: construction starting from S.

o States m (constructed step by step)

o Edges We shift every state by letters (length) level by level (knowing
that x 1(u™1S) = (ux)1S). Two cases:
Returning state: The state is a linear combination of the already
created ones i.e. x 1(u7rS) =" a(ux,v)v 1S (with F finite),
then we set the edges

x|y

i3] 7]

The created state is new: Then

uis| 2L xHu™lS)

o Input with the weight 1
o Outputs All states with weight (T | 1x+)
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Link with conc-bialgebras (CAP 17)

We call here conc-bialgebras, structures such that

B = (k(X), conc,1x+, A, €) is a bialgebra and A(X) C (k.X @ k.1x+)®2.
For this, as k(X) is a free algebra, it suffices to define A and check the
axioms on letters. Below, some examples

Shuffle: X is arbitrary A(x) =x® 1+ 1® x and

A(w) = Z wll] ® w[J]

I+J=[1-|w]]

Stuffle: Y = {yi}i>1, Ak) =k @1+ 1®@yk + 3 1k Vi ®Y;
g-infiltration: X is arbitrary, A(x) =x® 1+ 1® x + gx ® x and

Aw)= Y ¢d"™wll e wlJ]
JUJ=[1|w]
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Link with conc-bialgebras/2

In case €(P) = (P | 1x+)?, the restricted (graded) dual is
BY = (k(X),*,1x+, Aconc, €) and we can write, for x € X

A(x) =x @ 1x» + 1x+ @ x + Ay (x) (6)
then, the dual law * (=" A) can be defined by recursion

Wxlxs = lyxysxw=w
aux bv = a(uxbv)+ b(aux*v)+ ¢(a, b)(ux*v) (7)

where ¢ =t Ay : k.X ® k.X — k.X is an associative law.

“which covers all usual combinatorial cases, save Hadamard
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Some dual laws

Name Formula (recursion) @ Type
Shuffle [21] auw by = a(uw bv) + blauw v) =0 I
Stuffle [19] T w20 = Ti(uw 20) + (2w v) P(i, 5) = Tiyj I

+ Tigj(uwv)
Min-stuffle (7] Tt o 20 = (U o T0) + 2;(Tiu « v) @(xi, ) = —Tiyj 111
— Tigj(u=v)
Muffle [14] T x50 = xi(uw z0) + x;(Tiu w v) @i, T5) = Tixj 1
+ Tixj (U wv)
g-shuffle [3] Zith w g0 = (U w g;0) + 2 (2u w gv) o(xi, ;) = qTit; 111
+ g (uw gv)
g-shuffle; Titw g0 = (U w g0) + 2 (20w gv) o(xi, ;) = " wigy I
+ ¢ iy (uw gv)
LDIAG(1, gs) [10]
(non-crossed, auw by = a(uw bv) + b(au wv) o(a,b) = q!,‘”bl(a.b) 11
non-shifted) + g b(uw v)
¢-Infiltration [12] autbv =a(u T bv) + blau T v) p(a,b) = gdapa 11
+ qdapalu tv)
AC-stuffle auwy, bv = a(uw, bv) + blauww, v) @(a,b) = ¢(b,a) v
+ (o, b)(uw,v)  |o(e(a,b),) = play (b))
Semigroup- Ty Tv = Tp(uwy T40) + To(Teuny v) P(Tt, T5) = Tess 1

stuffle + @1 (s v)

-shuffle auwy, bv = a(uw, bv) + blaw w,v) ©(a,b) law of AAU Y%

+ ¢(a, b) (uw,v)

Of course, the g-shuffle is equal to the (classical) shuffle when ¢ = 0. As for the ¢-

infiltration when a4 = 1 ane recavers the infiltration nraduet defined in
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A useful property

Let B = (k(X), conc,1x=, A, ¢€) be a conc-bialgebra, then

@ The space k™(X) is closed by the convolution product ¢ (here A)
given by

(SoT|w)y=(SaT | A(w)) (8)

Q If kisa Q-algebra and A, : k.X — k. X ® k.X cocommutative, B is
an enveloping algebra iff A, is moderate?.

@ If, moreover k is without zero divisors, the characters (x*),cx are
algebraically independant over (k(X), o, 1x«) within (k{(X)),o, 1x=).

?See CAP 2017

G.H.E. Duchamp, Hoang Ngoc Minh, Karol AAbout the arrow can: Tensor product of serie CIP seminar, 12 January 2021 28 /43



A useful property/2

[mathoverflow Fuseione | e | vere | auige | oo |

Independence of characters with respect to polynomials

G.H.E. Duchamp, Hoang Ngoc Minh, Karol AAbout the arrow can:

| came across the following property :

Let g be a Lie algebra over a ring k without zero divisors,
U = U(g) be its enveloping algebra. As such, U is a Hopf algebra and €, its counit, is the only

character of / — k which vanishes on g.
SetU, = ker(e). We build the following filtrations (N > 1)
Uy =u¥ =u,....u. (1)

N times

and
Uy = Uy = {f €U |(Vu € Uni1)(f(u) =0)}  (2)

the first one is decreasing and the second one increasing. One shows easily that (with © as the
convolution product)

Uy oUy; CUy.,
so that U, = Up=1U,, is a convolution subalgebra of 2/*.

Now, we can state the

Theorem : The set of characters of (4, . , 1) is linearly free w.rt. U3, .

asked 1 month ago
viewed 106 times

FEATURED ON META

Revisiting the "Hot Network Questions™
feature, what are our shared goals for

Who cut the cheese?

Responsive design released for all Beta &
Undesigned sites

Related

What does the generating function
z/(1— e*) count

Is there a canonical Hopf structure on the
center of a universal enveloping algebra?

Do stunied exponential seres gve praectons
of a cocommutative bialgebra on its coradical
fivaion

quantum groups... not via presentations.

3 How aunitary corepresentation of a Hopf C*-
algebra, deals with the antipode?

14 Rialoehras with Honf rectricted (or Sweedien
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A useful property/3

Property (3) is no longer true if A is not moderate. For example with the
Hadamard coproduct and x # y, one has y ® (x)* = 0.

[ETTES

Shuffle: (ax)*w(By)* = (ax + By)*

Stuffle: (ay;)* w (By;)* = (ayi + By + aByiyj)*
g-infiltration: (ax)* 14 (By)* = (ax + By + afdx yx)*
Hadamard: (aa)* ® (8b)* = 1x+ if a# b and (aa)* ® (Ba)* = (apa)*
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Starting the ladder

(C{X), w,1x:) —2* 5 C{Lin}wex-

[ [

i
(CX), ws, Lxe ) D5 (—30)*, 5] —= Ca{Liw bwex

Domain of Li (definition)

In order to extend Li to series, we define Dom(Li; ) (or Dom(Li)) if the context
is clear) as the set of series S =) S, (decomposition by homogeneous
components) such that ) -, Lis,(z) converges for the compact convergence in

€. One sets
Lis(z Z Lis,(z (9)

n>0

v
Examples

Lig(2) = 2, Lig(2) = (1 = 2)™"; Lifangs o) (2) = 2%(1 — 2) ™"

v

G.H.E. Duchamp, Hoang Ngoc Minh, Karol AAbout the arrow can: Tensor product of serie CIP seminar, 12 January 2021 31/43



Properties of the extended Li

With this definition, we have
@ Dom(Li) is a shuffle subalgebra of C{(X)) and then so is
Dom"™*(Li) := Dom(Li) N Cr{(X))
@ For S, T € Dom(Li), we have

Lis, 7 = Lis.Lit

Examples and counterexamples

For |t| < 1, one has (txo)*x1 € Dom(Li, D) (D is the open unit slit disc),
whereas x§x; ¢ Dom(Li, D).

Indeed, we have to examine the convergence of > -, Lixnx (2), but, for
z €]0,1[, one has 0 < z < Lix, (2) € R and therefore, for these values
> >0 Lixgx (2) = +o00.

In fact, in this case (|t| < 1)
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Coefficients in the Ladder

(C(X), w, 1x-) ——=— C{Liw}wex-

l o

(C<X>v i, 1 )[ng (7X0)*7 Xf] — CZ{Liw}weX*

[ /

C(X) w0 T (o)) o C* (1)) —42 Co{Lin Jwex-

Were, for every additive subgroup (H,+) C (C,+), Cy has been set to the
following subring of C

Cx = C{Za(l = Z)_B}Q,BEH . (11)

v
Examples

Lixz(2) = z, Lix(2) = (1 — z)71; Linsz+px;(2) = 2%(1 — z)7#

V.
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The arrow Liﬁl)

i. The family {x§,x;} is algebraically independent over (C(X), s, 1x+)
within (C{X )™, i, 1x+).

i (C(X),w, 1x+)[x5, xi, (—x0)*] is a free module over C(X), the family
{) k(o) I}(kJ)erN is a C(X)-basis of it.

iii. As a consequence, {w w(x¢)> K w(x) '} wex= is a C-basis of it.
(k,1)EZXN

- LilY is the unique morphism from (C(X), w, 1x+)[xg, (—x0)*, x{] to
H(K) such that

=

x5 =z, (=x0)" =z tand x; — (1—2)7!

m(LilY) = Cz{Lin bwex+.
vi. ker(Li{") is the (shuffle) ideal generated by x¢ v xi — xi + 1x-.
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Sketch of the proof for vi.

Let J be the ideal generated by xj i x{ — x{" 4+ 1x=. It is easily checked,
from the following formulas?, for kK > 1,
wxg w(x) 2 = w () ww () ],
w i (=x0)" i (x) ¢ w i (=x0)" w () T+ wn () 4],

that one can rewrite [mod 7] any monomial w i (x¢)~ ' wi(x)+ K as a
linear combination of such monomials with k/ = 0. Observing that the
image, through Li&l), of the following family is free in ()

{w o () o () 4 H w1k e (= xNx {0 LI(X* x {0} x2) (12)

we get the result.

?In the Figure below, (w, /, k) codes the element w i (x3 )™ " 1 (xg )= X
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(w, =1, k) (w, =1+ 1,k) | (w,| = 1,k)  (w,], k)
k

I I i I »
>

Figure: Rewriting J-Mod of {w w(xg)™ ' w(x5)™ “}ren sz, wex-
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End of the ladder: pushing coefficients to C¢

(C(X), s, 1x) —2 % C{Lin }wex-

l o 1

Lil! .
((C<X>7 o) 1X")[ng (—Xo)*,Xf] — CZ{Llw}weX*

| o 1

C(X) w C™*{(x)) w C™*(x1)) ——= Cc{Liw}wex-

Exchangeable (rational) series

The power series S belongs to Cex.(X), iff
(Vu,v e XT)((vx € X)(Julx = |vlx) = (Slu) =(S]v)).  (13)

We will note CZL(X), the set of exchangeable rational series i.e.

CRL(X) := Cexc(X) NCH(X) (14)

exc
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Lemma (D., HNM, Ngé, 2016)
Q CE (X)) = C™ (X)) N Cexc (X)) = C™(x0)) w C™*{(x1)).

@ For any x € X, from a theorem by Kronecker, one has
Crat((x)) = spanc{(ax)* w C(x)|a € C} and

{(ax)™ w X"} @ mecxn (15)

is a basis of it. When restricted to (C* x N) U {(0,0)} this family
spans C2t _.((x)) (fractions being constant at infinity)

© C(X)w CEL{X)) ~ C(X) @c Cigner{(x0)) ®c Cloner (1))

0 Im(Li?) = Cc{Lin b wex-.

(5] ker(LiSz)) is the (shuffle) ideal generated by x§ 1w x{ — xi + 1x=
(prospective).
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Concluding remarks/1

© We have coded classical (and extended) polylogarithms with words
obtaining a Noncommutative generating series which is a shuffle
character

@ This character can be extended by continuity to certain series forming
a shuffle subalgebra of Noncommutative formal power series.

© We have found some remarkable subalgebras of Dom™*(Li), given
their bases and described the kernel of the so extended Li,.

Q Definition of Dom(Li) and Dom™*(Li) have to be refined and their
exploration pushed further.

© Combinatorics of discrete Dyson integrals for various sets of
differential forms has to be implemented
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Concluding remarks/2

@ Drinfeld-Kohno Lie algebras i.e. algebras presented by
DK(A, k) - <A X A ) RA > k—Lie algebras

with Ra, the relator

(a,a) = OforacA
R (a,b) = (b,a)fora,becA
AT [(37 C)a(aa b)+(b7 C)] = 0 for |{aa b, C}| =3,
[(a,b),(c,d)] = O0for|{a,b,c,d}| =4

can be decomposed in several ways as a direct sum of Free Lie algebras

giving rise to product of MRS factorisations

Y

Y = H eX(5) Pi

le Lyn(X)
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N

[m]

=

DA 41/43
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THANK YOU FOR YOUR ATTENTION !
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