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Picard-Vessiot theory of ordinary differential equation

(k,0) a commutative differential ring without zero divisors.
Const(k) = {c € k|0c = 0} is supposed to be a field.

(ODE) (2,0" + a, 10" Y+ ...+ a0)y =0, ao,...,an_1,an € k.

1

a, ~ is supposed to exist.

Definition 1
1. Let y1,...,yn be Const(k)-linearly independent solutions of (ODE).

Then {y1,...,yn} is called a fundamental set of solutions of (ODE)
and it generates a Const(k)-vector subspace of dimension at most n.

2. If' M =k{y1,...,yn} and Const(M) = Const(k) then M is called
a Picard-Vessiot extension related to (ODE)

3. Let k C K; and k C K be differential rings. An isomorphism of
rings o : K; — Koy is a differential k-isomorphism if
Vae Ky, 0O(o(a)) =o0(0a) and, if a €k, o(a) = a.
If K; = K; =K, the differential galois group of K over k is by
Gal(K) = {o|o is a differential k-automorphism of K}.
1. Let Ry, R> be differential rings s.t. Ri C R»>. Let S be a subset of R».
R1{S} denotes the smallest differential subring of R containing R.
R1{S} is the ring (over R;) generated by S and their derivatives of all orders.
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Linear differential equations and Dyson series
Let ag,...,a, € C(z), (an(2)0"+ ...+ a1(2)0+ ao(z))y(z) = 0.

9q(z) = A(2)q(z),  Alz) € M,,n(C(2)),
(ED) q(z0) = n, A € My 5(C),
y(z) = Xq(2), n e M;1(C).

By successive Picard iterations, with the initial point g(z) = 71, we get
y(2) = AU(z0; z)n, where U(zy; z) is the following functional expansion
V4

U(z0; 2) = Z/ A(z1)dz /21 Alz)dzy . .. /Zki1 A(z)dzk,(Dyson series)

k>0 20 20 20
and (zp, 21 ...,2k, z) is a subdivision of the path of integration zy ~> z.
In order to find the matrix Q(z; z) s.t.
U(z0; z) = exp[Q(z0;2)] = T exp/ A(s)ds, (Feynman's notation)

20
Magnus computed Q(zo; z) as limit of the following Lie-integral-functionals

Qi(z0;2) = /ZA(Z)dSa

Qu(z0:2) = / “IAG) + [A(2), Qa1 (20: 9)]/2
+|(:)[A(Z)v Qu—1(20; 5)], Q—1(20; 5)] /12 + .. .)ds.

2. Subject to convergence.
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Fuchsian linear differential equations
Let us consider, here, o = {si}i=0,...m as set of simple poles of (ED).

. M; € Mn,n((:),
= ’zzo: Miui(z), where { u(z) = (z—s)L e Cz).

dalz) — (ém,-uxz))q(z)

9(2) =
y(z) = Aq(2).
Let 7(Q2) be the ring of holomorphic functions (1q : neutral element) over
the multi-cleft complex plane Q (from s;'s to infinities without crossing).
Let X* be the set of words over X = {xo,...,xn} and
aZ @M : C(X) @ C(X) = M, ,(H(Q))
(20 ~ z is the path of integration previously introduced) s.t.
M(].X*) =1d, and M(X,'l .- -X,'k) = M,‘l - M,‘k,

Z dz Z=1 dz
oZ (1x+) = 1y and ajo(x,-l---x,-k):/ ! / .
20

) z1 — Sil Zg — Sl'k '
Then3 y( )= )\U(zo z)n with
U(z; 2) ZM =(M® ay) ZW@W

weX* weX*

(ED)

3. Subject to convergence.
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Examples of linear dynamical systems

Example 2 (Hypergeometric equation)

Let ty, t1, to be parameters and
z(1 = 2)y(z) + [t — (to + 1 + 1)Z]y(2) — tot1y(2) =
Let q1(z) = —y(z) and g2(z) = (1 — z)y(z). Hence, one has

-t o(e5)

and _
(55) - <% =) (66

V4
a1z
= M M
(un(z ) o+ (@) ().
where uo( )=z~ =(1- and
0o 1
(totl and Ml (0 to — to — tl) '
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Nonlinear differential equations
%) = (Y Ti@u() )(a)

(NED)
q(z) = Qo
y(z) = f(q(2)),
where
> u; € (k, 8),
> the state ¢ = (qu,. - ., gn) belongs the complex analytic manifold @

of dimension n and qq is the initial state,
» the observation f € O, with O the ring of analytic functions over Q,
» fori=0.1,T,=(T}q)9/0q1 + -+ T"(q)0/Iqm) is an analytic
vector field over Q,with T/(q) € O,for j=1,...,n.

With X and o given as previously, let the morphism 7 be defined by
7(1x-) =Id and 7(x; == %) = Ty ... Tj,. Then® y(z) = T o fi_ with

T=3Y rwoiw)=(roa) Y wew

weX* weX*

4. Subject to convergence.
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Examples of nonlinear dynamical systems (1/2)

Example 3 (Harmonic oscillator)

Let k1, ko be parameters and 0y(z) + kiy(z) + kay?(z) = u1(z)
which can be represented by the following state equations (with n = 1)

y(z2) = q(2),
9q(z) = Ao(q)uo(z) + Ai(q)ui(2),
where Ay = —(qu—l—k2q2)2 and A; = 2

dq oq

Example 4 (Duffing equation)
Let a, b, ¢ be parameters and 92y(z) + ady(z) + by(z) + cy*(z) = u1(z)
which can be represented by the following state equations (with n = 2)
) y(z) = a(2), .
z
I T RN
Ao(q)uo(z) + Ar(q)ui(2),

h Ay = — b2 3)— — and A} = —.
where Ay (ag2 + ql+cql)aq2+cmaq1 an 1 9%
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Examples of nonlinear dynamical systems (2/2)

Example 5 (Van der Pol oscillator)

Let v, g be parameters and
9°x(z) — Y[ + x(2)?]0x(z) + x(z) = g cos(wz)
which can be tranformed into (with C is some constant of integration)

Ox(z) = y[1 + x(2)?/3]x(z) — /z (s)ds + = sm(wz) + C.

Supposing x = dy and u1(z) = gsm(wz)/w +C, it Ieads then to
9%y(z) = 1[0y(2) + (9y(2))*/3] + y(2) + w(2)

which can be represented by the following state equations (with n = 2)
y(z) = al2),

(522) = (o ) o+ (3) it
= Ao(q)uo(2) + Ar(q)u(2),

0
where Ay = [Py(qg+q§/3’>)+q1]a—q2—qua—q1 and A = 7
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DUAL LAWS AND REPRESENTATIVE SERIES
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Dual laws in bialgebras

Startting with a k — AAU (k is a ring) A. Dualizing 4 : A®x A — A, we
get the transpose ‘1 : AY — (A ®k .A)Y so that we do not get a
co-multiplication in general.

> Remark that when k is a field, the following arrow is into (due to
the fact that AY @k A" is torsionfree)
d: AV Xk AY — (A@k .A)V.

» One restricts the codomain of i to AY ®k A" and then the domain
o (fp)1o(AY @k AY) =: A°.

t

AY K (A @k A)Y
T . o

A° a AV @ AY
can]\ ]\j@j

A = A° @y A°

The descent stops at first step for a field k and then A°° = A°.
The coalgebra (A°, A,) is called the Sweedler's dual of (A, 1).
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Case of algebras noncommutative series
> X denotes the ordered alphabets Y := {yk}x>1 or X := {xo,x1}.
On the free monoid (X*, conc, 1x+), we use the correspondences
Xgl_lxl . xg'_lxl € X*xq gysl Y, €Y 6 (s1,...,5) €N
X
Let LynX denote the set of Lyndon words generated by X.

> Let (Liea(X)),[]) and (A(X)), conc) (resp. (Liea(X),[.]) and
(A{X), conc)) are the algebras of (Lie) series (resp. polynomials).
{Pi}tiecynx (resp. {[;}iccyny) is a basis of Lie algebra of primitive
elements and {S;}iccyny (resp. {X/}iecyny) is a transcendence
basis of (A(X), w ,1xy«) (resp. (A(Y), wi, 1y«)).

> H ., (X):=(A(X),conc, 1y, A, ,e) and
Huw (V) := (A(Y),conc, 1y, A, e) with® (for x € X,y; € Y)
A,x = xQLlys+ 1y ®x,
Awyr = yi®@lys+1ly- @Y+ i Yk @Y

» The dual law associated to conc is defined, for w € X*, by
Aconc(w) = EuyeX*,uv:w u®v.
5. Or equivalently, for x,y € X,yi,y; € Y and u,v € X" (resp. Y*),
uw lyx =1y~ wu=uvand xu w yv = x(uw yv) + y(xu w v),

utlly« = 1y« = u = u and xju yv = yi(u s yiv) 4y (viv ) + yigj(u e v)
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Dualizable laws in conc-shuffle bialgebras (1/2)
We can exploit the basis of words as follows

1. Any bilinear law (shuffle, stuffle or any) p: A(X) ®a A(X) — A(X)
can be decribed through its structure constants wrt to the basis of
words, i.e. for u,v,w € X*, Ty, = (u(u® v)|w) so that

H(U ® V) = ZWGX* rz/,vW

2. In the case when ']/, is locally finite in w, we say that the given
law is dualizable, the arrow fu restricts nicely to A(X) < A{(X)
and one can define on the polynomials a comultiplication by

AP«(W) = Zu,veX* I_uW,vu X v.
3. When the law p is dualizable, we have

ALX) - AfxT @ &™)

Ca"I T¢|A<X>®AA<X>

= A(X) @4 A(X)

The arrow A, is unique to be able to close the rectangle and
A, (P) is defined as above.

14 /61



Dualizable laws in conc-shuffle bialgebras (2/2)
4. Proof that the arrow A(X) ®4 A(X) — A(X* ® X*)) is into :

Let T=3", Pi®a Q; such that ®(T) = 0. Rewriting T as a

finitely supported sum T = Z Cuvu ® v (this is indeed the iso
u,veX*
between A(X) ®a A(X) and A[X* x X*]), ®(T) is by definition of
® the double series (here a polynomial) s.t. (®(T)|u® v) = ¢y . If
®(T) =0, then for all (u,v) € X* x X*, ¢,, = 0 entailing T =0.
We extend by linearity and infinite sums, for S € A{(Y)) (resp. A{X), by

AwS= D (SwhAww €AY ®Y*),

wey*

AconcS = D (SIW)Aconew € A(X* @ X*),
weX *

AyS= ) (SWALw €AX*®X).
weX*

A(X) ® A(X)) does not embed injectively in® A(X* ® X*) = [A(XN](X)).
6. A(X)) ® A(X)) contains the elements of the form 3., finite Gi ® Di (with

(Gi, Di) € A{X) x A{X))) which can be interpreted as double series. But, a priori,

the images of different dual laws cannot be, in general reduced to such sums.

Furthermore, the arrow tensor products of series—double series may

not be into, when A is only a ring.

15/61



Extended Ree's theorem

Let S € A(Y)) (resp. A(X), Ais a commutative ring containing Q.
The series S is said to be

1. a w (resp. conc, w )-character iff, for any w,v € Y* (resp. X™*),
(S|w)(S|v) = (S|w i v) (resp. (S|wv), (S|w w v)) and (S|1) = 1.
2. an infinitesimal w1 (resp. conc, w )-character iff, for any
w,v € Y* (resp. &%), (S|lwwv) = (S|w)(v|ly-) 4+ (w[ly-)(S|v)
(resp. (S|wv) = (S|w)(v[1x+) + (w[lx=)(S]|v),
(Slw w v) = (SIw)(v[Lx«) + (w[lx+)(S|v)).

3. a group-like series iff (S|1y«) =1and A S =P (S® S) (resp.
Aconc5 = ¢’(5 oy 5),A|_+_| S= (D(S & S))

4. a primitive series iff Ay S =1y« ® S+ S ® 1y~ (resp.
Aconcsle* ®5+5®1X*,Auu S = 12{* ®5+5®1X*)

Then the following assertions are equivalent
1. Sisa w (resp. conc and w )-character.
log S an infinitesimal s (resp. conc and w )-character.

. S is group-like, for Ay (resp. Aconc and A ).

AW

log S is primitive, for Ay (resp. Aconc and A, )
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Extension by continuity (infinite sums)
Now, suppose that the ring A (containing Q) is a field k. Then
AL k(X)) = k(X)) @k(X) and A k(YY) = k(YY) @k(Y)
are graded for the multidegree. Then A 4, is graded for the length. Their
extension to the completions (i.e. k{(X")) and k{(X* ® X*)) are
continuous and then, when exist, commute with infinite sums. Hence

Veek A (o) =Y AL x"=Y ¢ Z<>xf®x

n>0 n>0 Jj=0

7,8

For ¢ € N>, which is neither a field nor a ring (containing Q), we also get

(@) =(c—1)7" > () w(bx)" €Nxa(a),

a,beEN>q,a+b=c

AL (ex)#Ac—1)"1 > (ax) @ (bx) €QX) @Q(x),
a,beN>q,a+b=c
because -

(LHS|x ® 1x-) =c and (RHS|x ® 1x+) = (c — 1)~ Za——

For c € Z (or even Q, R, C), the such decomposition is not flnlte

7. For S € A(X)) s.t. (S[lx+) =0, §* =3 ;5" is called Kleene star of S.

8. A, x"=(A 4 x)"=(1x- ®x+x®1x*)":zj'7:0 (;)xj®x"_j.
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Case of rational series and of Aconc
A" (X)) denotes the algebraic closure by® {conc, +, *} of AX in ALX).

A AfXT ® X))
can]\ T(D ‘ ATAL (X)) @ pAT3Y (X))
ATBE(XN) mmmmmmmoe oo y ATE(X) @4 ATE(X)

The dashed arrow may not exist in general, but for any R € A (X))

admitting (X, u,n) as linear representation of dimension n, we can get
tconc(R) = ¢(X.1_, G ® D;).

Indeed, since (R|xy) = Au(xy)n = Au(x)u(y)n (x,y € X) then, letting

e; is the vector such that fe;= (0 ... 0 1 0 ... 0), one has

(Rlxy) = Zm etenlyin = S (Gl (Dily) = S(G @ Dilx @ y).
i=1 i=1
G; (resp. D) admlts then (A, i, ;) (resp. (‘e u,m)) as linear representation.
If A=k being a field then, due to the injectivity of ®, all expressions of
the type 27:1 G; ® Dj, of course, coincide. Hence, the dashed arrow (a
restriction of Aconc) in the above diagram is well-defined.

9. A" (X)) is closed under w . A ((Y)) is also closed under L.
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Representative series and Sweedler’s dual
Theorem 6 (representative series)
Let S € A(X)). The following assertions are equivalent

1. The series S belongs to A" ((X')).

2. There exists a linear representation (v, j1,m), of rank n, for S with
v e My ,(A),n € Mp1(A) and a morphism of monoids
e X* = M, o(A) s.t., forany w € X*, (S|lw) = vu(w)n.

3. The shifts!® {Saw}yex~ (resp. {w> S}yex~) lie within a finitely
generated shift-invariant A-module.

Moreover, if A is a field k, the previous assertions are equivalent to
4. There exist (G,', Di)ieFﬁ,—,,’te s.t. Aconc(S) = ZieFﬁnite G ® D;.

Hence, H°, (X) = (K™*(X)), w ,1x+, Aconc,e) and

H sy (Y) = (krat<<y>>’ w1, 1y, Aconc, e)'

Now, let Ae.. (X)) (resp. A% (X)) be the set of exchangeable!! series

(resp. series admitting a linear representation with commuting matrices).

10. The left (resp. right) shift of S by P is P> S (resp. S < P) defined by, for

w e X", (P> S|w) = (S|wP) (resp. (S < P|lw) = (S|Pw)).

11. e if S € Aexc (X)) then (Vu,v € X*)((¥Vx € X)(Julx =v|x) = (Slu) = <5L‘;//>2i




Kleene stars of the plane and conc-characters
For any S € A(X)), let VS denotes S — 1 y-.

Theorem 7 (rational exchangeable series)
1 ARE X)) C A(X) N Aexc (X)) If A is a field then the equality

exc

holds and A% (X)) = A" ((xo)) w A™%((x1)) and, for the algebra of
series over subalphabets ALY (YY) := Urc . Yy A (F)), we get!?
ASLY ) AR ) = Um0 A (ya)) w - w A (yi) © ALY

2. Vx e X, A (x) = {P(1 —xQ) '} p,qea- Ifk is an algebraically
closed field then k**'((x)) = span, {(ax)* w k{x)|a € K}.

3. If Ais a Q-algebra, {x*}xcx (resp. {y*}ycv) are conc-character
and alg. free over (A{X), w ,1x~) (resp. (A(Y), w,1y+)) within
(AT(X), w ,1x+) (resp. (A™(Y)), w ,1y«)).

4. Let S € A(X)). If A=k, a field, then t.f.a.e.

a) S is groupe-like, for Aconc.

b) There exists M := 3 ., cxX € kX st S =M

c) There exists M :=>" .1 X € kX st VS =MS=SM.
12. The following identity lives in A% ({(Y)) but not in ARL{Y) NAR(Y)),

+..) =lime oo+ ) = limMe ooy W i Y= wr s Vi
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Triangular sub bialgebras of (A™(X)), w , 1x+, Aconc, €)

Let (v, u,n) be a linear representation of R € A™%((X)) and L be the Lie
algebra generated by {(x)}xex.
Let M(x) := u(x)x, for x € X. Then R = vM(X*)n. If {p(x)}xex are
triangular then let D(X) (resp. N(X)) be the diagonal (resp. nilpotent)
letter matrix s.t. M(X) = D(X) + N(X) then
M(X*) = ((D(X*)T(X))*D(X*)). Moreover, if X = {xp,x1} then
M(X*) = (MM (x0))" M(x7) = (M(xg)M(x1))"M(xg).
If Ais an algabraically closed field, the modules generated by the
following families are closed by conc, w and coproducts :

(Fo) Eixi... Ele Ej+1, where Ej € Arat <<X0>>7

(Fl) Eixg... EonEj+1, where Ey € Arat <<X1>>,

(F2) E1X,'1 R EJX,j Ej+1, where Ey € Ag';‘;((X)),x,-k e X.
It follows then that

1. R is a linear combination of expressions in the form (Fy) (resp.
(F1)) iff M(x;)M(x0) (resp. M(x§)M(x1)) is nilpotent,

2. R is a linear combination of expressions in the form (F,) iff £ is
solvable. Thus, if R € A2 (X)) w A(X) then L is nilpotent.
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CONTINUITY OVER CHEN SERIES
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lterated integrals over w;(z) = uy(z)dz and along zy ~ z
Now, let 2 be a simply connected domain admitting 1 as neutral element.
Let A := (H(),9) and let Cy be a differential subring of A (9Cy C Cp)
which is an integral domain containing C.
C{{(g/)iei}} denotes the differential subalgebra of A generated by (g;i)ic/,
i.e. the C-algebra generated by g;'s and their derivatives
{u}xex : elements® in Co N A1, correspondent to {0, }rex (0x = u t0).
The iterated integral * associated to x; . ..x;, € X*, over the differential
forms wi(z) = ux(z)dz,i > 1, and along a path zy ~» z on , is defined by

az(lx) = 1o,

z Z_1
o (X - xi) = / o.);l(zl).../ wi, (2).
2 2 2y 21
aajo(x;l X)) = Uy, (z)/ wi(22) .. / wi, (zk).
2y )

C  spanc(y,), e p {05 (W) wer

C bpancg(uﬂ Y 105 (W) bwex

= C{{(uz)xex} ®c spanc{aZ (w)}twea-?
13. In control theory, these are called “inputs’ and they may vary (see bellow).

14. The value of o (x;, . ..x;) depends on {w;}i>1, orcequivalently on {u, }.ex.
23/61
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lterated integrals and integro differential operators

Let C = C{(uf)xex}}. One has 6, € C(0), for x € X, and
Vx,y € X, Yw € X7, Oxaf (yw) = uH(2)uy(2)0f (w).
Now, let © be the morphism C(X) — C(0) defined as follows
O(u)ox if w=uxeX*X.
One has, for any w € X'*,
1. ©(w)aZ (w) = 1q, and then 9(©(W)aZ (w)) = 0.

20

2. LyaZ (W) =0, where L, := 00(w) € C(0).
For any x; € &', let us consider a section of 0, : 0.t = Id, i.e.

VF e H(Q), 2f(z) = / wils)F(s).
20
The operator 0,12, for x # y, admits u,u; ' as eigenvalue, i.e.
Ve H(Q), (0,02)f =uyu*f, inparticular, (0,:2)1q = uyu;’.
Now, let 3% be the morphism defined as follows
Id if w=1x-
CxZ _ )
3 (w) = So(u)2 if w=uxeX*X.
Hence, for any w € X*,3%(w)lq = oZ (w).
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Practical example (polylogarithms)

For X = {x0,x1} and Q@ = C\ (] — 00, 0] U[1, +0o0]), let us consider
Ug(z) =z7' and uy(z)=(1-2z)"%
Then, on the other hand,
wo(z) = Uy (2)dz = z7tdz and  wi(z) = uy(2)dz = (1 — z)"1dz,
Oy, = uy'(2)0 = z0 and 0, = u (2)0 = (1 - z)0.
On the other hand '°, C = C{{(uf)xex}} = C[z, 271, (1 — z)7!] being
closed by 6,,, 05, and then by 9 = 0, + 05, = ©(xo + x1). One also has
- O([x1,x0]) = [0, Ox] = O-
. Vw € X*x1,S0%(w)lq = ad(w) = Liy(2).
C(0t®) o =2z(1—2z) ' and (0 2)lg =21 - 1.

[05t2, 05 2] = 0.

X0Yx1 Y X1%x9

. (GXO@)(GM Liﬁ) = (ax&ig)(ax&if) =1d.

For any L € C(9), there is P € C(X) s.t L = ©(P), meaning that © is
surjective and non injective. Moreover, ker © is the left principal ideal
generated by [x1, x| — x0 — x1.

[y

(S NN

15. Any p € C is polynomial on z,z7* and (1 — z)~! and admits 0 and-1 as poles.
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Structure of iterated integrals

Proposition 1

Let C = C{{(uf')xex}} and zo ~ z be a path on Q. Then TFAE
1. The morphism (C(X), w ,1x~) — (spanc{aZ (w)}wex-, X, 1q) is

injective.

2. {aZ (w)}wex~ is C-linearly independent.
3. {aZ,()}iecynx is C-algebraically independent.
4. {aZ (x)}xex is C-algebraically independent.
5. {ag(

X)}xexu{ix.1 is C-linearly independent.

If one of the above assertions holds then

L. C[{aZ,(w)}wex~] forms the universal C-module of solutions of all
differential equations Ly = 0,

2. C{aZ (w)}wex~ forms the universal Picard-Vessiot extension related
to all differential equations Ly = 0,

where 16 ['s are linear differential operators belonging to C(9).
16. For any w € X*, let Z,, := {L € C(0) s.t. Laz (w)=0}-"Then Z, is a left i(gg_?fli.l




Examples of linear differential equation

Example 8 (with C = C(z))
i (0—2)y =0. (1)
1. e? /2 is solution of (1).

2. ce? /2 = e7'/2¢!8¢ s an other solution (c € R\ {0}).
3. {e?"/2} is a fundamental set of solutions of (1).
4. C{e22/2} is a Picard-Vessiot extension related to (1).
For 0,, = z0 and 6, = (1 — 2)0, since Ly x, = 00,0, € C(0) then let
Ly = (2(1 = 2)0* 4+ (2 — 32)9*> — )y = 0. (2)
1. Ly Li2 = 0 meaning that Li, is solution of (2).

2. cLip = Lip €'°8€ is an other solution (c € R\ {0}) but it is not
independent to Lis.

3. {Lip, log, 1o} is a fundamental set of solutions of (2).

4. C{Lip, log,1q} is a Picard-Vessiot extension!’ related to (2).

17. C{Liz(z)} = C ® C[Li2(z), log(1 — z), log(z)].
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Chen series of {w;};>1 and along zy ~~ z

We get on the bialgebras H ,, (X) and H i (Y) (over a commutative
ring A containing Q)

A .
= Z wRw = H e>®P and Dy = Z wRw = H eZi®M

weX* leLynX weyY leLynY
Hence, since oZ (v w v) = aZ (u)aZ (v), for u,v € X*, then the Chen
series, Cynz € H(Q)(X)), is given by

Copnz = Z ag (w)w = (az, ® Id)D H %% (NP
weX* leLynX
and then® A | C,,.., = C,yo.; ® C,yy and (Copmuz|la=) = 1.

Note that C,,.., only depends on the homotopy class of zy ~» z and the
endpoints zg, z. One has C,.; Conzy = Cyonz. Or equivalently,

VW S X*, <C21WZ|W> = Z <Czowz|u><czlw20|v>'
u,veX* uv=w
Although Aconew = Y u® v but Acone Gy z#Copoz @ Coyny-

u,veX* uv=w

18. (Cpysz|u w v) = (Coynz|u) (Coy-sz|v) and on the other hand,

<C20WZ|U H V> = <A m CZO""Z|U & V>: <CZOWZ|U><C20WZ|V> — <C20WZ ® CZO“"’Z|U ® V>/-
28 /61



More about Chen series
Note also that, for g € H(RQ2), one has Cy(z)-g(z) = 8+ Czpoz, i€ the
Chen series of {g*w;}i>1 along the path g*(z ~~ z).
Example 9 (with wo(z) = z7*dz and w;(z) = (1 — z)*dz)
lg@) [ z] z' [E-Dz']zz-1)'[(Q-21]1-2]
g¥wo || wo —Wo —W1 — Wo w1 + wo w1 —w
grwr || w1 | w1 +wo —wo —wi —wi; —wp | —wo

For any n > 0, one has
dnCz[)wz = Pn Czowz;
where, for any S € H(Q){(X),dS € H(Q){X)) is defined as follows
dS = > (9(S|w))w
weXx*
pn € C(X) is defined as follows

SOl 3b | (R Mt

wgtr=nweX" j=1
and, for w = x;, ...x;, € X* associated to the derivation multiindex

r=(r,...,n) € Nk of weight wgtr = |w| + Zf-;l ri and of degree
degr = |W|v 7—r(W) ‘= Tn (Xh) <o Try (Xik) = (an U, )X"I co (ark quk )X"k'
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Continuity, indiscernability and growth condition
For i =0,2, let (k;, [|.||,) be a semi-normed space and g; € Z.
Definition 10
1. Let Cl be a class of ki ((X)). Let S € ko (X)) and it is said to be

a) continuous over Cl if, for ® € Cl, the following sum is convergent

> KSW)ILIK®Iw)I,-

wex*
We will denote (S||®) the sum Y~ 1.(S|w)(®|w) and

ko () CONT the set of continuous power series over (/.
b) indiscernable over CI iff, for any ® € Cl, (5]|¢) = 0.

2. Let x1 and x2 be real positive functions over X*. Let S € ky (X)).
a) S satisfies the x1—growth condition of order gy if it satisfies
JK € Ry, In € N,Yw € X2", [(SIw)]l, < Kxa(w) |w |18
We denote by k(f“’gl)«X)) the set of formal power series in
ki (X)) satisfying the y;—growth condition of order g.

b) If S is continuous over ko) (X)) then it will be said to be
(x2, &2)-continuous. The set of formal power series which are

(X2, 8)-continuous is denoted by k{¥**&) (xycont,
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Convergence condition

Proposition 2
Let x1 and 2 be real positive functions over X*.
Let g1 and g> € Z such that g1 + g» < 0.

1. Let kN8 (X)), g1 > 0, and let P € ky(X).
The right residual of S by P belongs to k{**€) ().

2. Let Re kS &) (X)), g <0, and let Q € ky(X).
The concatenation QR belongs to ngZ’gZ)«X .

3. X1, X2 are morphisms over X* satisfying 3 ., x1(x)x2(x) < 1.
IFFy € KXY (X)) (resp. Fy € kK28 (X)) then Fy (resp. Fp) is
continuous over k&€ (X)) (resp. k{8 (X)),

Proposition 3
Let CI C ki (X)) be a monoid containing {e*}:E4.. Let S € ko (X)) 0Nt

1. If S is indiscernable over Cl then for any x € X, x<S and S x
belong to ka((X)°"t and they are indiscernable over Cl.

2. S is indiscernable over Cl iff S = 0.
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Chen series and differential equations
Let K be a compact on . There is ck € R>p and a morphism My s.t.
Ywe X%, (Coalw) i < crMic(w) w1~
Let R € C™{(X)) of minimal representation (\, u1,n) of dimension n. Then
. 1, , 1
Ywe X, [(RIw) < A ()l Inll5
With these data, we have
Theorerln 11 )
I e IA 1150 2 we e M () [ < 1 then of (R) = (R|| C;y-2) and
Vx € X, 00z (R) =Y er ust(2)uw(2)aZ (Rax).
Letting y(zo,z) := (R||Cs~-z), the following assertions are equivalent :
1. Thereis p € Co(X) s.t. (R||pCpysz) = (R<p||Csyenz) = 0.

2. Thereis | =0,..,n—1s.t {0%y}o<k< is Co-linearly independent
and aj,...,a1,a0 € Co s.t. (/0" + ...+ a10+ ap)y = 0.

Proposition 4

Let G € C(X)) and H € Cexc (X)) s.t. o (G) = (G||C,y-.) and
h(aZ,(x0), o2, (x1)) := o (H) H| 2o-z) EXISt (X = {xo,x1}). Then
02 (HG) = (GLx-)o (H) + / x1))das, (G).
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Practical examples (eulerian functions)

Forany z € Q =C,|z|< 1, in all the sequel, let us consider

z) =~z — Zg(k)ﬂ and Vr > 2, {,(z):= - Zg(kr) (=2)"
' k =7 e k
k>2 k>1
Recall that y" =y "/nl, fory €e X*,n€ Nand t € C,|t|< 1. Then
z n [Oéo(y)]n z @
af(y") = =2 and af (1)) = e,

Example 12 (extension of eulerian functions)
Forany z€ Q=C,|z|< 1 and k > 1, one has

[u a3 (yk) | ) |
1Q z e
Oly l(2) olk(@) = r(1+2z)
eékaﬁk eék(z) —- F;kl(l + Z) ee/k(z)fl

The function ¢7 is already considered by Legendre for studying the
eulerian Gamma function, T, noted here by Iy, (Legendre cited Euler).
What are {ag(w)}wey-y ? Similarly, in the case of {a§(w)}we(vugyh)-
and with the new input uy,(z) = z71dz?
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First properties of extended eulerian functions
Let G, (resp. G,) denote the set (resp. group) of solutions,

{&o,- ..

&ro1}, of 20 = (1)1 (resp. z" = 1), for r > 1. If r is odd, it is

a group as G, = G, otherwise it is an orbit as G, = £G,, where £ is any
solution of £&" = —1 (or equivalently, £ € G, and £ ¢ G,).

Proposition 5 (Weierstrass factorization)

1.

Forr>1,x €G, and z € C, |z| < 1, the functions ¢, and e’ have
the symmetry, £,(z) = £,(xz) and e'(?) = (X2) _In particular, for
r even, as —1 € G,, these functions are even.

For |z| <1, we have

Zlogr andee He'VXZH 1+— -

X€E G, X€EG, n>1
Forany odd r > 2, T, }(142z) = ") =T"1(1+2) H elix2).
X€G\{1}

In general, for any odd or even r > 2,

olr(2) — H elix2) _ H(l + i—:).

XEG, n>1
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Other practical examples (1/2)

Example 13 (w1(2) = (1 — z)"1dz and wo(z) = z71dz
1. Fgr any agzle((gst.ﬁak 1,)|z|< 1, one hgg ) )

Li(axo)*xl(z) = aO((aXO) Xl)
B ORI S S
0 n>0 B

2. Forany n€ Nand a,b € Cs.t. |al< 1,]|b|< 1, one has
Lig(2) = af() = 08"(2)/nl, Lig(2) = aflof) = 0g"(1 = 2) )/,
Lifou)-(2) = 03((3%0)") = 22, Ligaa-(2) = a3((bx1)") = (1 — 2)"°.

Let C = C[2?, (1 — 2)®]a pec and S e Crat (X)) w C(X) (resp.

exc

CéeX) = Céitc«xo)) Cée(a)), we get
Lis(z) € C[{Lis}iecynx] (resp. Cllog(z), log(1l — z)]).

3. Forany z,a,b€ Cs.t. |z|<1and Ra > 0,Rb > 0, we get the
partial Beta function and the eulerian
Beta function, B(a, b) = B(1; a, b) = '(a)l'(b)/I'(a+b), as follows 1°
B(z;a,b) := /z dt t*7 11— t)b71 = I—.JIXU[(BXO)* o (@-bpa)1(2) } .
0 Lig(a-1)0) w (~b)1(2)
19. xof(axo)™ w ((1 — b)x1)* and x1[((a — 1)x0)* w (—bx1)*] are of the form
(F2). What is a§(S), for S of the form (F2)?
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Other on practical examples (2/2)
Example 14 (Polylogarithms indexed by non positive integers)

Now, let us use the noncommutative multivariate exponential transforms,
i.e., for any rational exchangeable series we get the following transform
i ' Sio, i -1
Z S, i Xy w X Z (IJ,ll log”(z)log" ((1 — 2)77).
io,i12>0 /07’1>0
In particular, for any n € N, we have xJ — log"(z)/n! and
s log"((1 — z)71)/n!. Then (txo)* — z' and (txq)* — (1 —z)~ .
We then obtain the following polylogarithms indexed by rational series
Lic(z) =z, Liw(z) =1 —2)"" Ligagtsa)(2) =27(1—2)7"°

Thus, for any (s1,...,s,) € N’ there exists an unique series Ry., ...y,
belonging to (Z[x;], w ,1x~)s.t. Li_g = L1R~y51 v . More precisely,
(s1+-- +s,)— r r—1
(k1+ +kr 1 Sl Z S, _ Z k’

Run =3 3 () (BT 5 o
1 k,
where, for any i=1,...,r, if k =0 then py, = x{ — 1x~ else

k*X1““ZS2 B DINE = 1x=) Y

the Sa(ki, j) being the Stlrllng numbers of second kind.
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NONCOMMUTATIVE PV THEORY
AND INDEPENDENCE VIA WORDS
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First step of noncommutative PV theory

The Chen series Cynny of {wi}i>1 and along the path zy ~» z over Q
satisfies the following differential equation
(NCDE) dS=MS, with M=) ux and u €ConA™
XEX
ALM=> u(lr @x+x@1x:) =1+ @M+ M@ Ly-.
XEX

The space of solutions of (NCDE) is a right free C{(X))-module of rank 1.
By a theorem of Ree, Gy, is a w —group-like solution?® of (NCDE).
Moreover, if G, H are w —group-like solutions there is a constant Lie
series C s.t. G = He® (and conversely). From this, it follows that

» the Hausdorff group {eC}CGL,-e‘C«X», group of characters of
H ., (X), plays the role of the differential Galois group of
(NCDE)+ w —group-like.

Which leads us to the following definition
> the PV extension related to (NCDE) is C/O-.?({CZUWZ}.
It, of course, is such that Const(Co (X)) = kerd = C.1q{(X)).

20. It can be obtained as the limit of a convergent Picard iteration, initialized
at (Cyymmz|lx=) = 1yyq), for ultrametric distance.

38/61



Basic triangular theorem over a differential ring (BTT)
If S € A(X)) is a group-like solution of (NCDE), given as follows 2!

S= ) (SIww= > (S|Sw)Pu = H o (SISNP

weX* weXx* leLynX
then

1. If H e A{X)) is another grouplike solution then there exists
C € Liea{(X) such that S = He® (and conversely).

2. The following assertions are equivalent

a) {(S|w)}wea~ is Co-linearly independent,
b) {(5|S/) }iccynx is Co-algebraically independent,

(@]

)

) {(S]x)}xex is Co-algebraically independent,
d) {{SIx)}xexu{iy-1 is Co-linearly independent,
e) {uc}xex is such that, for f € Frac(Co) and (cx)xex € C*)
Z ety = 0f = (Vx € X)(c =0).

xeX
f) (ux)xex is free over C and OFrac(Co) N spanc{ux}xex = {0}.

21. Forinstance, S = Cyovz = 3, c aon Q5 (W)W
39/61



Examples of positive cases over X = {x}, A = (H(Q), 9)

1 Q= C u(2) = 1,Co = C{{u21}} =
ag(x™) = z"/nl, for n > 1. Thus, dS = XS and

zn
S = E ag(x")x" —E —x" = e*.
n!

n>0 n>0

Moreover, af(x) = z which is transcendent over Cy
and the family {a§(x")}n>0 is Co-free. Let f € Cy then 9f = 0. Thus,
if Of = cuy then ¢ = 0.
2. Q=C\] - 00,0],ux(2) = z71,Co = C{z*'}} = C[z*!] C C(2).
o (x") = log"(z)/n!, for n > 1. Thus dS = z xS and

S= Z o (xM)x" = Z —Iogr':!(z) x" =z,

n>0 n>0
Moreover, of(x) = log(z) which is transcendent over C(z) then
over C[z*1]. The family the family {a%(x")}n>0 is C(z)-free and
then Co-free. Let f € Cg then Of € spang{z*"},1. Thus,
if Of = cuy then ¢ = 0.
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Examples of negative cases over X = {x}, A = (H(Q),0)

1. Q=C,uz) = €2,Cp = C{{e*?}} = C[e*?].
ag(x™) = (e —1)"/n!, for n > 1. Thus, dS = e°xS and

z(,n\_n ef—1 n e’ —1)x
S:Zao(x )x :Z%X = (&1,

n>0 n>0
Moreover, af(x) = e* — 1 which is not transcendent over Cy and
and {ad(x™)}n>0 is not Co-free. If f(z) = ce* € Cy (¢ # 0) then
O0f (z) = ce* = cuy(z).
2. Q=C\| - 00,0],ux(z) = z°(a ¢ Q),
Co=C{{z,z7%}} = SPdnnc{Zkaﬂ}k,/ez-
ag(x") = (a+1)""z"@*) /nl, for n > 1. Thus, dS = z%xS and

n(a+1)

V4 —1_(a+1)
_ z(onyon n_ (a+l)" 'z X
S= E ag(xM)x" = E 7(a—|—1)"n!x =e .
n>0

n>0

Moreover, a§(x) = z2™1/(a + 1) which is not transcendent over C
and {aZ(x")}n>0 is not Co-free. If f(z) = cz**1/(a+ 1) € Cy
(c # 0) then 9f(z) = cz? = cuy(z).

41/61



Independence over C of extended eulerian functions

Proposition 6
Let L := spanc{/,},>1 and E := spanc{e’},>1. One has
1. The families (¢,),>1 and (e),>1 are C-lin. free and free from 1q.
Hence, with the inputs (see also Example 12)
a) u, = e’ 0l,,r > 1, the restriction of : CY — E is injective.
b) uy, = 9L, r > 1, the restrictions of f, spanc{y,},>1 — L and
spanc{y;},>1 — E are injective.

2. The families (¢,),>1 and (e*),>1 are C-algebraically independent.

3. Forany r > 1, one has

a) The functions ¢, and e~ C-algebraically independent.

b) The function £, is holomorphic on the open unit disc, D1,

c) The function e* (resp. e~*r) is entire (resp. meromorphic),
and admits a countable set of isolated zeroes (resp. poles) on
the complex plane which is expressed as E'Jxec, X< 1.
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Proof of independence over C of eulerian functions

1. Since (¢,),>1 is triangular?? then (¢,),>1 is C-lin. free. So is
(e’ — e%(9)),51, being triangular, we get that (e’"),>1 is C-lin. free
and free from 1q. Since {x}xcx and, by Theorem 7.3., {x*}cx are
C-free then it follows the results concerning various restrictions of af.

2. Via BTT, using the previous results and the Chen series of {w,},>1
defined by the inputs in a) and b) (see also Example 12), {e},>1
and {¢,},>1 are the C-alg. free.

3. a) Since £,(0) = 0,0e" = e’ ¢, then ¢, and e are C-alg. free.

b) We have e/1(2) = I~1(1 4 z) which proves the claim for r = 1.
For r > 2, note that 1 < {(r) < {(2) which implies that the
radius of convergence of the exponent is 1 and means that ¢,
is holomorphic on the open unit disc. This proves the claim.

c) €@ =T Y1+ z) (resp. e () =T, (1 + z)) is entire (resp.
meromorphic) as finite product of entire (resp. meromorphic)
functions and Weierstrass factorization yields zeroes (resp. poles).

22. (gi)i>1 is said to be triangular if the valuation of g;, w(gi), equals i > 1. It
is easy to check that such a family is C-lin. free and that is also the case of

families s.t. (gi — g(0))i>1 is triangular.
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Independence of {e’ },~1 over differential subalgebra

The algebra C[L] (resp. C[E]) is generated freely by (¢,),>1 (resp.
(e°"),>1) which are holomorphic on D1 (resp. entire) functions.
Moreover, any f € C[L]\ C.1q (resp. g € C[E]\ C.1q) is holomorphic on
D1 (resp. entire) and then f ¢ C[E] (resp. g ¢ CI[L]). Thus,
EnNL=4{0} and, more generally, C[E]NC[L] =C.1q.

Let £:= C{(6")r>11} = CH{E, 07} i>1] and € := C{(e*)r>1}}-

Let £L7:= C[{0'¢,},i>1], being integral domain generated by holomorphic

functions, and then Frac(L£") is generated by meromorphic functions.

Since there is 0 # qi 1k € LT s.t. (0'eF)! = q; ;e i, I,k > 1 then

£ = spanc {(9" T ) (e )Y 1 ) liehon)ea k21

= spanc{Giy, i - - - Gy, l,ri ehtntothln }(fh/l,fl)w~~7("k,/k,rk)€N21XZ#UXNzthl
C spang; {el1£’1+m+lker“}(ll,rl),...,(/k,rk)EZ*xNZl,k21 =:C.

Note that £ N E = {0} and C is a differential subring?® of A = H(Q).

Theorem 15
1. The algebras C[E] and C][L] are alg. disjoint, within A.

2. The family (e*),>1 (resp. (¢,),>1) is alg. free over £* (resp. LT).

23. Hence, Frac(C) is a differential subfield of Frac(.A).
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Proof of independence of eulerian functions
Using the Chen series of {w,},>1 defined by v, = e’ 0l,, let Q € Frac(L)
(resp. Frac(C)) and let {c,},cy € C(¥), non simultaneously vanishing, s.t.

oQ = Z cyuy, = Z ¢y e’ ol,.

yey r>1
If 9Q # 0 then, integrating, @ € E and then E D Frac(£) D £ D C[L]
(resp. E D Frac(C) D C D &) contradicting with E N C[L] = {0} (resp.
EN&*T ={0}). It remains that 9Q = 0.
Since {€“},>1 and then {9e’},>1 are C-lin. free, then ¢, =0 (r > 1).
By BTT, {&§(51)}iccyny and then {a§(S,)}yey are, respectively,

> [-alg. free yielding the C[L]-alg. independence of (e‘"),>1.
It follows that C[E] and C[L] are alg. disjoint %%, within #(<).
> (-alg. free yielding the alg. independence of (e),>1 over £.

Now, suppose there is an alg. relation among (¢,),>1 over £ in which,
by differentiating and substituting 9/, by e “de’", we get an alg. relation
among {e‘},>1 over C[L] and £ contradicting with two previous items.
Hence, (¢,),>1 is LT-alg. free.

24. {e’},>1,{l},>1 are alg. free over the free alg. C[L], C[E], respectively.

Hence, C[E + L] is freely generated by {e‘", ¢, },>1 and-C[E}N C[L] = C.1q.
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Dom(Li,) AND Dom(H,)
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Chen series of wy(z) = z71dz and wy(z) = (1 — z) " ldz

Let 10(¢) and 71(¢) be the circular paths of radius € encircling 0 and 1
clockwise, respectively. In particular, letting 8 = (1 — o, one considers
0 B) = e meeh C ag(e),
1(e,8) = l—ge® s 1—cePt C (o).
On the one hand, one has, forany i =0or 1 and w € X,
(o)l w) < e 3] w11,
It follows then
Chep) =€ +o(g) and C ) = e?™ 4 o(e).

Hence?®, for R € C**'((X)) of minimal representation (A, iz,7), one has

.
<R||C,-(Ed ( H (S/ /))7]7
€Lyn
\
(RIC ( I[ et ’””)
€Lyn

25. Recall that the map aZ, : C™*{(X)) — H() is not injective. For example,
az(20x5 + (1 — 20)(—x1)" — 1x=) = 0.
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Back to polylogrithms

Here, (7(2),0) denotes the differential ring of holomorphic functions
over the simply connected domain Q = C \ (] — 00, 0] U [1, +o0]).

wo(2) = Uy (2)dz,w1(2) = uy (2)dz with uy(2) = =, uy (2) = T
z —
Let us consider the following character

Lis : (C(X), w ,1x:) = (H(Q), x, 1q) defined by, for x;v € LynX — X,

1
Liy,(z) = log(z), Liy(z) = log 1 Liy(z) = / wi(s) Liy(s).
- 0
Hence, the n.g.s. of {Liy }wex~, L, is group-like, for A ,, , and

N\
L:= Y Li,w=(Li,@ld)Dx = [] e"s”.
weX* leLynX
It follows then the definition of

\
Z,, = Lreg(l), where L,o = H elis P,
leLynX—X
L satisfies dL = (ux,Xo + tx,x1)L and then L(z) = ., L(2).

Theorem 16
Li, is injective. It follows then {Li, }wex~ is C-lin. free and {Li;}iccynx
(resp. {Lis, }iecynx ) is alg. free.
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Back to harmonic sums
Let 7y : (C((X)),.) = (C(Y)),.), maps x; _1x1 XTI to ye Ly

0
Lw
Yw e X*xy, VzeC,|z|<1, ! ZHTVW
n>0

Theorem 17

The morphism of algebras Hy : (C(Y), wi,1y+) = (C{Hy }wey+,-, 1),
mapping u to?® H,, is injective. Hence, {H,, }wey~ is lin. free. It follows
then {H;}iccyny (resp. {Hs, }ieoyny ) is alg. free.

Hence, the n.g.s. of {H, }wey+, H, is group-like, for A, and

= Y Hyw=(H.®1d)D H etls M,

weyY* leLynY
It follows then the definition of

¢
Ziz = Hygg(400), where H., = H et M,
leLynY —{y1}
Theorem 18 )
lim 06127 [(2) = lim e2kz>1 Hy (M(=x) 'KH(n) =7y Z .,
z—1 n—oo

26. The {Hu}uey~'s, so-called harmonic sums, are arithmetical functions.
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Back to polyzetas

Definition 19

The polymorphism ( is defined by
(Q[ﬁynX X] ] 1X*)

¢ (f@[ﬁyn\: 1{y1}] w,ly.) (z,.,1),
. .xof* x € LynX - X B . .
Ys Gﬁan—{yl} = C(Sl"")sf)_ Z nl ...n, .
m>...>n,
where Z = spanQ{C(sl, oy S) bt s EN s>

It can be extended as the following characters
Cu : (@<X>v w le*) - (Zv ) 1)’ Cuess Yo (Q<Y>’ L, 1Y*) - (Zv 3 1)
by adding ¢, (x0) = 0 = log(1) and
Cw (1) =0= fp.,  log(l—2z), {(1-2z)?log’(1- 2)}aez, ben,
0= fp.,iaHi(n), {n*Hp(n)}aez,ben,
Y= f'p'n%+ooH1(n)v {na lOgb(n)}aEZ,bel\L
Theorem 20
ZC wlw =27, , Z Cuws (W)w = Ziy, Z'}/WW:eA’yIZL-U =:Z,.
weX* wey* weY*
Moreover, Z, = B(yi)nyZ, <= Zw =Mono(y1)nyZ,, ,
where B(y1) = e~ S22 SO K 200 Mono(yy) = e~ Leza CH-1)"/k
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Dom(Li, ), Domg(Li,) and Dom™¢(Li,)
Let C := C[z?, (1 — 2)%]a bec. Let [S]n = Z (S|w)w denotes the
weX*,Wm=n
homogeneous components of S (of degree n). Then Dom(Li,) is the set
of S = Z[S],, s.t. ZLi[S]n is unconditionally convergent for the
n>0 n>0
standard topology on H(Q).
Denoting the open disk by D.g (0 < R < 1), let

Domg(Lis) = {S € C{X)x3 ® Clx~ ZLi[S]n is unconditionally
n>0
convergent for the standard topology on H(D<gr)}.
Dom™¢(Lis) := | Domg(Li,).
0<R<1

Proposition 7 (L(z) = C,-..Li(20))
Let p := (R||L) (R € Dom(Li,)). Then 8"p = (R||d"L) and d"L = p,L,
where {p,}n>0 are given previously, using
T (x0) = —r!(=2) " xq and 7,(x1) = r!(1 — z) =) x,.
The following assertions are equivalent :
1. p satisfies a differential equation with coefficients in (C, 9).

2. There exists P € C(X) such that (R||PL) = (R< P||L) = 0.
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Dom(H.,)

Proposition 8
1. Dom(Li,), containing CIt (X)) w C(X), is closed by w and then
Lis,, 7 =LigLir, for S, T € Dom(Li,).

2. Let S € C(X)x1 ®Clx~ and 0 < R < 1s.t. ) - Lig, is
unconditionally convergent, for the standard topology, on H(D<Rg).
Then "y~ anz = (1 —z)71 Y~ Lifs),(2) is unconditionally
convergent in the same domain and ay = Y < Hx, (1s1,)(N).

3. Sw T € Dom™¢(Li,) and x(my(S) wmy(T)) € Dom™°(Li,),
for S, T € Dom'°(Li,). Moreover,

Lis. 7 = LisLir.
Heysywm(m(N) = Hay()(MHry(ry(N), N =>0.
Lis(z) _Lir(z) _  Lingry(s)wm (1))

11—z 11—z 11—z '

4. If S € Dom™°(Li,) then Hy,(s) € Dom(H,) := 7yDom"*(Li,).
The last contains CI (V') s C(Y') and is closed by 1. Hence,

exc

Hsw t =HsHr, for S, T € Dom(H,).
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Extended polymorphism (

With the notations in Example 12, we have
Theorem 21 (Regularization by Newton-Girard formula)

The characters C ,, ,7e can be extended algebraically as follows
Cw :( < > (Cé?ctc« >>7 L alX*) - ((Ca'al)v
VzeC,|z|< 1,(zx0)* (za)* — lc.
Yot (C(Y) wC(Y), w1, 1y) = (C,. 1),
VzeC,|z|<1,(zy,)* — T, (1+2z),r>1
Moreover, with w, = 0l,,r > 1, and for z € C,|z|< 1, the following
morphism is injective
ag (C[{yr*}le]v L, ly*) - (C[{eér}le]v %, l)a
VzeC,|z|<l,yy — T, '(1+2z),r>1,
and T, (1+ 3/—1t) =T, (1 + ¢)l, (1 +v/—1t).

Corollary 22
L ’Yg'll(zryr)* H'Y(zy)* = Hee ) = Hr (I+2)= O‘O( Yr*)

r>1 r>1 r>1

2. One has, for |as|< 1,|bs|< 1 and |as + bs|< 1,

7(2521(35+b5)}’5+2r,521 asbrysir)* = ’Y(Zszl ‘35}’5)*’}/(2521 bsys)* - Hence,

V(asys+aryrtasarysee)* = V(asys)* Varyr)* > V(—a2yas)* T V(asys)* W —asys)* -
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Polyzetas and extended eulerian functions
Let R := tO t1X0[(t0X0) (tlxl)']xl (to, t; € C, | t0|< 1, | t1 |< 1)
With wo(z) = z~tdz and w1 (1 - z)"tdz, we get

- o] [ (D

totl/ (1 —s)ohgh— 1/ (1 — r)oe=tr~%dsdr.

By changes of variables, r = st and then y = (1 —5)/(1 — st), we obtain
C(R) = totl/ / — f0t1 _ St)to*ltft"dtds
0; /0,

= totl/ /(1—ty) Ly=toy ot drdy.
o Jo

By expending (1 — ty)~! and then by integrating, we get on the one hand

to totl |
Q(R)_Zn—ton ZC )5t
n>1 k>1>0
Since R = toxo(toxo + tix1)* totixa then we get also on the other hand
R):ZZ Z C(s1, ..., SRt
k>0 I>0 s1+...+s5=k,51>2,5...,5>1
Identifying the coeffients of (C(R)|tkt!), we deduce the sum formula

C(k) = > C(S1ym -y SE)-
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Zetas and eulerian functions
For v =—u (Ju|< 1), one gets

1 sin(um)
g~ (- D eent) =T

k>1
Taking the logarithms and then taking the Taylor expansions, one obtains
2k

u uir)?n
— 2k)— = |
S0 = o )
k>1
/
_ (G VoK 1
S |
>1 k>1 mom 21 =1
n1+.,+n,7k
_ - \2k
B IR S g
k>1 1>1 n’;1+:,/11>1 i=1

One can deduce then the following expression for C(Zk)
k

2k —1)k+H!
R R o |

I=1 s n,>1 i=1
b=

Euler gave an other explicit formula using Bernoulli numbers {by }xen :

C(2K) /(22 = —byy /2(2K)1 € Q.
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More about polyzetas and extended eulerian functions

7(—7:2},2)* = (tyl)* Y(— tyl)*
& TM1+it) = A+ 0r,(1-1)
;2K
— Suza C2R)E K Sm(tﬂ—) . Z (tlﬂ')
& e uz - _ .
|
tw 1 (2k)!
Tt = @) ey
& MMI+V-1t) = TA+0)r (1 +i)
4k
o o= Sim CHE K _ S|n.(1t7r)sm(tﬂ') _ 22(—41577) .
itm tm e (4k + 2)!

Since Y(— ety = C((=t*a)*), Yy = C((=2%2)"), Y(e2p) = C((H2y2)")
then, using the poly-morphism (, one deduces
C(=thya)) = (=) )C((Py2)*) = C((—t2x0x0) )¢ (P x0x1)"))
= (((—tPx0x)* w (tPx0x)") = C((—4t*x5x)").

It follows then, by identification the coeffients of t2% and t* :
ktimes
—
(B D)= 1)@k 1) €
ktimes ktimes

€(3,1,...,3,1) /% = ak¢(a,. .. 4)/n* =2/(4k +2)! € Q.
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