
Modelling Timed Concurrent Systems Using
Activity Diagram Patterns?

Étienne André1, Christine Choppy1, and Thierry Noulamo2??

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, F-93430,
Villetaneuse, France

2 University of Dschang, IUT Fotso Victor, LAIA, Bandjoun, Cameroun

Abstract. UML is the de facto standard for modelling concurrent sys-
tems in the industry. Activity diagrams allow designers to model work-
flows or business processes. Unfortunately, their informal semantics pre-
vents the use of automated verification techniques. In this paper, we first
propose activity diagram patterns for modelling timed concurrent sys-
tems; we then devise a modular mechanism to compose timed diagram
fragments into a UML activity diagram that also allows for refinement,
and we formalise the semantics of our patterns using time Petri nets.

Keywords: Unified Modelling Language, formal modelling, timed systems

1 Introduction

UML (Unified Modelling Language) [UML13] is the de facto standard for mod-
elling concurrent systems in the industry. Activity diagrams allow designers to
model workflows or business processes. Although UML diagrams are widely used,
they suffer from some drawbacks. Indeed, since UML specification is documented
in natural language, inconsistencies and ambiguities may arise. First, their rich
syntax is quite permissive, and hence favours common mistakes by designers.
Second, their informal semantics in natural language prevents the use of auto-
mated verification techniques, that could help detecting errors as early as the
modelling phase. In this paper, we propose three contributions.

1. We propose activity diagram patterns for modelling timed concurrent sys-
tems using Timed Activity Diagram Components (TADCs),

? Work partially supported by STIC Asie project “CATS (Compositional Analysis of
Timed Systems)”. This is the author (and slightly extended) version of the paper
of the same name accepted for publication at the 6th International Conference on
Knowledge and Systems Engineering (KSE 2014). The final version is available at
www.springer.com.

?? This work is supported by a France-Cameroon cooperation grant through the ex-
change program funded by the “Service de Coopération et d’Action Culturelle”
(SCAC) from the French embassy in Cameroon.

1

www.springer.com

2 Étienne André, Christine Choppy, and Thierry Noulamo

2. we devise a modular mechanism to compose activity diagram fragments into
a UML activity diagram that also allows for refinement, and

3. we formalise the semantics of our patterns using time Petri nets [Mer74].

Our approach guides the modeller task, and allows for automated verification
using tools supporting time Petri nets such as TINA (Time Petri Net Analyzer)
[BV06] or Roméo [LRST09].

Our choice of an extension of Petri nets has four advantages. First, the UML
specification explicitly mentions Petri nets, and the informal semantics of ac-
tivity diagrams is given in terms of token flows. Second, they feature a formal
semantics [Mer74]. Third, they provide the designer with a graphical notation
(close to that of activity diagrams), which helps to be convinced by the “valid-
ity” of our translation (although it cannot be formally expressed, due to the lack
of formal semantics for activity diagrams). Last, several tools use extensions of
Petri nets as input, and can perform efficient verification.

Outline In Section 2, we discuss related works. In Section 3, we informally recall
UML activity diagrams and time Petri nets, and introduce our approach based
on the notion of TADCs composed using inductive rules. In Section 4, we provide
TADCs with a formal semantics expressed using a translation to time Petri nets.
We use as a running example a coffee vending machine. We conclude in Section 5,
and provide guidelines for future research.

2 Related Work

An important issue is to propose a formal semantics to UML diagrams using
a formal notation, which is essential to allow for automated verification. This
has been addressed in quite a variety of works using automata, different kinds
of Petri nets, etc., so we mention only a few. Instantiable Petri nets are the
target of transformation of activity diagrams in [KT10], and this is supported
by tool BCC (Behavioural Consistency Checker). In [DSP11,BM07], the issue
is performance evaluation, from activity diagrams and others (use case, state
diagrams, etc.) to stochastic Petri nets. Also note that [GRR10] proposes an
operational semantics of the activity diagrams (for UML 2.2). Börger [Bör07]
and Cook et al. [CPM06] present other formalisations of the workflow patterns
of [Wor] using formalisms different from Petri nets, viz. Abstract State Machines
and Orc, respectively. In [MGT09], patterns for specifying the system correctness
are defined using UML statecharts, and then translated into timed automata.
The main differences with our approach are that the patterns of [MGT09] do
not seem to be hierarchical: the “composition” of patterns in [MGT09] refers to
the simultaneous verification of different properties in parallel.

In [ACR13], we introduced so-called “precise” activity diagram patterns to
model business processes. We inductively defined a set of precise activity dia-
grams (as a subset of the syntactic constructs of the UML specification [UML13]),
and translated them into coloured Petri nets [JK09]. Although this work shares
with [ACR13] the definition of patterns and their translation into an extension

Modelling Timed Concurrent Systems Using Activity Diagram Patterns 3

Element [UML13] [ACR13] This work

Activities Yes Yes Yes

Data Limited Yes Limited

Participants Limited Yes No

Initial / final nodes Yes Yes Yes

Decision Yes Restricted Yes

Merge Yes Restricted Yes

Fork Yes Restricted Yes

Join Yes Restricted Yes

Timed transitions Limited No Yes
Table 1. Summary of the syntactic aspects considered

of Petri nets, this work is orthogonal to [ACR13] in the following sense: first, it
extends the UML specification with timed constructs, which were not considered
at all in [ACR13]. Second, and most importantly, the patterns proposed here are
much less restrictive and give more freedom to the designer: the TADCs we de-
fine here allow for an arbitrary number of input and output connectors, whereas
[ACR13] requires at most one of each. In contrast to [ACR13], we do not restrict
the use of the syntactic constructs (in [ACR13], we required that, e.g. each fork
is eventually followed by a join). We do not claim that the modular mechanism
proposed in this work is better or more useful than [ACR13]: it can be used
for a different purpose, when slightly less restrictions are needed. Finally, the
scheme that we propose here allows to refine TADCs by replacing them with
other TADCs, that can be “plugged” into a higher-level one, as long as the con-
nectors are the same. In contrast, due to the presence of at most one input and
one output connectors, the patterns of [ACR13] hardly allow this. We give in
Table 1 a comparison of the syntactic elements from the specification [UML13]
taken into account in [ACR13] and/or in this work. Note that an element not
taken into account in one of these two works does not necessarily mean that that
work is less interesting; recall that a main difference between [ACR13] and this
work is that [ACR13] is more restrictive in terms of syntax, which may also help
to avoid mistakes, whereas this work is more permissive. (We only consider in
Table 1 elements taken into account in at least [ACR13] or in this work.)

3 Modelling Timed Systems Using Activity Diagrams

3.1 Preliminaries: Activity Diagrams

We briefly recall here UML activity diagrams [UML13], and use the coffee vend-
ing machine in Fig. 1 to introduce the syntax. First, activity diagrams feature
global variables (that are mentioned several times in the UML specification, and
used in the examples). In our setting, we require the global variables to be fi-
nite domain. This includes Booleans, bounded integers, enumerated types, and
possibly more evolved structures such as finite tuples or lists. Such finite do-
main variables are often met in tools supporting Petri nets and their extensions.

4 Étienne André, Christine Choppy, and Thierry Noulamo

Fig. 1 features four variables, viz. Prod (of enumerated type {TEA, COFFEE}),
avail (Boolean), state (of enumerated type {on, serving, stand by}), and
w state (of enumerated type {water ok, water lack}).

Activity diagrams feature activities (all rounded rectangles in Fig. 1). These
activities can involve global variables modifications, either by assigning a value
(or the result of a predefined function) to a global variable, or by calling a func-
tion with side-effects on several global variables. In our setting, we require this
modification to be discrete (i.e. instantaneous). For example, in Fig. 1, the action
associated with the Choice activity assigns the result of function P button() to
the global variable Prod.

Activity diagrams also feature an initial node (e.g. the upper node in Fig. 1),
and two kinds of final nodes, viz. activity final that terminates the activity
globally, and flow final that terminates the local flow (Fig. 1 features no final
node). Activity diagrams feature decision nodes (e.g. the ChooseProduct node
in the middle of Fig. 1), i.e. depending on guards, one path among others is
taken; they feature merge nodes (e.g. the bottom-most node in Fig. 1), that
is the converse. They also feature fork nodes, that split the flow into different
subactivities executed in parallel, and join nodes, the converse operation.

3.2 Timed Activity Diagram Components

We define here Timed Activity Diagram Components (TADCs), obtained by
composition of basic activity diagrams fragments using inference rules (that will
be given in Section 3.3). As shown in Fig. 2(a), a TADC has in general n ∈ N
input connectors, and m ∈ N output connectors. These connectors will be used
by the inductive rules to build more complex TADCs, as well as to perform some
refinement.

TADCs have three main purposes:

1. define “well-formed” activity diagrams, by both restricting the set of syn-
tactic constructs available in the specification, and augmenting it with some
timed constructs,

2. allow a translation to another formalism using an inductive mechanism, and

3. allow a modular specification with possible refinement, or the definition of
“black-box” components.

As an example, we give in Fig. 2(b) an example of a TADC responsible for the
choice of the drink in a coffee vending machine. This TADC has 1 input connector
(i.e. E Choice) and 2 output connectors (i.e. C TEA water and C COFFEE water).
This TADC can be refined into another one with a different structure (e.g. a more
complex one that could prepare some sugar too), that can then still be plugged
into the coffee vending machine, as long as it still has 1 input and 2 output
connectors. It is also possible to hide the internal specification of this TADC, by
only giving its input and output connectors.

Modelling Timed Concurrent Systems Using Activity Diagram Patterns 5

Fig. 1. Specification of a coffee vending machine using TADCs

3.3 TADC Patterns

We introduce in Table 2 our patterns for inductively creating and composing
TADCs. We define 3 basic patterns (1–3), that define TADCs from single activ-
ity diagrams syntactic constructs, and 7 composite patterns (4–10), that define
TADCs by combining other TADCs together with syntactic constructs (usually
transitions or choice nodes). We only depict the connector used in the composi-
tions; recall that each TADC can have an arbitrary number of input and output
connectors. (The last column, introduced in Table 2 to save some space, will be
used in Section 4.)

Pattern 1 (initial node) This pattern is made of the initial node. It has no
input connector, and one output connector, which is itself.

Pattern 2 (flow final node) This pattern is made of the flow final node.3 It
has one input connector, which is itself, and no output connector.

3 For sake of conciseness, we do not include the activity final node. It could be added
to our patterns using the same translation as in [ACR13], i.e. using a “global Boolean
variable” that is tested to be true in all guards, and set to false when the activity final

6 Étienne André, Christine Choppy, and Thierry Noulamo

TADC

1 2 n

1 2 m

(a) General shape (b) An example of a TADC

Fig. 2. TADC: general shape and example

Pattern 3 (simple activity) This pattern is made of a simple activity. It has
one input connector, which is itself, and one output connector, which is itself
too. Recall that actions can modify the global variables, by either assigning a
value (or the result of a predefined function) to a global variable, or using a
function with side-effects on several global variables.

Pattern 4 (sequence) This pattern combines two TADCs with a sequence
transition. The input (resp. output) connectors of the resulting TADC are all
input (resp. output) connectors of TADC1 and TADC2, except the output (resp.
input) connector of TADC1 (resp. TADC2) connected by the sequence transition.
In other words, any free input (resp. output) connector of one of the compo-
nent TADCs will remain a free input (resp. output) connector of the resulting
composite TADC. The mechanism will be the same for all subsequent patterns.

Pattern 5 (deterministic delay) This pattern combines two TADCs with
a deterministic delay d ∈ R≥0. The lower TADC will start exactly d units of
time after the upper TADC has completed its activity. Again, the input (resp.
output) connectors of the resulting TADC are all input (resp. output) connectors
of TADC1 and TADC2, except the output (resp. input) connector of TADC1 (resp.
TADC2) connected by the delay transition.

Pattern 6 (non-deterministic delay) This pattern generalises the previous
pattern to a non-deterministic delay, i.e. comprised in an interval [0, d].

Pattern 7 (deadline) In this pattern, after TADC1 completes its execution,
activity A is executed. Then, TADC2 starts after at most d units of time; alter-
natively, TADC3 starts after exactly d units of time.

Pattern 8 (decision) This pattern reuses the syntactic “decision” node from
the UML specification. After TADC completes its execution, the conditions
cond1, . . . , condn are evaluated, and the TADC with a true guard is executed.
The conditions condi (for 1 ≤ i ≤ n) are Boolean expressions over the activity

node is reached. This mechanism ensures that concurrent activities do not progress
any more once an activity final node is reached.

Modelling Timed Concurrent Systems Using Activity Diagram Patterns 7

diagram’s variables. If several conditions are true simultaneously, a destination
TADC is selected non-deterministically among those with a true condition. In
contrast to [ACR13], we do not require that at least one guard is true; this
however can result in ill-formed models.

Pattern 9 (merge) This pattern reuses the syntactic “merge” node from the
UML specification. After some TADCi (for 1 ≤ i ≤ n) completes its execution,
then TADC starts executing.

Pattern 10 (synchronisation) This pattern merges the syntactic “fork” and
“join” nodes from the UML specification. After all TADCi (for 1 ≤ i ≤ n) com-
plete their execution, all TADCj (for 1 ≤ j ≤ m) start executing simultaneously.
Note that the classical UML fork (resp. join) from [UML13] can be obtained
from this pattern by setting n = 1 (resp. m = 1).

3.4 Example: A Coffee Vending Machine

The coffee vending machine in Fig. 1 has been built using the inductive rules
of Table 2. For example, all activities can be defined by applying Rule 3 (“ac-
tivity”). The result of the applications of composite rules are outlined using
dashed boxes in Fig. 1. For example, the application of Rule 8 (“decision”) to
the three activities in the centre of Fig. 1 gives the TADC number 5. By apply-
ing Rule 7 (“deadline”) to this TADC, to its right-hand TADC (number 7), to
the wait for choice activity and to the Start choosing activity considered
as a TADC, we get the (large) TADC number 3. The rest of the coffee vending
machine is obtained similarly.

4 Translation into Time Petri Nets

4.1 Time Petri Nets With Global Variables

Time Petri nets (TPNs) [Mer74] are a kind of automaton represented by a bipar-
tite graph with two kinds of nodes, places (e.g. p1 in Fig. 3(a)) and transitions
(the rectangle nodes in Fig. 3(a)). In time Petri nets, transitions are associated
with a firing interval: for example, in Fig. 3(a), the transition between p1 and
p2 (say, t2) can fire between 1 and 3 time units after a token is present in p1,
and the transition between p1 and p2 (say, t3) can fire between 2 and 4 time
units after a token is present in p1. We use the strong semantics where time
elapsing cannot disable a transition: that is, transitions must fire at the end of
their firing interval, unless the transition becomes disabled by another transition
in the meanwhile.

We extend the usual TPNs with global variables as follows. We assume a
set of finite domain variables over a set of types. For example, Fig. 3(a) makes
use of b (of type Boolean) and i (of type integer bounded by some predefined
constant). These global variables can be tested in guards (e.g. {¬b} in Fig. 3(a)),
and updated when firing transitions (e.g. i := i + 1 in Fig. 3(a)). Note that we

8 Étienne André, Christine Choppy, and Thierry Noulamo

Pattern Syntax Translation

1 Initial node

2 Final node

3 Simple activity

A
/action

action

4 Sequence

TADC1

TADC2

Tr(TADC1)

Tr(TADC2)

5 Deterministic delay

TADC1

TADC2

d

Tr(TADC1)

[d, d]

Tr(TADC2)

6 Non-deterministic delay

TADC1

TADC2

[0, d]

Tr(TADC1)

[0, d]

Tr(TADC2)

7 Deadline

TADC1

A

TADC2

d

TADC3

Tr(TADC1)

[0, d] [d, d]

Tr(TADC2) Tr(TADC3)

8 Decision

TADC

TADC1 TADCn· · ·

[c
on
d 1
] [cond

n]

[cond1] [condn]

Tr(TADC)

Tr(TADC1) Tr(TADCn)· · ·

9 Merge

TADC1 TADCn

TADC

· · · Tr(TADC1) Tr(TADCn)· · ·

Tr(TADC)

10 Synchronisation

TADC1 TADCn

TADC′
1 TADC′

m

· · ·

· · ·

Tr(TADC1) Tr(TADCn)

Tr(TADC′
1) Tr(TADC′

m)

· · ·

· · ·

Table 2. Activity diagram patterns

Modelling Timed Concurrent Systems Using Activity Diagram Patterns 9

p1

[1, 3] {¬b} [2, 4] i := i + i

p2 p3

(a) Global variable notation

p1bFbT i

[1, 3] [2, 4]

p2 p3

(b) Corresponding semantics

Fig. 3. An example of a time Petri net with global variables

depict guards within braces (e.g. {¬b} in Fig. 3(a)) to differentiate with firing
times depicted within brackets (e.g. [1, 3]).

This extension of the usual formalism to finite domain variables is only syn-
tactic, i.e. this formalism does not add expressiveness to usual time Petri nets.
Each finite domain variable can be encoded into a finite set of places. For exam-
ple, a Boolean variable (b in Fig. 3(a)) could be encoded into 2 places bT and
bF , that encode the fact that b is true (or false, respectively) if it contains a
token. Then, testing whether b if false is equivalent to checking the presence of
a token in bF . For integers, an option in some situations is to encode the value
of the integer with a number of tokens in a dedicated place; then adding one to
the integer is encoded by adding one token to the dedicated place. (In general,
the translation may require n places for an integer bounded by n.) These two
constructions are depicted in Fig. 3(b). It is clear that using such global variables
makes the resulting net much more compact and readable.

A formal definition of TPNs with global variables is available in Appendix A.

Remark 1. Our definition of time Petri nets with global variables is not very far
from coloured Petri nets [JK09], where types, guards and assignments are also
defined. A major difference is that coloured Petri nets feature coloured tokens,
whereas we use here standard, “null-typed” tokens. A second major difference
is that, of course, our definition features time too.

4.2 Translation Mechanism

We now explain how to translate the activity diagrams defined in Section 3 into
time Petri nets with global variables. The inductive definition of our TADCs
(following the rules in Table 2) makes it easy to define an inductive translation.

General Scheme Recall that each TADC has a set of input and output connec-
tors, that can be used to compose the TADCs in an inductive manner. Here,
we translate each TADC into a TPN fragment where the connectors are trans-
lated into places. Hence, two TPN fragments can be composed by fusing the
corresponding connector places together.

We give the translation of each pattern in the last column of Table 2. In the
following, we explain the translation of each pattern.

10 Étienne André, Christine Choppy, and Thierry Noulamo

Pattern 1 (initial node) The translation of the initial node is a simple place,
that contains a token. At the beginning of the execution of the translated TPN,
only these places encoding the initial nodes contain tokens.

Pattern 2 (final node) The translation of the final node is a simple place.

Pattern 3 (simple activity) The translation of an activity is a TPN transition,
preceded and followed by a place, so as to connect in a proper manner with the
other translated TADCs. The assignment of variables is easily translated to an
assignment on the TPN transition. Note that the functions involving a user input
(e.g. P Button() in Fig. 1) are translated into a non-deterministic choice in the
resulting TPN. Hence, the verification will consider all possible choices.

Pattern 4 (sequence) The translation of the sequence pattern is obtained by
recursively translating each of the two TADCs, and then by fusing the output
place of the upper translated TADC with the input place of the lower TADC.

Pattern 5 (deterministic delay) The translation of this pattern is obtained
as follows: the upper TADC is connected to a TPN timed transition that can
fire exactly d units of time after it was enabled, i.e. after a token was present in
the output place of the upper TADC. Then, after the transition fires, the token
moves to the translation of the lower TADC.

Pattern 6 (non-deterministic delay) This pattern translates the same as
the previous pattern, with the exception that the transition can fire any time
between 0 to d units of time.

Pattern 7 (deadline) First, the upper TADC is translated. Then, it is con-
nected to the TPN transition modelling activity A. This transition is then con-
nected to a place. When a token enters this place, both outgoing transitions are
enabled. The left-hand transition can fire any time between 0 to d units of time
after it is enabled; if it does not, then the right-hand transition must fire exactly
d units of time after it is enabled, due to the TPN strong semantics we use.

Pattern 8 (decision) The translation of this pattern is straightforward: the
output place of the translation of the upper TADC is connected to a set of
transitions that have the same guards as the initial TADCs, and then lead to
the translation of these TADCs. The semantics of TPNs is the same as for the
UML, i.e. if several guards are true, then one is non-deterministically chosen.

Pattern 9 (merge) The translation of this pattern is straightforward and is
the converse of the previous pattern.

Pattern 10 (synchronisation) The translation of this pattern is again straight-
forward: once the n upper TADCs finish their execution, their corresponding
token is consumed by the TPN transition; then m fresh tokens are created, and
the m lower TADCs start executing concurrently.

Initial Marking The initial marking assigns one token to each place correspond-
ing to an initial node. The initial value of the variables can be set to the initial
value of the variables in the activity diagram, if any such value is defined, or to a
predefined standard value otherwise (e.g. 0 for integers, true for Booleans, etc.).

Modelling Timed Concurrent Systems Using Activity Diagram Patterns 11

4.3 Application to the Coffee Vending Machine

Fig. 4. Translation of a fragment of the coffee machine into a TPN

We give in Fig. 4 the translation into a TPN of the TADC fragment #3 of
Fig. 1 (that corresponds to the application of the deadline pattern to TADCs
5 and 7). We show with dashed lines the patterns, and write in their top-right
corner their number. Observe that this TPN is indeed timed (e.g. firing interval
[0, 300]), and that it features variables: for example, variable Prod is checked
in some guards (e.g. Prod = TEA in transition t TEAchosen), read in side-effect
functions (e.g. P Reservoir(Prod)), and assigned to the result of a function (e.g.
P Button()).

Once the TPN corresponding to the whole TADC of Fig. 1 has been input
to a model checker, one can formally verify properties mixing time and value
of the global variables, e.g. “if initially w state = water ok, then a drink may
eventually be delivered within 400 time units”. This could be done using tools
supporting time Petri nets, such as TINA [BV06] or Roméo [LRST09].

We give the translation of the coffee vending machine of Fig. 1 in Fig. 5 in
Appendix B. Observe that the only token is in the top-most place encoding the
initial node.

12 Étienne André, Christine Choppy, and Thierry Noulamo

5 Conclusion and Perspectives

In this work, we introduce Timed Activity Diagram Components (TADCs) that
help designers to devise complex activity diagrams by the inductive application
of predefined patterns. This mechanism guides the designer in the modelling
process, and allows one to define black-box components or to replace components
by other components. Furthermore, a translation to an extension of time Petri
nets allows for formal verification.

Future Work We first discuss the extension of our patterns. Our timed pat-
terns define a minimal set of timing constructs; they could be further enriched
with more complex features, such as timed synchronisation between activities, or
deadlines on TADCs instead of on simple activities. Our notion of refinement is
only syntactic; for example, the TADC in Fig. 2(b), that checks the presence of
water in the reservoir, could be replaced with a TADC that does not. Ensuring
semantic guarantees (e.g. “the presence of the water in the reservoir has been
checked when exiting the TADC”) is a challenging future work, that could be
handled using interface constraints to be satisfied on the TADC’s variables.

Another challenging future work is to formally compare the semantics given
in terms of translation to time Petri nets with a formal semantics given to activity
diagrams (e.g. [GRR10], with the problem that it does not consider time).

Our translation has not been automated yet, but there is no theoretical
obstacle: each pattern can be directly translated to a TPN fragment using our
inductive rules. This is the subject of future work. Once an automated translation
tool is implemented, it will also be possible to “test” our translation mechanism,
i.e. to check for large input models that the resulting behaviour (in terms of
time Petri nets) is compatible with what is expected from the informal semantics
of [UML13].

References

ACR13. Étienne André, Christine Choppy, and Gianna Reggio. Activity diagrams
patterns for modeling business processes. In SERA, volume 496 of Studies
in Computational Intelligence, pages 197–213. Springer, 2013. 2, 3, 5, 7

BM07. Simona Bernardi and José Merseguer. Performance evaluation of UML de-
sign with stochastic well-formed nets. Journal of Systems and Software,
80(11):1843–1865, 2007. 2

Bör07. Egon Börger. Modeling workflow patterns from first principles. In ER,
volume 4801 of Lecture Notes of Computer Science, pages 1–20. Springer,
2007. 2

BV06. Bernard Berthomieu and François Vernadat. Time Petri nets analysis with
TINA. In QEST, pages 123–124. IEEE Computer Society, 2006. 2, 11

CPM06. William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow pat-
terns in Orc. In COORDINATION, volume 4038 of Lecture Notes of Com-
puter Science, pages 82–96. Springer, 2006. 2

Modelling Timed Concurrent Systems Using Activity Diagram Patterns 13

DSP11. Salvatore Distefano, Marco Scarpa, and Antonio Puliafito. From UML to
Petri nets: The PCM-based methodology. IEEE Transaction on Software
Engineering, 37(1):65–79, 2011. 2

GRR10. Hans Grönniger, Dirk Reiss, and Bernhard Rumpe. Towards a semantics of
activity diagrams with semantic variation points. In MoDELS, volume 6394
of Lecture Notes of Computer Science, pages 331–345. Springer, 2010. 2, 12

JK09. Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets – Modelling
and Validation of Concurrent Systems. Springer, 2009. 2, 9

KT10. Fabrice Kordon and Yann Thierry-Mieg. Experiences in model driven ver-
ification of behavior with UML. In Monterey Workshop, volume 6028 of
Lecture Notes of Computer Science, pages 181–200. Springer, 2010. 2

LRST09. Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for Petri nets with stop-
watches. In TACAS, volume 5505 of Lecture Notes of Computer Science,
pages 54–57. Springer, 2009. 2, 11

Mer74. Philip Meir Merlin. A study of the recoverability of computing systems. PhD
thesis, University of California, Irvine, CA, USA, 1974. 2, 7

MGT09. Ahmed Mekki, Mohamed Ghazel, and Armand Toguyeni. Validating time-
constrained systems using UML statecharts patterns and timed automata
observers. In VECoS, pages 112–124. British Computer Society, 2009. 2

UML13. OMG unified modeling language. version 2.5 beta 2, 2013-09-05. http://

www.omg.org/spec/UML/2.5/Beta2/PDF/, 2013. 1, 2, 3, 7, 12
Wor. Workflow Patterns Initiative. Workflow patterns home page. http://www.

workflowpatterns.com. 2

http://www.omg.org/spec/UML/2.5/Beta2/PDF/
http://www.omg.org/spec/UML/2.5/Beta2/PDF/
http://www.workflowpatterns.com
http://www.workflowpatterns.com

14 Étienne André, Christine Choppy, and Thierry Noulamo

Appendix

A Formal Definition of Time Petri Nets

Definition 1 (TPN). A time Petri net (TPN) is a tuple N = 〈P, T,D,V, •(.),
(.)•, Is, G,A,M0〉 where

– P (resp. T) is a non-empty finite set of places (resp. transitions),
– D is a finite set of finite domains (or types),
– V is a finite set of variables whose type is in D,
– •(.) (resp. (.)•) ∈ (NP)T is the backward (resp. forward) incidence function,
– Is ∈ IT is the function that associates a firing interval with each transition,
– G ∈ T → B(V) is the guard associating with each transition a Boolean

expression over V,
– A is a function that associates with each transition an assignment of each of

the variables to a value in its domain, and
– M0 is the initial marking that associates with each place an integer number

of tokens, and with each of the variables a value in its domain.

B Translation of the Coffee Machine

We give below the translation of the coffee machine following the rules of Table 2.

Modelling Timed Concurrent Systems Using Activity Diagram Patterns 15

Fig. 5. Translation of the coffee vending machine into a time Petri net

	Modelling Timed Concurrent Systems Using Activity Diagram Patterns

