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INTRODUCTION
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Picard-Vessiot theory of ordinary differential equation
(k, ∂) a commutative differential ring without zero divisors.
Const(k) = {c ∈ k|∂c = 0} is supposed to be a field.

(ODE ) (an∂
n + an−1∂

n−1 + . . .+ a0)y = 0, a0, . . . , an−1, an ∈ k.
a−1
n is supposed to exist.

Definition 1
1. Let y1, . . . , yn be Const(k)-linearly independent solutions of (ODE ).

Then {y1, . . . , yn} is called a fundamental set of solutions of (ODE )
and it generates a Const(k)-vector subspace of dimension at most n.

2. If 1 M = k{y1, . . . , yn} and Const(M) = Const(k) then M is called
a Picard-Vessiot extension related to (ODE )

3. Let k ⊂ K1 and k ⊂ K2 be differential rings. An isomorphism of
rings σ : K1 → K2 is a differential k-isomorphism if

∀a ∈ K1, ∂(σ(a)) = σ(∂a) and, if a ∈ k, σ(a) = a.
If K1 = K2 = K, the differential galois group of K over k is by

Galk(K) = {σ|σ is a differential k-automorphism of K}.

1. Let R1,R2 be differential rings s.t. R1 ⊂ R2. Let S be a subset of R2.
R1{S} denotes the smallest differential subring of R2 containing R1.
R1{S} is the ring (over R1) generated by S and their derivatives of all orders.
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Linear differential equations and Dyson series
Let a0, . . . , an ∈ C(z), an(z)∂

ny(z)+ . . .+ a1(z)∂y(z)+ a0(z)y(z) = 0.

(ED)





∂q(z) = A(z)q(z), A(z) ∈ Mn,n(C(z)),
q(z0) = η, λ ∈ M1,n(C),
y(z) = λq(z), η ∈ Mn,1(C).

By successive Picard iterations, with the initial point q(z0) = η, we get 2

y(z) = λU(z0; z)η, where U(z0; z) is the following functional expansion

U(z0; z) =
∑

k≥0

∫ z

z0

A(z1)dz1

∫ z1

z0

A(z2)dz2 . . .

∫ zk−1

z0

A(zk)dzk ,(Dyson series)

and (z0, z1 . . . , zk , z) is a subdivision of the path of integration z0  z .
In order to find the matrix Ω(z0; z) s.t.

U(z0; z) = exp[Ω(z0; z)] = ⊤ exp

∫ z

z0

A(s)ds, (Feynman’s notation)

Magnus computed Ω(z0; z) as limit of the following Lie-integral-functionals

Ω1(z0; z) =

∫ z

z0

A(z)ds,

Ωk(z0; z) =

∫ z

z0

[A(z) + [A(z),Ωk−1(z0; s)]/2

+[[A(z),Ωk−1(z0; s)],Ωk−1(z0; s)]/12 + . . .)ds.

2. Subject to convergence.
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Fuchsian linear differential equations
Let Ω be a simply connected domain and H(Ω) be the ring of holomorphic
functions over Ω (with 1H(Ω) as neutral element). Let us consider, here,

σ = {si}i=0,..,m,m ≥ 1, as set of simple poles of (ED) and Ω = C̃ \ σ.

A(z) =
m∑

i=0

Miui (z), where

{
Mi ∈ Mn,n(C),

ui (z) = (z − si )
−1 ∈ C(z).

(ED)





∂q(z) =

( m∑

i=0

Miui (z)

)
q(z),

q(z0) = η,

y(z) = λq(z).
Let X ∗ be the set of words over X = {x0, . . . , xm} and

αz
z0 ⊗M : C〈X 〉 ⊗ C〈X 〉 → Mn,n(H(Ω))

(z0  z is the path of integration previously introduced) s.t.
M(1X∗) = Idn and M(xi1 · · · xik ) = Mi1 . . .Mik ,

αz
z0(1X∗) = 1H(Ω) and αz

z0(xi1 · · · xik ) =

∫ z

z0

dz1
z1 − si1

. . .

∫ zk−1

z0

dzk
zk − sik

.

Then 3 y(z) = λU(z0; z)η with

U(z0; z) =
∑

w∈X∗

M(w)αz
z0(w) = (M⊗ αz0)

∑

w∈X∗

w ⊗ w .
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Examples of linear dynamical systems

Example 2 (Hypergeometric equation)
Let t0, t1, t2 be parameters and

z(1− z)ÿ(z) + [t2 − (t0 + t1 + 1)z ]ẏ(z)− t0t1y(z) = 0.
Let q1(z) = −y(z) and q2(z) = (1− z)ẏ(z). Hence, one has

y(z) =
(
1 0

)(q1(z)
q2(z)

)

and (
q̇1(z)
q̇2(z)

)
=

(
M0

z
+

M1

1− z

)(
q1(z)
q2(z)

)

= (u0(z)M0 + u1(z)M1)

(
q1(z)
q2(z)

)
,

where u0(z) = z−1, u1(z) = (1− z)−1 and

M0 = −

(
0 0

t0t1 t2

)
and M1 = −

(
0 1
0 t2 − t0 − t1

)
.
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Nonlinear differential equations

(NED)





∂q(z) =

( m∑

i=0

Ti (q)ui (z)

)
(q),

q(z0) = q0,
y(z) = f (q(z)),

where

◮ ui ∈ (k, ∂),

◮ the state q = (q1, . . . , qn) belongs the complex analytic manifold Q
of dimension n and q0 is the initial state,

◮ the observation f ∈ O, with O the ring of analytic functions over Q,

◮ for i = 0..1,Ti = (T 1
i (q)∂/∂q1 + · · ·+ Tm

i (q)∂/∂qm) is an analytic

vector field over Q,with T j
i (q) ∈ O, for j = 1, . . . , n.

With X and αz
z0 given as previously, let the morphism τ be defined by

τ(1X∗) = Id and τ(xi1 · · · xik ) = Ti1 . . .Tik . Then
4 y(z) = T ◦ f|q0 with

T =
∑

w∈X∗

τ(w)αz
z0(w) = (τ ⊗ αz0)

∑

w∈X∗

w ⊗ w .

4. Subject to convergence.
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Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)
Let k1, k2 be parameters and ∂2y(z) + k1y(z) + k2y

2(z) = u1(z)
which can be represented by the following state equations (with n = 1)

y(z) = q(z),
∂q(z) = A0(q)u0(z) + A1(q)u1(z),

where A0 = −(k1q + k2q
2)

∂

∂q
and A1 =

∂

∂q
.

Example 4 (Duffing equation)
Let a, b, c be parameters and ∂2y(z) + a∂y(z) + by(z) + cy3(z) = u1(z)
which can be represented by the following state equations (with n = 2)

y(z) = q1(z),(
∂q1(z)
∂q2(z)

)
=

(
q2

−(aq2 + b2q1 + cq31)

)
u0(z) +

(
0
1

)
u1(z)

= A0(q)u0(z) + A1(q)u1(z),

where A0 = −(aq2 + b2q1 + cq31)
∂

∂q2
+ q2

∂

∂q1
and A1 =

∂

∂q2
.
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Examples of nonlinear dynamical systems (2/2)

Example 5 (Van der Pol oscillator)
Let γ, g be parameters and

∂2x(z)− γ[1 + x(z)2]∂x(z) + x(z) = g cos(ωz)
which can be tranformed into (with C is some constant of integration)

∂x(z) = γ[1 + x(z)2/3]x(z)−

∫ z

z0

x(s)ds +
g

ω
sin(ωz) + C .

Supposing x = ∂y and u1(z) = g sin(ωz)/ω + C , it leads then to
∂2y(z) = γ[∂y(z) + (∂y(z))3/3] + y(z) + u1(z)

which can be represented by the following state equations (with n = 2)
y(z) = q1(z),(

∂q1(z)
∂q2(z)

)
=

(
q2

γ(q2 + q32/3) + q1

)
u0(z) +

(
0
1

)
u1(z)

= A0(q)u0(z) + A1(q)u1(z),

where A0 = [γ(q2 + q32/3) + q1]
∂

∂q2
+ q2

∂

∂q1
and A1 =

∂

∂q2
.
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DUAL LAWS AND REPRESENTATIVE SERIES
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Dual law in bialgebra
Startting with a k−AAU (k is a ring) A. Dualizing µ : A⊗k A → A, we
get the transpose tµ : A∨ → (A⊗k A)∨ so that we do not get a
co-multiplication in general.

◮ Remark that when k is a field, the following arrow is into (due to
the fact that A∨ ⊗k A

∨ is torsionfree)
Φ : A∨ ⊗k A

∨ → (A⊗k A)∨.

◮ One restricts the codomain of tµ to A∨ ⊗k A
∨ and then the domain

to (tµ)−1Φ(A∨ ⊗k A
∨) =: A◦.

A∨ (A⊗k A)∨

A◦ A∨ ⊗k A
∨

A◦◦ A◦ ⊗k A
◦

tµ

∆µ

can Φ

∆µ

can j⊗j

The descent can stop at first step for a field k and then A◦◦ = A◦.
The coalgebra (A◦,∆µ) is called the Sweedler’s dual of (A, µ).
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Case of algebras noncommutative series
◮ Denoting the (ordered) alphabets Y := {yk}k≥1 (with

y1 ≻ y2 ≻ . . .) or X := {x0, x1} (with x1 ≻ x0) by X , we use the
correspondence among words of the free monoid (X ∗, conc, 1X∗) :

(s1, . . . , sr ) ∈ Nr
+ ↔ ys1 . . . ysr ∈ Y ∗

πX

⇋
πY

x s1−1
0 x1 . . . x

sr−1
0 x1 ∈ X ∗x1.

◮ Let LynX denote the set of Lyndon words generated by X .

◮ Let (LieA〈〈X 〉〉, [.]) and (A〈〈X 〉〉, conc) (resp. LieA〈X 〉, [.]) and
(A〈X 〉, conc)) denote the algebras of (Lie) series (resp.
polynomials) with coefficients in the ring A, over X .

◮ H ⊔⊔ (X ) := (A〈X 〉, conc, 1X∗ ,∆ ⊔⊔ , e) and
H (Y ) := (A〈Y 〉, conc, 1Y ∗ ,∆ , e) with 5

∀x ∈ X , ∆ ⊔⊔ x = x ⊗ 1X∗ + 1X∗ ⊗ x ,
∀yi ∈ Y , ∆ yi = yi ⊗ 1Y ∗ + 1Y ∗ ⊗ yi +

∑
k+l=i yk ⊗ yl .

◮ The dual law associated to conc is defined by
∀w ∈ X ∗, ∆conc(w) =

∑
u,v∈X∗,uv=w u ⊗ v .

5. Or equivalently, for x , y ∈ X , yi , yj ∈ Y and u, v ∈ X ∗ (resp. Y ∗),
u ⊔⊔ 1X∗ = 1X∗ ⊔⊔ u = u and xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v),
u 1Y∗ = 1Y∗ u = u and xiu yjv = yi (u yjv) + yj(yiu v) + yi+j(u v).
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Dualizable laws in conc-shuffle bialgebras (1/2)
We can exploit the basis of words as follows

1. Any bilinear law (shuffle, stuffle or any) µ : A〈X 〉 ⊗A A〈X 〉 → A〈X 〉
can be decribed through its structure constants wrt to the basis of
words, i.e. for u, v ,w ∈ X ∗, Γwu,v := 〈µ(u ⊗ v)|w〉 so that

µ(u ⊗ v) =
∑

w∈X∗ Γwu,vw .

2. In the case when Γwu,v is locally finite in w , we say that the given
law is dualizable, the arrow tµ restricts nicely to A〈X 〉 →֒ A〈〈X 〉〉
and one can define on the polynomials a comultiplication by

∆µ(w) :=
∑

u,v∈X∗ Γwu,vu ⊗ v .

3. When the law µ is dualizable, we have

A〈〈X 〉〉 A〈〈X ∗ ⊗X ∗〉〉

A〈X 〉 A〈X 〉 ⊗A A〈X 〉

tµ

∆µ

can Φ|A〈X〉⊗AA〈X〉

The arrow ∆µ is unique to be able to close the rectangle and
∆µ(P) is defined as above.
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Dualizable laws in conc-shuffle bialgebras (2/2)
4. Proof that the arrow A〈X 〉 ⊗A A〈X 〉 −→ A〈〈X ∗ ⊗X ∗〉〉 is into :

Let T =
∑n

i=1 Pi ⊗A Qi such that Φ(T ) = 0. Rewriting T as a
finitely supported sum T =

∑
u,v∈X∗ cu,vu⊗ v (this is indeed the iso

between A〈X 〉 ⊗A A〈X 〉 and A[X ∗ ×X ∗]), Φ(T ) is by definition of
Φ the double series (here a polynomial) s.t. 〈Φ(T )|u ⊗ v〉 = cu,v . If
Φ(T ) = 0, then for all (u, v) ∈ X ∗ ×X ∗, cu,v = 0 entailing T = 0.

We extend by linearity and infinite sums, for S ∈ A〈〈Y 〉〉 (resp. A〈〈X 〉〉), by

∆ S =
∑

w∈Y ∗

〈S |w〉∆ w ∈ A〈〈Y ∗ ⊗ Y ∗〉〉,

∆concS =
∑

w∈X∗

〈S |w〉∆concw ∈ A〈〈X ∗ ⊗X ∗〉〉,

∆ ⊔⊔ S =
∑

w∈X∗

〈S |w〉∆ ⊔⊔ w ∈ A〈〈X ∗ ⊗X ∗〉〉.

A〈〈X 〉〉 ⊗ A〈〈X 〉〉 embeds injectively in 6 A〈〈X ∗ ⊗X ∗〉〉 ∼= [A〈〈X 〉〉]〈〈X 〉〉.

6. A〈〈X 〉〉 ⊗ A〈〈X 〉〉 contains the elements of the form
∑

i∈I finite Gi ⊗ Di , for
(Gi ,Di ) ∈ A〈〈X 〉〉 ×A〈〈X 〉〉. But since elements of M ⊗N are finite combination
of mi ⊗ ni ,mi ∈ M, ni ∈ N then

∑

i≥0 u
i ⊗ v i belongs to A〈〈X ∗ ⊗X ∗〉〉 and

does not belong to A〈〈X 〉〉 ⊗ A〈〈X 〉〉, for u, v ∈ X≥1.
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Extended Ree’s theorem
Let S ∈ A〈〈Y 〉〉 (resp. A〈〈X 〉〉), A is a commutative ring containing Q.
The series S is said to be

1. a (resp. conc, ⊔⊔ )-character iff, for any w , v ∈ Y ∗ (resp. X ∗),
〈S |w〉〈S |v〉 = 〈S |w v〉 (resp. 〈S |wv〉, 〈S |w ⊔⊔ v〉) and 〈S |1〉 = 1.

2. an infinitesimal (resp. conc, ⊔⊔ )-character iff, for any
w , v ∈ Y ∗ (resp. X ∗), 〈S |w v〉 = 〈S |w〉〈v |1Y ∗〉+ 〈w |1Y ∗〉〈S |v〉
(resp. 〈S |wv〉 = 〈S |w〉〈v |1X∗〉+ 〈w |1X∗〉〈S |v〉,
〈S |w ⊔⊔ v〉 = 〈S |w〉〈v |1X∗〉+ 〈w |1X∗〉〈S |v〉).

3. a group-like series iff 〈S |1X∗〉 = 1 and ∆ S = Φ(S ⊗ S) (resp.
∆concS = Φ(S ⊗ S),∆ S = Φ(S ⊗ S)).

4. a primitive series iff ∆ S = 1Y ∗ ⊗ S + S ⊗ 1Y ∗ (resp.
∆concS = 1X∗ ⊗ S + S ⊗ 1X∗ ,∆ ⊔⊔ S = 1X∗ ⊗ S + S ⊗ 1X∗).

Then the following assertions are equivalent

1. S is a (resp. conc and ⊔⊔ )-character.

2. log S an infinitesimal (resp. conc and ⊔⊔ )-character.

3. S is group-like, for ∆ (resp. ∆conc and ∆ ⊔⊔ ).

4. log S is primitive, for ∆ (resp. ∆conc and ∆ ⊔⊔ ).
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Extension by continuity (infinite sums)
Now, suppose that the ring A (containing Q) is a field k. Then

∆ ⊔⊔ : k〈X 〉 → k〈X 〉 ⊗ k〈X 〉 and ∆ : k〈Y 〉 → k〈Y 〉 ⊗ k〈Y 〉
are graded for the multidegree. Then ∆ is graded for the length. Their
extension to the completions (i.e. k〈〈X 〉〉 and k〈〈X ∗ ⊗X ∗〉〉) are
continuous and then, when exist, commute with infinite sums. Hence 7, 8,

∀c ∈ k, ∆ ⊔⊔ (cx)∗ =
∑

n≥0

cn∆ ⊔⊔ xn =
∑

n≥0

cn
n∑

j=0

(
n

j

)
x j ⊗ xn−j .

For c ∈ N≥2 which is neither a field nor a ring (containing Q), we also get

(cx)∗ = (c − 1)−1
∑

a,b∈N≥1,a+b=c

(ax)∗ ⊔⊔ (bx)∗ ∈ N≥2〈〈X 〉〉,

∆ ⊔⊔ (cx)∗ 6=(c − 1)−1
∑

a,b∈N≥1,a+b=c

(ax)∗ ⊗ (bx)∗ ∈ Q〈〈X 〉〉 ⊗Q〈〈X 〉〉,

because

〈LHS|x ⊗ 1X∗〉 = c and 〈RHS|x ⊗ 1X∗〉 = (c − 1)−1

c−1∑

a=1

a =
c

2
.

For c ∈ Z (or even Q,R,C), the such decomposition is not finite.

7. For S ∈ A〈〈X 〉〉 s.t. 〈S |1X∗〉 = 0, S∗ =
∑

n≥0 S
n is called Kleene star of S .

8. ∆ ⊔⊔ xn = (∆ ⊔⊔ x)n = (1X∗ ⊗ x + x ⊗ 1X∗)n =
∑n

j=0

(

n
j

)

x j ⊗ xn−j .
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Case of rational series and of ∆conc
Arat〈〈X 〉〉 denotes the algebraic closure by 9 {conc,+, ∗} of Â.X in A〈〈X 〉〉.

A〈〈X 〉〉 A〈〈X ∗ ⊗X ∗〉〉

Arat〈〈X 〉〉 Arat〈〈X 〉〉 ⊗A Arat〈〈X 〉〉

t
conc

can Φ|Arat〈〈X〉〉⊗AArat〈〈X〉〉

The dashed arrow may not exist in general, but for any R ∈ Arat〈〈X 〉〉
admitting (λ, µ, η) as linear representation of dimension n, we can get

tconc(R) = Φ(
∑n

i=1 Gi ⊗ Di ).
Indeed, since 〈R |xy〉 = λµ(xy)η = λµ(x)µ(y)η (x , y ∈ X ) then, letting
ei is the vector such that tei =

(
0 . . . 0 1 0 . . . 0

)
, one has

〈R |xy〉 =
n∑

i=1

λµ(x)ei
teiµ(y)η =

n∑

i=1

〈Gi |x〉〈Di |y〉 =
n∑

i=1

〈Gi ⊗ Di |x ⊗ y〉.

Gi (resp. Di ) admits then (λ, µ, ei ) (resp. (
tei , µ, η)) as linear representation.

If A = k being a field then, due to the injectivity of Φ, all expressions of
the type

∑n
i=1 Gi ⊗ Di , of course, coincide. Hence, the dashed arrow (a

restriction of ∆conc) in the above diagram is well-defined.

9. Arat〈〈X 〉〉 is closed under ⊔⊔ . Arat〈〈Y 〉〉 is also closed under .
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Representative series and Sweedler’s dual
Theorem 6 (representative series)
Let S ∈ A〈〈X 〉〉. The following assertions are equivalent

1. The series S belongs to Arat〈〈X 〉〉.

2. There exists a linear representation (ν, µ, η), of rank n, for S with
ν ∈ M1,n(A), η ∈ Mn,1(A) and a morphism of monoids
µ : X ∗ → Mn,n(A) s.t., for any w ∈ X ∗, 〈S |w〉 = νµ(w)η.

3. The shifts 10 {S ⊳ w}w∈X∗ (resp. {w ⊲ S}w∈X∗) lie within a finitely
generated shift-invariant A-module.

Moreover, if A is a field k, the previous assertions are equivalent to

4. There exist (Gi ,Di )i∈Ffinite s.t. ∆conc(S) =
∑

i∈Ffinite Gi ⊗ Di .

Hence, H◦
⊔⊔

(X ) = (krat〈〈X 〉〉, ⊔⊔ , 1X∗ ,∆conc, e) and

H◦ (Y ) = (krat〈〈Y 〉〉, , 1X∗ ,∆conc, e).

Now, let Aexc〈〈X 〉〉 (resp. Arat
exc〈〈X 〉〉) be the set of exchangeable 11 series

(resp. series admitting a linear representation with commuting matrices).

10. The left (resp. right) shift of S by P is P ⊲ S (resp. S ⊳ P) defined by, for
w ∈ X ∗, 〈P ⊲ S |w〉 = 〈S |wP〉 (resp. 〈S ⊳ P|w〉 = 〈S |Pw〉).
11. i.e. if S ∈ Aexc〈〈X 〉〉 then (∀u, v ∈ X ∗)((∀x ∈ X )(|u|x = |v |x) ⇒ 〈S |u〉 = 〈S |v〉).
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Kleene stars of the plane and conc-characters
For any S ∈ A〈〈X 〉〉, let ∇S denotes S − 1X∗ .

Theorem 7 (rational exchangeable series)

1. Arat
exc〈〈X 〉〉 ⊂ Arat〈〈X 〉〉 ∩ Aexc〈〈X 〉〉. If A is a field then the equality

holds and Arat
exc〈〈X 〉〉 = Arat〈〈x0〉〉 ⊔⊔ Arat〈〈x1〉〉 and, for the algebra of

series over subalphabets Arat
fin 〈〈Y 〉〉 := ∪F⊂finiteYA

rat〈〈F 〉〉, we get 12

Arat
exc〈〈Y 〉〉 ∩ Arat

fin 〈〈Y 〉〉 = ∪k≥0A
rat〈〈y1〉〉 ⊔⊔ . . . ⊔⊔ Arat〈〈yk〉〉 ( Arat

exc〈〈Y 〉〉.

2. ∀x ∈ X ,Arat〈〈x〉〉 = {P(1− xQ)−1}P,Q∈A[x]. If k is an algebraically
closed field then k

rat〈〈x〉〉 = spank{(ax)
∗

⊔⊔ k〈x〉|a ∈ K}.

3. If A is a Q-algebra without zero divisors, {x∗}x∈X (resp. {y∗}y∈Y )
are conc-character and algebraically independent over (A〈X 〉, ⊔⊔ )
(resp. (A〈Y 〉, )) within (Arat〈〈X 〉〉, ⊔⊔ ) (resp. (Arat〈〈Y 〉〉, ⊔⊔ )).

4. Let S ∈ A〈〈X 〉〉. If A = k, a field, then t.f.a.e.

a) S is groupe-like, for ∆conc.

b) There exists M :=
∑

x∈X cxx ∈ k̂.X s.t. S = M∗.

c) There exists M :=
∑

x∈X cxx ∈ k̂.X s.t. ∇S = MS = SM.

12. The following identity lives in Arat

exc〈〈Y 〉〉 but not in Arat

exc〈〈Y 〉〉 ∩ Arat

fin 〈〈Y 〉〉,
(y1 + . . .)∗ = limk→+∞(y1 + . . .+ yk)

∗ = limk→+∞ y∗
1 ⊔⊔ . . . ⊔⊔ y∗

k = ⊔⊔ k≥1yk .
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CONTINUITY OVER CHEN SERIES
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Continuity, indiscernability and growth condition
For i = 0, 2, let (ki , ‖.‖

i
) be a semi-normed space and gi ∈ Z.

Definition 8
1. Let Cl be a class of k1〈〈X 〉〉. Let S ∈ k2〈〈X 〉〉 and it is said to be

a) continuous over Cl if, for Φ ∈ Cl , the following sum is convergent∑

w∈X∗

‖〈S |w〉‖
2
‖〈Φ|w〉‖

1
.

We will denote 〈S‖Φ〉 the sum
∑

w∈X∗〈S |w〉〈Φ|w〉 and

k2〈〈X 〉〉cont the set of continuous power series over Cl .
b) indiscernable over Cl iff, for any Φ ∈ Cl , 〈S‖Φ〉 = 0.

2. Let χ1 and χ2 be real positive functions over X ∗. Let S ∈ k1〈〈X 〉〉.

a) S satisfies the χ1−growth condition of order g1 if it satisfies
∃K ∈ R+, ∃n ∈ N, ∀w ∈ X≥n, ‖〈S |w〉‖

1
≤ Kχ1(w) |w |!g1 .

We denote by k
(χ1,g1)
1 〈〈X 〉〉 the set of formal power series in

k1〈〈X 〉〉 satisfying the χ1−growth condition of order g1.

b) If S is continuous over k
(χ2,g2)
2 〈〈X 〉〉 then it will be said to be

(χ2, g2)-continuous. The set of formal power series which are

(χ2, g2)-continuous is denoted by k
(χ2,g2)
2 〈〈X 〉〉cont.
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Convergence condition
Proposition 1
Let χ1 and χ2 be real positive functions over X ∗.
Let g1 and g2 ∈ Z such that g1 + g2 ≤ 0.

1. Let k
(χ1,g1)
1 〈〈X 〉〉 and let P ∈ k1〈X 〉.

The right residual of S by P belongs to k
(χ1,g1)
1 〈〈X 〉〉.

2. Let R ∈ k
(χ2,g2)
2 〈〈X 〉〉 and let Q ∈ k2〈X 〉.

The concatenation QR belongs to k
(χ2,g2)
2 〈〈X 〉〉.

3. χ1, χ2 are morphisms over X ∗ satisfying
∑

x∈X χ1(x)χ2(x) < 1.

If F1 ∈ k
(χ1,g1)
1 〈〈X 〉〉 (resp. F2 ∈ k

(χ2,g2)
2 〈〈X 〉〉) then F1 (resp. F2) is

continuous over k
(χ2,g2)
2 〈〈X 〉〉 (resp. k

(χ1,g1)
1 〈〈X 〉〉).

Proposition 2
Let Cl ⊂ k1〈〈X 〉〉 be a monoid containing {etx}t∈k1

x∈X . Let S ∈ k2〈〈X 〉〉cont.

1. If S is indiscernable over Cl then for any x ∈ X , x ⊳ S and S ⊲ x
belong to k2〈〈X 〉〉cont and they are indiscernable over Cl .

2. S is indiscernable over Cl iff S = 0.
23 / 37



Iterated integrals over ωi(z) = uxi (z)dz and along z0  z

Recall that Ω is a simply connected domain with 1H(Ω) as neutral element,
A := H(Ω) and C0 is a differential subring of A (∂(C0) ⊂ C0).
C{{(gi )i∈I}} denotes the differential subalgebra of A generated by (gi )i∈I ,
i.e. the C-algebra generated by gi ’s and their derivatives

{ux}x∈X : elements in C0 ∩ A−1 in correspondence with {θx}x∈X (θx = u−1
x ∂).

Let Θ be defined by Θ(w) = θxΘ(u), for w = xu ∈ XX ∗, and Θ(1X∗) = Id.

The iterated integral over ωi (z) = uxi (z)dz and along z0  z is defined by
αz
z0(1X∗) = 1Ω,

αz
z0(xi1 . . . xik ) =

∫ z

z0

ωi1(z1) . . .

∫ zk−1

z0

ωik (zk).

∂αz
z0(xi1 . . . xik ) = uxi1 (z)

∫ z

z0

ωi2(z2) . . .

∫ zk−1

z0

ωik (zk).

∀w ∈ X ∗, Θ(w̃)αz
z0(w) = 1Ω.

spanC{∂
lαz

z0(w)}w∈X∗,l≥0 ⊂ spanC{{(ux )x∈X}}{α
z
z0(w)}w∈X∗

⊂ span
C{{(u±1

x )x∈X }}{α
z
z0(w)}w∈X∗

∼= C{{(u±1
x )x∈X }} ⊗C spanC{α

z
z0(w)}w∈X∗?
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Examples of linear differential equation
Let us consider the following examples, with k = C(z)

(∂ − z)y = y ′ − zy = 0. (1)

1. ez
2/2 is solution of (1).

2. cez
2/2 = ez

2/2e log c is an other solution (c ∈ R \ {0}).

3. {ez
2/2} is a fundamental set of solutions of (1).

4. k{ez
2/2} is a Picard-Vessiot extension related to (1).

For θ0 = z∂, θ1 = (1− z)∂, since ∂θ1θ0 ∈ k[∂] then let us consider

(∂θ1θ0)y = (z(1− z)∂3 + (2− 3z)∂2 − 1)y (2)

= z(1− z)y (3) + (2− 3z)y ′′ − y ′ = 0. (3)

1. (∂θ1θ0)Li2 = 0 meaning that Li2 is solution of (3).

2. c Li2 = Li2 e
log c is an other solution (c ∈ R \ {0}) but it is not

independent to Li2.

3. {Li2, log, 1Ω} is a fundamental set of solutions of (3).

4. k{Li2, log, 1Ω} is a Picard-Vessiot extension 13 related to (3).

13. k{Li2(z)} = k⊗ C[Li2(z), log(1− z), log(z)].
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Chen series of {ωi}i≥1 and along z0  z

Since iterated integrals satisfy the Chen’s lemma (or Friedrichs criterion), i.e.
αz
z0(u ⊔⊔ v) = αz

z0(u)α
z
z0(v) (u, v ∈ X ∗), then the Chen series is given by 14

Cz0 z :=
∑

w∈X∗

αz
z0(w)w = (αz

z0 ⊗ Id)DX =

ց∏

l∈LynX

eα
z
z0
(Sl )Pl ∈ H(Ω)〈〈X 〉〉.

Theorem 9
If R ∈ Crat〈〈X 〉〉 with minimal representation of dimension n then 15

y(z0, z) = αz
z0(R) = 〈R‖Cz0 z〉 and there exists l = 0, .., n − 1 s.t.

{∂ky}0≤k≤l is C0-linearly independent and al , . . . , a1, a0 ∈ C0 s.t.
(al∂

l + al−1∂
l−1 + . . .+ a1∂ + a0)y = 0.

14. A is supposed contain Q. On H ⊔⊔ (X ) and H (Y ), we also get

DX :=
∑

w∈X∗

w ⊗ w =
∑

w∈X∗

Sw ⊗ Pw =

ց
∏

l∈LynX

e
Sl⊗Pl ,

DY :=
∑

w∈Y∗

w ⊗ w =
∑

w∈Y∗

Σw ⊗ Πw =

ց
∏

l∈LynY

e
Σl⊗Πl ,

where {Pl}l∈LynX (resp. {Πl}l∈LynY ) is a basis of Lie algebra of primitive
elements and {Sl}l∈LynX (resp. {Σl}l∈LynY ) is a transcendence basis of
(A〈X 〉, ⊔⊔ , 1X∗) (resp. (A〈Y 〉, , 1Y∗)).
15. Subject to convergence.
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Chen series and differential equations
For any n ≥ 0, one has 16 d

nCz0 z = pnCz0 z with

pn =
∑

wgtr=n

∑

w∈X n

deg r∏

i=1

(∑i
j=1 rj + j − 1

ri

)
τr(w) ∈ C0〈X 〉,

where, for any word w = xi1 . . . xik ∈ X ∗ associated to the
derivation multi-index r = (r1, . . . , rk) ∈ Nk of degree deg r = |w |
and of weight wgtr = |w |+

∑k
i=1 ri , τr(w) := τr1(xi1) . . . τrk (xik ).

Proposition 3

Let K be a compact on Ω. There is cK ∈ R≥0 and a morphism MK s.t.
∀w ∈ X ∗, ‖〈Cz0 z |w〉‖K ≤ cKMK (w) |w |!−1.

Let R ∈ Crat〈〈X 〉〉 s.t. 〈R‖Cz0 z〉 exists and αz
z0(R) = 〈R‖Cz0 z〉. Thus,

∀y ∈ X , θyα
z
z0(R) =

∑
x∈X ux(z)u

−1
y (z)αz

z0(R ⊲ x).

The following assertions are equivalent :

1. αz
z0(R) satisfies a ODE with coefficients in (C0, ∂).

2. There is p ∈ C0〈X 〉 s.t. 〈R‖pCz0 z〉 = 〈R ⊲ p‖Cz0 z〉 = 0.

16. Considering A = (H(Ω), ∂) as the differential ring of holomorphic functions
on Ω, equipped 1Ω as the neutral element, the differential ring (H(Ω)〈〈X 〉〉, d)
is defined, for any S ∈ H(Ω)〈〈X 〉〉, by dS =

∑

w∈X∗(∂〈S |w〉)w ∈ H(Ω)〈〈X 〉〉.
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More about Chen series

Chen series Cz0 z of {ωi}i≥1 satisfies the following Freidrichs criterion
∀u, v ∈ X ∗, 〈Cz0 z |u ⊔⊔ v〉 = 〈Cz0 z |u〉〈Cz0 z |v〉.

On the other hand, for any u and v ∈ X ∗,
〈Cz0 z |u〉〈Cz0 z |v〉 = 〈Cz0 z ⊗ Cz0 z |u ⊗ v〉,

〈Cz0 z |u ⊔⊔ v〉 = 〈∆ ⊔⊔ Cz0 z |u ⊗ v〉.
Hence, ∆ ⊔⊔ Cz0 z = Cz0 z ⊗ Cz0 z and 〈Cz0 z |1X∗〉 = 1.

Note that Cz0 z only depends on the homotopy class of z0  z and the
endpoints z0, z . One has Cz0 zCz1 z0 = Cz1 z . Or equivalently

17,

∀w ∈ X ∗, 〈Cz1 z |w〉 =
∑

u,v∈X∗,uv=w

〈Cz0 z |u〉〈Cz1 z0 |v〉.

Note also that, for g ∈ H(Ω), one has Cg(z0) g(z) = g∗Cz0 z , i.e. the
Chen series of {g∗ωi}i≥1 along the path g∗(z0  z).

Example 10 (with ω0(z) = z
−1
dz and ω1(z) = (1− z)−1

dz)
g(z) z z−1 (z − 1)z−1 z(z − 1)−1 (1− z)−1 1− z

g∗ω0 ω0 −ω0 −ω1 − ω0 ω1 + ω0 ω1 −ω1

g∗ω1 ω1 ω1 + ω0 −ω0 −ω1 −ω1 − ω0 −ω0

17. Although ∆concw =
∑

u,v∈X∗
,uv=w u ⊗ v but ∆concCz1 z 6=Cz0 z ⊗ Cz1 z0 .
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NONCOMMUTATIVE PV THEORY
AND INDEPENDENCE VIA WORDS
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Noncommutative differential equations
Considering A = (H(Ω), ∂) as the differential ring of holomorphic
functions on Ω, the differential ring (H(Ω)〈〈X 〉〉,d) is defined, for any
S ∈ H(Ω)〈〈X 〉〉, by

dS =
∑

w∈X∗

(∂〈S |w〉)w ∈ H(Ω)〈〈X 〉〉.

The Chen series Cz0 z satisfies the following differential equation

(NCDE ) dS = MS , with M =
∑

x∈X

uxx .

∆ ⊔⊔ M =
∑

x∈X

ux(1X∗ ⊗ x + x ⊗ 1X∗) = 1X∗ ⊗M +M ⊗ 1X∗ .

More generally, for any k ≥ 1, Cz0 z satisfies dkS = QkS with
Qk ∈ C{{(u±1

x )x∈X }}〈X 〉 satisfying the recursion
Q0 = 1 and Qk = Qk−1M + dQk−1.

Qk can be computed explicitly by (summing over words w = xi1 . . . xik
and derivation multiindices r = (r1, . . . , rk) of degree deg r =|w |= k and
of weight wgt r = k + r1 + . . .+ rk)

Qk =
∑

wgt r=k,w∈Xdeg r

deg r∏

j=1

(∑j
j=1 rj + j − 1

rk

)
τr(w), where

τr(w) = τr1(xi1) . . . τrk (xik ) = (∂r1uxi1 )xi1 . . . (∂
rkuxik )xik ∈ C{{(u±1

x )x∈X }}〈X 〉.
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First step of noncommutative PV theory
1. The space of solutions of

(NCDE ) dS = MS , with M =
∑

x∈X

uxx .

is a right free C〈〈X 〉〉-module of rank 1.

2. By a theorem of Ree, Cz0 z is a ⊔⊔ −group-like solution of (NCDE )
and it can be obtained as the limit of a convergent Picard iteration,
initialized at 〈Cz0 z |1X∗〉 = 1H(Ω)1X∗ , for ultrametric distance.

3. If G and H are ⊔⊔ −group-like solutions (NCDE ) there is a
constant Lie series C such that G = HeC (and conversely).

From this, it follows that

◮ the differential Galois group of (NCDE ) + ⊔⊔ −group-like is the
group 18 {eC}C∈LieC.1Ω 〈〈X〉〉.

Which leads us to the following definition

◮ the PV extension related to (NCDE ) is Ĉ0.X{Cz0 z}.

It, of course, is such that Const(C0〈〈X 〉〉) = ker d = C.1Ω〈〈X 〉〉.

18. In fact, the Hausdorff group (group of characters) of H ⊔⊔ (X ).
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Basic triangular theorem over a differential ring
Suppose that the C-commutative ring A is without zero divisors and
equipped with a differential operator ∂ such that C = ker ∂.
Let S ∈ A〈〈X〉〉 be a group-like solution of (NCDE ) in the following form

S =
∑

w∈X∗

〈S |w〉w =
∑

w∈X∗

〈S |Sw 〉Pw =

ց∏

l∈LynX

e〈S|Sl 〉Pl .

Then

1. If H ∈ A〈〈X〉〉 is another grouplike solution then there exists
C ∈ LieA〈〈X 〉〉 such that S = HeC (and conversely).

2. The following assertions are equivalent

a) {〈S |w〉}w∈X∗ is C0-linearly independent,

b) {〈S |l〉}l∈LynX is C0-algebraically independent,

c) {〈S |x〉}x∈X is C0-algebraically independent,

d) {〈S |x〉}x∈X∪{1X∗} is C0-linearly independent,

e) {ux}x∈X is such that, for f ∈ Frac(C0) and (cx)x∈X ∈ C(X ),∑

x∈X

cxux = ∂f =⇒ (∀x ∈ X )(cx = 0).

f) (ux)x∈X is free over C and ∂Frac(C0) ∩ span
C
{ux}x∈X = {0}.
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Examples of positive cases over X = {x},A = (H(Ω), ∂)

1. Ω = C, ux(z) = 1Ω, C0 = C{{u±1
x }} = C.

αz
0(x

n) = zn/n!, for n ≥ 1. Thus, dS = xS and

S =
∑

n≥0

αz
0(x

n)xn =
∑

n≥0

zn

n!
xn = ezx .

Moreover, αz
0(x) = z which is transcendent over C0

and the family {αz
0(x

n)}n≥0 is C0-free. Let f ∈ C0 then ∂f = 0. Thus,
if ∂f = cux then c = 0.

2. Ω = C\]−∞, 0], ux (z) = z−1, C0 = C{{z±1}} = C[z±1] ⊂ C(z).

αz
1(x

n) = logn(z)/n!, for n ≥ 1. Thus dS = z−1xS and

S =
∑

n≥0

αz
1(x

n)xn =
∑

n≥0

logn(z)

n!
xn = zx .

Moreover, αz
1(x) = log(z) which is transcendent over C(z) then

over C[z±1]. The family the family {αz
1(x

n)}n≥0 is C(z)-free and
then C0-free. Let f ∈ C0 then ∂f ∈ spanC{z

±n}n 6=1. Thus,
if ∂f = cux then c = 0.
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Examples of negative cases over X = {x},A = (H(Ω), ∂)

1. Ω = C, ux(z) = ez , C0 = C{{e±z}} = C[e±z ].

αz
0(x

n) = (ez − 1)n/n!, for n ≥ 1. Thus, dS = ezxS and

S =
∑

n≥0

αz
0(x

n)xn =
∑

n≥0

(ez − 1)n

n!
xn = e(e

z−1)x .

Moreover, αz
0(x) = ez − 1 which is not transcendent over C0 and

and {αz
0(x

n)}n≥0 is not C0-free. If f (z) = cez ∈ C0 (c 6= 0) then
∂f (z) = cez = cux(z).

2. Ω = C\]−∞, 0], ux (z)= za(a /∈ Q),
C0 = C{{z , z±a}} = spanC{z

ka+l}k,l∈Z.

αz
0(x

n) = (a+ 1)−nzn(a+1)/n!, for n ≥ 1. Thus, dS = zaxS and

S =
∑

n≥0

αz
0(x

n)xn =
∑

n≥0

zn(a+1)

(a + 1)nn!
xn = e(a+1)−1z (a+1)x .

Moreover, αz
0(x) = za+1/(a + 1) which is not transcendent over C0

and {αz
0(x

n)}n≥0 is not C0-free. If f (z) = cza+1/(a + 1) ∈ C0
(c 6= 0) then ∂f (z) = cza = cux(z).
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Chen series of ω0(z) = z
−1
dz and ω1(z) = (1− z)−1

dz

Let γ0(ε) and γ1(ε) be the circular paths of radius ε encircling 0 and 1
clockwise, respectively. In particular, letting β = β1 − β0, one considers

γ0(ε, β) = εe iβ0  εe iβ1 ⊂ γ0(ε),
γ1(ε, β) = 1− εe iβ0  1− εe iβ1 ⊂ γ1(ε).

On the one hand, one has, for any i = 0 or 1 and w ∈ X+,
| 〈Cγi (ε,β)|w〉 |≤ ε|w|xi β|w||w |!−1.

It follows then
Cγi (ε,β) = e iβxi + o(ε) and Cγi (ε) = e2iπxi + o(ε).

On the other hand, for R ∈ Crat〈〈X 〉〉 of minimal representation (λ, µ, η)
of dimension n, one has, for any w ∈ X ∗,

| 〈R |w〉 |≤ ‖λ‖
1,n
∞ ‖µ(w)‖

n,n
∞ ‖η‖

n,1
∞ .

Hence,

αz
z0(R) := 〈R || Cz0 z〉 = λ((αz

z0 ⊗ µ)DX )η = λ

( ց∏

l∈LynX

eα
z
z0
(Sl )µ(Pl )

)
η.

Note that the map αz
z0 : C

rat〈〈X 〉〉 → H(Ω) is not injective. For example,
αz
z0(z0x

∗
0 + (1− z0)(−x1)

∗ − 1X∗) = 0.
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Dom(Li•)
Let CC := C[za, (1− z)b]a,b∈C be equipped with ∂.

Proposition 4
Let Dom(Li•) be the set of S =

∑
n≥0 Sn with Sn =

∑
|w |=n〈S |w〉w s.t.∑

n≥0 LiSn
converges uniformly on any compact of Ω. Then Dom(Li•),

containing Crat
exc〈〈X 〉〉 ⊔⊔ C〈X 〉, is closed by shuffle. Moreover,

∀S ,T ∈ Dom(Li•), LiS ⊔⊔ T = LiS LiT .

For R ∈ Dom(Li•), let ρ := 〈R‖L〉. Then, ∀n ≥ 0, ∂nρ = 〈R‖dnL〉 and

d
nL = pnL with pn =

∑

wgtr=n

∑

w∈X n

deg r∏

i=1

(∑i
j=1 rj + j − 1

ri

)
τr(w) ∈ C〈X 〉,

where, for any word w = xi1 . . . xik ∈ X ∗ associated to the derivation
multi-index r = (r1, . . . , rk) ∈ Nk of degree deg r = |w | and of weight

wgtr = |w |+
∑k

i=1 ri , τr(w) := τr1(xi1) . . . τrk (xik ) and, for any r ≥ 0,
τr (x0) = −r !(−z)−(r+1)x0 and τr (x1) = r !(1− z)−(r+1)x1.

Proposition 5
The following assertions are equivalent :

1. ρ satisfies a differential equation with coefficients in (CC, ∂).

2. There exists P ∈ CC〈X 〉 such that 〈R‖PL〉 = 〈R ⊲ P‖L〉 = 0.
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