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Goal of this talk

From nLab. –

nLab says (see ncatlab “States on a star algebra”
in the Links section 9)

The concept of state on a star-algebra is the formalization of the general
idea of states from the point of view of quantum probability theory and
algebraic quantum theory.
In order to motivate the definition from more traditional formulations in
physics, recall that there a state 〈−〉 is the information that allows to
assign to each observable A the expectation value 〈A〉 that this observable
has when the physical system is assumed to be in that state.
Often this is formalized in the Schrödinger picture where a Hilbert space of
states H is taken as primary, and the observables are represented as
suitable linear operators A on H. Then for ψ ∈ H a state (pure state) the
expectation value of A in this state is the inner product

〈ψ|A|ψ〉 = 〈ψ|A.ψ〉
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Goal of this talk/2

nLab cont’d

This defines a linear function 〈ψ| − |ψ〉

〈ψ|(−)|ψ〉 : A −→ C

on the algebra of observables A, satisfying some extra properties.

Evolution
1 The states can evolve (a function of t ∈ I (real interval) or z ∈ Ω (a

complex domain) and be (in many cases) of the form

〈ψ|O|ψ〉

where O is a solution of an evolution equation.

2 In Hilbert-based models O is unitary and ψ is of norm one. Let us
examine the linear form ϕ : O 7→ 〈ψ|O|ψ〉 obtained in this case.
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Towards states

Analysis

1 We start with a star-algebra (we will see examples later on) i.e. a
C-AAU equipped with a semi-linear, involutive anti-automorphism
x 7→ x∗.

2 In other words, identically

(x + y)∗ = x∗ + y∗

(α.x)∗ = α.x∗

(x .y)∗ = y∗.x∗

(x∗)∗ = x

3 Examples
1 M(n,C) = Cn×n with M∗ :=t (M)
2 C(Ω,C) with f ∗ := f̄
3 C〈〈X 〉〉 with (

∑

w∈X∗ αw w)∗ := (
∑

w∈X∗ αw w̃)∗

4 C[G ] with (
∑

g∈G αg g)
∗ :=

∑

g∈G αg g
−1
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Towards states/2

Analysis/2

4 With ||ψ|| = 1, we have ϕ : O 7→ 〈ψ|O|ψ〉 with the following
properties

ϕ(1) = 1 and, (for all x) ϕ(x∗.x) ≥ 0

5 If, moreover, ϕ(x∗.x) = 0 =⇒ x = 0, the state is said faithful.
We the preceding examples (F=faithful, NF=non faithful)

1 M(n,C) with ϕ(M) = (1/n).tr(M) (F)

2 With a < b, A = C([a, b],C) with 1
b−a

∫ b

a
f (s)ds (F)

3 C〈〈X 〉〉 avec ϕ(S) = 〈S |1X∗〉 (NF)
4 C[G ] avec ϕ(S) = 〈S |1G 〉 (F)
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Semisimple categories of modules/1

Semi-simple categories of modules, see in general

https://ncatlab.org/nlab/show/semisimple+category

Definition

Let R be a ring. We note R-Mod the category of R-modules (whatever
the size) the arrows being that of R-linear mappings between objects.

Remarks

1 This is a category with direct sums (coproducts) and products.

2 Subcategory of finite length modules (ex. finite dim when R is a k algebra)
admit (finite) decompositions (Krull) in indecomposables. Another example
will be subcategory of semi-simple modules (see below).

3 In the preceding case (finite dim when R is a k algebra) it is a subcategory

4 Link with non-degenerate bilinear forms + examples
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Semisimple categories of modules/2

Definition: Simple and semi-simple modules

1 A module M ∈ R-Mod is said simple if it is not (0) and if its set of
submodules is

{

(0),M
}

2 A module M ∈ R-Mod is said semi-simple iff M = ⊕i∈IMi where Mi are
simple submodules of M .

Proposition [A]

Let M ∈ R-Mod

1 If M is such that M =
∑

i∈I Mi where Mi are simple submodules of M and
N ⊂submod M , then it exists J ⊂ I such that M = (⊕i∈JMi)⊕ N .

2 In particular a submodule or a quotient of a semi-simple module is
semi-simple.
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Proof

A.1) Let S ⊂ 2I defined on 2I

S = {J ⊂ I |(⊕i∈JMi)⊕ N is well defined} (1)

The set of S is non-empty and of finite character. Then, by
Tukey-Teichmüller theorem it admits at least a maximal element foor
inclusion. Let J0 be such an element. If J0 = I we are done, otherwise let
i ∈ Ir J0 and set T =

(

(⊕i∈J0Mi )⊕ N
)

. We cannot have Mi ∩ T = (0)
otherwise we would get J0 ∪ {i} ∈ S and i ∈ J0, a contradiction. Remains
Mi ⊂ T because Mi is simple. Hence (∀i ∈ Ir J0)(Mi ⊂ T ) and this entails
M = T .
Remark that, setting N to (0), one obtains that if a module is a sum (direct
or not) of simple submodules, then it is semi-simple.

A.2) We suppose M = ⊕i∈IMi to be semi-simple. Let f : M ։ Q, .
Setting N = ker(f ) in the preceding situation, we get a subfamily (Mi)i∈J

such that M = (⊕i∈JMi )⊕ N . Then, by f , (⊕i∈JMi) ≃ Q and we are done.
Now, if N is any submodule of M , by (A.1), it is direct summand and we can
write M = N ⊕N1 with projectors pN , pN1 . From pN : M ։ N we are done.
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Case when Rs itself is semi-simple

Any ring R can be considered as a R − R bimodule by the left and right
actions (for a, b ∈ R), λa(m) = a.m, ρb(m) = m.b. these two actions
commute. By definition Rs is the left-module defined by the action λa(m).
We have the following

Proposition [B]

If Rs is semi-simple, all R-module is so.

Proof.

We suppose that Rs is semi-simple. Let M be a R-module, then for all
x ∈ M the (principal) R-submodule R .x is a semi-simple image (that of
t → t.x), hence semisimple. The result is then a consequence of
Proposition [A].1 in view of the fact that M =

∑

x∈M R .x .
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A sufficient condition for Rs to be semi-simple

Proposition [C]

Under the preceding conditions

1 If Rs is semi-simple then every left ideal is direct summand of Rs

within the lattice of left ideals.

2 The converse is true in the case when this latticea satisfies
ACC+DCC chain conditions.

https://en.wikipedia.org/wiki/Ascending_chain_condition

aThe lattice of left ideals.

For hilbertian traces, see Dieudonné XV.6 [4].
In the category of modules, ACC is Noetherian, DCC is Artinian.
Next steps: Frobenius characteristics, characters, case of finite groups, the
symmetric group, Kronecker, Littlewood-Richardson and Clebsch–Gordan
coefficients.
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Proof of Proposition [C]

1) In fact this is true of every semi-simple module by Proposition [A].1.
2) As in (1), this converse is true for every module satisfying the same conditions
(i.e. every submodule is direct summand + ACC + DCC). Let M be such a
module, we build the following double sequence

1 (Init.) C0 = ((0),M)

2 (Running) Cn = (⊕n
i=1Ni ,Qn) with Ni simple submodules of M and

⊕n
i=1Ni ⊕ Qn = M

3 (Halt) Qn = (0) (then we are done)

4 (Next Step) Suppose Cn = (⊕n
i=1Ni ,Qn) with Qn 6= (0) (non-halting step)

then we choose a minimal submodule Qmin of M among those such that
(0) ( Q ⊂ Qn (it is possible because M satisfies DCC). We set Nn+1 = Qmin

and remark that the family (Ni )1≤i≤n+1 is in direct sum and, by hypothesis,
it exists Qn+1 such that ⊕n+1

i=1 Ni ⊕ Qn+1 = M then set
Cn+1 = (⊕n+1

i=1 Ni ,Qn+1)
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Proof of Proposition [C]/2 and first applications

Proof that this algorithm halts) unless M = (0) there is at least one step.
Let n+ 1 be any valid rank of a step. By construction ⊕n

i=1Ni ( ⊕n+1
i=1 Ni , a

strictly increasing sequence of submodules. By ACC this sequence must be
finite.

Semi-simplicity) Let m is the last index of the sequence Cn. We have
Qm = (0) and then M = ⊕m

i=1Ni . CQFD

Finite groups, states and semi-simplicity

1 Applies to Every finite dimensional ∗-algebra which admits a faithful state
(FS) then is semi-simple. See below.

2 and in particular to A = C[G ] where G is a finite group. With

(

∑

g∈G

α(g) g
)∗

:=
(

∑

g∈G

α(g) g−1
)

and ϕ(Q) = 〈1G |Q〉
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States, isometries, orbits and orthogonality in star-algebras.

First of all, note that spectral theory fails dramatically in the absence
of a complete norm a.

Let A be an ∗-algebra (x → x∗ is semi-linear, involutive and an
anti-automorphism)

C+(A), generated by elements of the form
∑

i∈F xix
∗
i (with F finite)

is an hermitian (self-dual) convex cone

State(A) is the set of linear forms f ∈ A∗ such that
z ∈ C+(A) =⇒ f (z) ≥ 0 and f (1) = 1

A faithful state (FS) is such that

z ∈ C+(A) and f (z) = 0 =⇒ z = 0

aSee discussion in
https://math.stackexchange.com/questions/1520974
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cont’d/1

Proposition [D]

A finite dimensional star-algebra with a non-degenerate state is semi-simple with
all its commutants ≃ C.

Unfolding [D]

1 Let ϕ be one of these faithful states and set

〈x |y〉 = ϕ(x∗y) (2)

it is a non-degenerate hermitian form such that, identically 〈x |a.y〉 = 〈a∗.x |y〉.
Then, if J is a left-ideal of the algebra A, then it is easy to prove that J ⊥ is a
left ideal
2 In particular with the preceding setting (A = C[G ] where G is a finite group,
star-structure and state) we have the result.

3 We decompose A into minimal left ideals with algorithm of slide 11 and get
A = ⊕j∈FJj . We can then write 1A =

∑

i∈F pi .
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Construction of the matrix units.

4 One can prove that Ji = A pj and pjpi = pipj = δijpi (complete
orthogonal family of minimal idempotents)

5 The lemma HomA(A.e,A.f ) ≃ e.A.f (sandwich) gives Wedderburn’s
decomposition.

6 For e, f idempotents then eaf → (x → xeaf ) is an iso of k-spaces
between e.A.f and HomA(A.e,A.f ) the inverse being f → f (e)
(note that f (e) ∈ e.A.f ).

7 Return to 1A =
∑

i∈F pi (each pi is minimal) and set
i ∼ j ⇐⇒ ei .A.ej 6= (0) (block equivalence)

8 Take a block C , order C = {i1 < i2 < · · · < im} totally.

9 For 1 ≤ j < m choose aij ∈ eij .A.eij+1
r (0)

10 Remark that 4 to 9 applies to every finite dimensional
F -semi-simple algebras, in particular, with F = R you can get Real,
Complex and Quaternion blocks.
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Classification of finite-dim. semi-simple F - and R-algebras

Wedderburn-Artin Theorem [1], p116 and [18].

Let F be a field and A a finite-dimensional F -algebra, then A is
semi-simple iff it exists numbers (ni)1≤i≤r and (Di )1≤i≤r

finite-dimensional F -division algebras such that

A ≃ Dn1×n1
1 × · · · × Dnr×nr

r (3)

Classification of finite-dim. semi-simple R-algebras

As there are only three types of finite-dim. R-division algebras i.e. R, C
and H, we have a complete description of the finite-dim. semi-simple
R-algebras: you have Real, Complex and Quaternion blocks.

Classification of finite-dim. semi-simple C-algebras

In this case you have only Complex blocks.
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Case of an *-algebra (k = C) with a (FS).

11 Let now A be a finite-dimensional *-algebra (over C) with a (FS) ϕ.

12 From (2), we get that A is semi-simple.

13 On the other hand, one checks that the left-regular representation
constructed by γa(x) = a.x and ρ(a) = γa is a *-faithful *-representation
of A

14 A can be given, through this faithful representation the structure of
C∗-algebra (not in general with the norm ||x ||1 =

√

〈x |x〉 thougha)

15 If A has the structure of C∗-algebra for the norm ||x ||1 then A ≃ C.

16 Proof of ball 14 (Sketch). – Using the decomposition (3) through
orthogonal ideal process, we get that the pi are self-adjoint, then if |F | > 1
we can set F = F1 ⊔ F2 with |Fi | > 0, then with ei =

∑

j∈Fi
pj , we get two

self-adjoint idempotents and ||ei || = ||e1 + e2|| = ||e1 − e2|| = 1 makes the
parallelogram ruleb fail.

aIf it were the case, one can prove that dimC(A) = 1.
b||x + y ||2 + ||x − y ||2 = 2.(|x ||2 + ||y ||2). 17 / 27



A remark

Remarka. – The fact that A be a star-algebra of finite dimension, sum of
matrix algebras is by no means sufficient to imply that the projectors on
the blocks are *-invariant nor A ≃ C as shows the following
counterexample. Take B = Cn×n (algebra of complex square matrices of
dimension n > 0) and A = B ⊕ B with the anti-automorphism
(X ,Y )⋆ = (Y ∗,X ∗). Then (A, ⋆) is easily checked to be a star algebra
(i.e. involutive algebra). It is of finite dimension, sum of matrix algebras
but dimC = 2n2 6= 1. Indeed, the existence of a faithful state is crucial as
there is none over A.

aFor a counterexample with words, see
https://math.stackexchange.com/questions/829182 .
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Exercises/1

Ex1: States and pre-states

Let A be a complex finite-dimensional ∗-algebra. A FS (Faithful State) is a linear
form ϕ ∈ A∗ such that

(∀x ∈ Ar {0})(ϕ(x∗x) > 0) (4)

1 Prove that the bilinear form 〈x |y〉 := ϕ(x∗y) is a non-degenerate hermitian
scalar producta such that, identically

〈x |a.y〉 = 〈a∗.x |y〉

2 Prove that a complex finite-dimensional ∗-algebra admitting a FS is
semi-simple.

aI take the convention of semi-linearity on the left (see the link “Hilbert
modules” below).
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Exercises/2

Ex1: States and pre-states/2

Let G be a finite group, set A = C[G ] and, for a =
∑

g∈G α(g) g , set

a∗ =
∑

g∈G α(g) g
−1

3 Prove that (A, ∗) is an ∗-algebra

4 Prove that ϕ ∈ A∗ defined by ϕ(a) = α(1) is a FS on A.
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Links

1 Categorical framework(s)

https://ncatlab.org/nlab/show/category

https://en.wikipedia.org/wiki/Category_(mathematics)

2 Universal problems

https://ncatlab.org/nlab/show/universal+construction

https://en.wikipedia.org/wiki/Universal_property

3 Paolo Perrone, Notes on Category Theory with examples from basic
mathematics, 181p (2020)
arXiv:1912.10642 [math.CT]

https://en.wikipedia.org/wiki/Abstract_nonsense

4 Heteromorphism

https://ncatlab.org/nlab/show/heteromorphism

5 D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic
Retrospective, David EllermanPhilosophy Department, University of
California at Riverside
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Links/2

6 https://en.wikipedia.org/wiki/Category_of_modules

7 https://ncatlab.org/nlab/show/Grothendieck+group

8 Traces and hilbertian operators

https://hal.archives-ouvertes.fr/hal-01015295/document

9 State on a star-algebra

https://ncatlab.org/nlab/show/state+on+a+star-algebra

10 Hilbert module

https://ncatlab.org/nlab/show/Hilbert+module
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Thank you for your attention !
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