
#hardtoparse: POS Tagging and Parsing the Twitterverse

Jennifer Foster1, Özlem Çetinoğlu1, Joachim Wagner1, Joseph Le Roux2

Stephen Hogan1, Joakim Nivre3, Deirdre Hogan1 and Josef van Genabith1

1National Centre for Language Technology, Dublin City University, Ireland
2LIF - CNRS UMR 6166, Université Aix-Marseille, France

3Department of Linguistics and Philology, Uppsala University, Sweden
1{jfoster,ocetinoglu,jwagner,shogan,dhogan,josef}@computing.dcu.ie

2joseph.le-roux@lif.univ-mrs.fr
3joakim.nivre@lingfil.uu.se

Abstract

We evaluate the statistical dependency parser, Malt, on
a new dataset of sentences taken from tweets. We use a
version of Malt which is trained on gold standard phrase
structure Wall Street Journal (WSJ) trees converted to
Stanford labelled dependencies. We observe a drastic
drop in performance moving from our in-domain WSJ
test set to the new Twitter dataset, much of which has
to do with the propagation of part-of-speech tagging er-
rors. Retraining Malt on dependency trees produced by
a state-of-the-art phrase structure parser, which has it-
self been self-trained on web material, results in a sig-
nificant improvement. We analyse this improvement by
examining in detail the effect of the retraining on indi-
vidual dependency types.

Introduction
While much progress has been made on supervised ap-
proaches to common natural language processing tasks such
as part-of-speech tagging and syntactic parsing, many ob-
stacles still remain before these problems can be said to be
solved. The problem of domain adaptation is a well known
one within the NLP and the machine learning community.
How can a tool trained on one linguistic genre be adapted
to another without access to substantial amounts of labelled
data? The challenge becomes yet more daunting when we
face, not just a new target domain, but the rapidly evolving,
linguistically diverse mix of domains that is Web 2.0. In this
paper, we examine the problem of adapting a pipeline de-
pendency parsing system, trained on edited newswire, to the
language of Twitter.

A dependency-based representation of syntactic structure
is appealing because it captures people’s notions of gram-
matical relations more intuitively than phrase structure, be-
cause it is a natural mode of representation for languages
with a free word order and because parsing algorithms exist,
which, when combined with enough training data and an ad-
equate probability model, can produce dependency trees rea-
sonably accurately in linear time. Labelled dependency rep-
resentations are particularly useful since they serve as a basis

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for recovery of predicate argument structure and an answer
to the question of who did what to whom. The Stanford la-
belled dependency scheme (de Marneffe and Manning 2008)
has been used in many NLP applications including ques-
tion answering, information extraction and sentiment anal-
ysis. The Stanford dependencies were originally designed to
be produced from the output of phrase structure parsers but
they have been used recently in the context of direct pars-
ing into dependency trees using parsers such as Malt (Nivre,
Hall, and Nilsson 2006) in research described in Cer et al.
(2010), Petrov et al. (2010) and Çetinoğlu et al. (2010).

We train Malt to produce basic Stanford dependencies.
We first train a model on the Wall Street Journal (WSJ)
section of the Penn Treebank (Marcus et al. 1994), and
we examine the parser’s performance on a small treebank
of sentences taken from microblogs (tweets). We find that
the parser’s performance drops 20 percentage points in la-
belled attachment accuracy. Because Malt accepts as input
a sequence of part-of-speech (POS) tags rather than a se-
quence of words we also evaluate the accuracy of SVMTool
(Giménez and Màrquez 2004), the POS tagger that we use
to supply the input to Malt. A substantial proportion of the
parsing errors can be attributed to POS tagging errors.

Unsupervised approaches to parser domain adaptation
have met with moderate success in the last five years. Mc-
Closky et al. (2006) showed that the performance of the
Charniak and Johnson two-stage reranking parser (Charniak
and Johnson 2005) could be improved on out-of-domain text
by retraining the first stage generative parser on trees pro-
duced by the two-stage parser. Petrov et al. (2010) demon-
strated that the performance of a deterministic dependency
parser on question data could be greatly improved upon by
retraining it on a combination of its original material and
trees produced by a slower, yet more accurate phrase struc-
ture parser. We combine these two ideas by retraining Malt
on trees produced by a self-trained version of the Char-
niak and Johnson parser, achieving an LAS improvement of
4.67% on our Twitter test set. We examine in detail the effect
of this uptraining on individual dependency relations.



Twitter
Twitter is a service that combines microblogging and so-
cial networking: through it, users can send short messages
of up to 140 characters called tweets to their followers, i. e.
other users who previously connected with the sender (so-
cial networking). The system is open as the connections are
established without confirmation of the followee. Further-
more, the messages are publicly shown on the senders’s pro-
file page (microblogging). The service started as a “mobile
status update service” but soon was widely used to report
on events.1 Alternative routes to content are provided by
a search function and lists of trending topics for the past
minute, day and week.

The service provider, Twitter Inc., reports a quickly grow-
ing user base (460,000 new users daily as of March 2011)
and an average of 140 million tweets per day. The Twitter
interface makes it easy to forward a tweet to all followers
with a retweet (RT). The @-sign before a user name creates
a link to the user’s profile page. A tweet containing such a
link is called a mention. Mentions are also used for replies
which, by convention, start with “@user”. Another special
symbol in Twitter is the hashtag which marks keywords that
categorise the tweet. To use more than a single word for a
category label, users have to omit word spaces, e. g. #Book-
Week.2

Wu et al. (2011) classify Twitter users as celebrities, me-
dia, organisations, bloggers and ordinary users and find lim-
ited interaction between the first four groups, except for
bloggers who retweet 85 times more than ordinary users.
A study by Pear Analytics classifies over 40% of tweets
as “pointless babble”.3 Yet, breaking news often appears on
Twitter before it reaches mainstream media.

.

Dataset
We create a small treebank of 519 syntactically annotated
sentences taken from tweets. The source for these sentences
is a corpus of 60 million tweets on 50 themes including
politics, business, sport and entertainment, collected using
the public Twitter API between February and May 2009
(Bermingham and Smeaton 2010). Some Twitter-specific
characteristics of this corpus are provided in Table 1. The
tweets in our treebank were split by hand into sentences,
usernames were replaced by the generic string Username
and urls were replaced by Urlname. We use 269 sentences as
a development set, which we refer to as TwitterDev, and the
remaining 250 as a testset, which we refer to as TwitterTest.
Table 2 contains statistics on the treebank sentences.

The treebank sentences were first parsed automatically us-
ing an implementation of the Collins Model 2 generative

1Most information in this section is compiled from ar-
ticles from http://blog.twitter.com/ and http://
support.twitter.com/.

2http://www.newyorker.com/online/blogs/
susanorlean/2010/06/hash.html

3http://www.pearanalytics.com/
blog/wp-content/uploads/2010/05/
Twitter-Study-August-2009.pdf

Mean characters per tweet 80.9
Mean words per tweet 14.7
Proportion containing link 23.0%
Proportion containing hashtag 5.4%
Proportion mentions 38.9%
Proportion replies 31.6%
Proportion retweets 2.6%

Table 1: Twitter-specific characteristics of the full Twitter
corpus

Corpus Name #Sen SL Mean SL Med. σ
TwitterDev 269 11.14 10 6.43
TwitterTest 250 11.36 10 6.80

Table 2: Basic Statistics on the Twitter treebank: number of
sentences, average sentence length, median sentence length
and standard deviation

statistical parser (Bikel 2004). They were then corrected by
hand by one annotator, using as a reference the Penn Tree-
bank bracketing guidelines (Bies et al. 1995) and the Penn
Treebank trees themselves. Twitter-specific structures obvi-
ously do not appear in the Penn Treebank and a decision had
to be made on how these should be annotated. Links, user-
names and hash tags are all annotated as proper nouns inside
a single word noun phrase. Links at the end of a tweet are
attached to the verb in the same way an adverb occurring at
the end of a sentence would be. The symbol RT is annotated
as a noun within a single word noun phrase. The annota-
tor went through the dataset twice, and a second annotator
then annotated 10% of the sentences. Agreement on labelled
bracketing between the two annotators is 95.8%. The dis-
agreements involve fragments, interjections and multi-word
expressions (see Table 3).

Evaluation of WSJ-Trained Resources
In this section, we evaluate the accuracy of the POS tag-
ger, SVMTool (Giménez and Màrquez 2004), and the de-
pendency parser, Malt (Nivre, Hall, and Nilsson 2006), on
the sentences in TwitterDev. As well as reporting tagging
and parsing accuracy for TwitterDev, we also report perfor-
mance on Section 22, WSJ22, as our in-domain reference
test set. We also carry out a qualitative evaluation using those
sentences from TwitterDev that are listed in Table 4.

Accuracy of POS Tagging
SVMTool (Giménez and Màrquez 2004) uses support vector
machine learning to induce taggers for various languages.
We use the WSJ-trained model supplied with the software.
The accuracy of SVMTool on TwitterDev is 84.1% com-
pared to an accuracy of 96.3% on WSJ22. The most common
POS confusions for TwitterDev are listed in Table 5.

A substantial proportion of the errors are mistaggings
of proper nouns. Some of these cases relate to the generic
names Username and Urlname, which were used to replace
usernames and links and which should both be tagged as



(FRAG (INTJ (UH congrats)) (NP (NNP Tiger)) (. !) (. !))

versus
(FRAG (NP (NNS congrats)) (NP (NNP Tiger)) (. !) (. !))

(FRAG (INTJ (IN Of) (NN course)) (. !))

versus
(FRAG (PP (IN Of) (NP (NN course))) (! !))

(S (VP (VBG picking) (PRT (RP up)) (NP (PRP$ my) (NN truck))

(PP (IN from) (NP (NNP toyota))) (PRN (NP (JJ nice) (NNS folks)))))

versus
(S (VP (VBG picking) (PRT (RP up)) (NP (PRP$ my) (NN truck))

(PP (IN from) (NP (NNP toyota)))) (NP (JJ nice) (NNS folks)))

(FRAG (NP (NNP USA)) (: -) (NP (NNP USA)) (: -) (NP (NNP USA)) (. !) (. !) (. !) (. !))

versus
(X (NP (NNP USA)) (: -) (NP (NNP USA)) (: -) (NP (NNP USA)) (. !) (. !) (. !) (. !))

(FRAG (NP (NNP Username)) (INTJ (UH Okay) (, ,) (UH okay)) (. .))

versus
(X (NP (NNP Username)) (ADJP (JJ Okay)) (, ,) (ADJP (JJ okay)) (. .))

Table 3: Inter-annotator disagreements on a subset of TwitterDev trees

1. I just think he looks like a big baby , and ppl USED to call him that.
I PRP just RB think VBP he PRP looks VBZ like IN a DT big JJ baby NN , ,
and CC ppl NN USED VBD to TO call VB him PRP that DT . .
2. been playing with the new Canon EOS 500d and the Nikon D5000 over the weekend .
been VBN playing VBG with IN the DT new JJ Canon NNP EOS NNP 500d JJ
and CC the DT Nikon NNP D5000 NN over IN the DT weekend NN . .
3. On Fox : RNC chair sends letter to GOP calling Obama “ ARROGANT ” #tcot #sgp #hhrs
On IN Fox NNP : : RNC NNP chair NN sends VBZ letter NN to TO GOP NNP
calling VBG Obama NNP ‘‘ ‘‘ ARROGANT NNP ’’ ’’ #tcot NN #sgp NN #hhrs NNS
4. FF > S4
FF NN > NN S4 NN
5.LOL !
LOL NNP ! .
6. i heart beltran .
i FW heart NN beltran NN . .
7. Man Utd through to the last 8 ...
Man NNP Utd NNP through IN to TO the DT last JJ 8 CD ... :
8. Bed soon .
Bed VBN soon RB . .
9. twas okay .
twas NNS okay JJ . .
10. Obama Loses Two More Appointees : Sanjay Gupta , Annette Nazareth Urlname
Obama NNP Loses VBZ Two CD More JJR Appointees NNPS
: : Sanjay NNP Gupta NNP , , Annette NNP Nazareth NNP Urlname NNP

Table 6: Output of SVMTool for examples from Table 4



1. I just think he looks like a big baby
, and ppl USED to call him that .
2. been playing with the new Canon EOS 500d
and the Nikon D5000 over the weekend .
3. On Fox : RNC chair sends letter to GOP
calling Obama “ ARROGANT ” #tcot #sgp #hhrs
4. FF > S4
5. LOL !
6. i heart beltran .
7. Man Utd through to the last 8 ...
8. Bed soon .
9. twas okay .
10. Obama Loses Two More Appointees
: Sanjay Gupta , Annette Nazareth Urlname

Table 4: Examples from TwitterDev

Gold/System Freq. Gold/System Freq.
NNP/NN 59 VBZ/NNS 8
NN/NNP 54 UH/NNP 7
NNP/JJ 29 RB/NN 7

NNP/VB 10 NNP/CD 7
JJ/NN 10 NN/VB 6

UH/NN 8 VB/NN 6
JJ/NNP 8 VB/NNP 6

NNP/NNS 8 VBP/VB 6
NNPS/NNS 8 RP/IN 6

Table 5: SVMTool Mistaggings on TwitterDev

NNP. 19 of the 43 occurrences of Username are tagged in-
correctly compared to just 3 of the 37 occurrences of Url-
name. Another reason for the low recall of NNP tags is that
tweeters, unlike Wall Street Journal editors, often do not
capitalise proper nouns (see example 6 in Table 4). Hash
tags should also be tagged as proper nouns — 7 of the 14
hash tags in TwitterDev have been mistagged. Apart from
proper nouns beginning with lowercase characters, there are
other capitalisation conventions that are worth mentioning
because they are likely to be contributing towards the POS
mistagging rate. One of these is the use of uppercase char-
acters in an entire word or even sentence (see Examples 1
and 3 in Table 4). Foster (2010) identifies the use of upper-
case characters as one of the factors in the relatively poor
performance of parsers on sentences from a discussion fo-
rum. Inspecting the words mistagged by SVMTool, it seems
that this is also a problem for SVMTool. We can see from
Table 5 that some of the errors involve words that are not
proper nouns being tagged as such. A possible reason for
this, is that, in some tweets, news headlines in particular, the
first character in every word is capitalised (see example 10
in Table 4).

A tagger’s job is made more difficult if the word to be
tagged is not in its lexicon. In this situation, the tagger
can use clues based on the word’s morphology, its position
within the sentence and properties of words occurring very
infrequently in its lexicon. Unsurprisingly, the unknown to-
ken rate in TwitterDev is much higher than in WSJ22: 16.6%
compared to 2.8%. Excluding instances of Username and

Parser LAS UAS LAS UAS
WSJ22 TwitterDev

Malt Predicted Tag 87.98 90.61 67.64 73.75
Malt Gold Tag 89.95 91.61 78.67 81.86

Table 7: Malt Labelled Attachment and Unlabelled Attach-
ment with SVMTool-tagged input and gold-tag input

Urlname, the proportion of unknown tokens in TwitterDev
is 14.0%. Of the words mistagged by SVMTool, 53.2% are
words that are unknown to the tagger.

We end this section by presenting, in Table 6, the output
of SVMTool for our example sentences in Table 4. Tagging
errors are highlighted in bold.

Accuracy of WSJ-trained Malt
Malt (Nivre, Hall, and Nilsson 2006) is a widely used mul-
tilingual parsing system. During training, a classifier is in-
duced to predict a parsing action at a particular parsing con-
figuration using information from the parse history and the
remaining input string. During parsing, the classifier is used
to drive the deterministic construction of a dependency tree.
Malt can be used with several parsing algorithms includ-
ing variants of shift-reduce parsing. We use the stackeager
algorithm described in Nivre et al. (2009) and we train a
linear classifier where the feature interactions are modelled
explicitly. We train Malt on a version of Sections 2-21 of
the WSJ treebank that has been converted to labelled depen-
dency trees using the Stanford constituency to dependency
converter. We use SVMTool to supply the POS tagged input
to Malt.

Table 7 shows the labelled attachment accuracy (LAS)
and unlabelled attachment accuracy (UAS) of a WSJ-trained
Malt model on both TwitterDev and WSJ22. There is a very
large difference in accuracy between the in-domain and out-
of-domain test sets — an absolute difference of 20.34% in
LAS. POS tagging errors account for a substantial propor-
tion of this as the difference between automatic and gold
tag input on TwitterDev is 11.03%. The dependency trees
for two of the example sentences (sentences 1 and 6 from
Table 4) are shown in Figures 1 and 2. The POS tagging er-
ror that occurs in Sentence 1 (ppl tagged as NN rather than
NNS) does not prevent Malt from attaching ppl to the cor-
rect head using the correct dependency type. However, there
is another misparse which is not caused by a POS tagging
error, namely, the attachment of the last word that to the
word him rather than call. The dependency tree in Figure 2
is completely misparsed due to the errors in POS tagging.
beltran is incorrectly analysed as the head of the sentence,
with i and heart incorrectly identified as nominal modifiers.

Improving Parser Performance
Malt Uptraining
Petrov et al. (2010) demonstrate that the Malt’s performance
on question data can be substantially improved by training it
on trees produced by the Berkeley parser, which has the ad-
vantage of producing slightly more accurate Stanford depen-



Figure 1: The baseline Malt analysis for Sentence 1 from Table 4

Figure 2: The baseline Malt analysis for Sentence 6 from
Table 4

dency trees than Malt, but the disadvantage of being slower.
Apart from exploring a different dataset, our twist on Petrov
et al.’s (2010) work is to use as our phrase structure parser
the even more accurate Charniak and Johnson two stage
parser (Charniak and Johnson 2005) (we call this vanilla up-
training), and, in a second experiment, to use a self-trained
version of this parser (we call this domain-adapted uptrain-
ing). The additional training sentences come not from Twit-
ter but from a sports discussion forum.4 An important point
to note is that the POS tagger SVMTool also needs to be
retrained on the same sentences as Malt.

The uptraining LAS results for TwitterDev are shown in
Figure 3. The x-axis shows the amount of additional Char-
niak and Johnson parse trees that were added to either one or
two copies of WSJ2-21. We can see from these results that
both types of uptraining improve over the baseline but that
domain-adapted uptraining is more successful than vanilla
uptraining. Using the best model for TwitterDev, we parse
the sentences in TwitterTest and achieve an LAS improve-
ment of 4.67% and a UAS improvement of 3.74%. Both im-
provements are statistically significant.

Uptraining Error Analysis
The performance on dependency types is detailed below:

amod The scores for adjectival modifiers are around 70%,
following the baseline < vanilla uptraining < domain-
adapted uptraining trend (69.4, 70.3, 72). Even the best score
is lower than the gold-POS-tagged baseline (87%).

4A series of retraining experiments with a variety of
parsers demonstrated that the discussion forum data (http://
news.bbc.co.uk/sport2/hi/606/default.stm) was
more useful than Twitter data as a source of additional unlabelled
training data.

Figure 3: Malt uptraining results on Twitterdev

Figure 5: The domain adapted Malt analysis for Sentence 6
from Table 4



Figure 4: The domain adapted uptrained Malt analysis for Sentence 1 from Table 4

cc and conj Coordination is represented using two de-
pendency relations. The first conjunct is the head of the co-
ordination and the other conjuncts are dependent on the head
via a conj relation. The coordinating item (e.g., and, or) is
dependent on the head via the cc relation. Figure 1 contains
such a coordinated phrase. Our experiments show that it is
hard for parsers to recover the conj relation: the f-score
starts at 54.8%, goes up to 67.5% in vanilla uptraining, then
decreases to 65% in domain-adapted uptraining. cc is eas-
ier to recover. The baseline is 70.3%. vanilla uptraining re-
sults in a big jump to 81.6%. Malt benefits from the domain-
adapted parse trees a lot and the f-score goes up to 85.3%.
Both vanilla uptraining and domain-adapted uptraining are
better than the gold-POS-tagged baseline, which is 79%.

ccomp Using domain-adapted trees in training also helps
recover clausal complements. The baseline is 56.5%. There
is a 1% absolute increase in vanilla uptraining, and a 7%
absolute jump in domain-adapted uptraining.

cop Similar to ccomp, there is a 1 point increase in
vanilla uptraining and a 6 point increase in domain-adapted
uptraining. Still the best score is almost 6 points lower than
the gold-POS-tagged baseline.

dep This relation is used rather when the converter cannot
determine the dependency type and consequently it is very
hard for parsers to correctly identify it. For the baseline sys-
tem, the f-score is 15.8%, for vanilla uptraining it goes down
to 13.9%, and for domain-adapted uptraining it is 17%.

dobj For direct objects, vanilla uptraining (75.2%) out-
performs the baseline (65.2%) and domain-adapted uptrain-
ing (72%). The best system is 5% absolute lower than the
gold-POS-tagged baseline.

neg Negation benefits highly from training data with
domain-adapted trees. Training with vanilla trees does not
affect the baseline f-score, both are 78.6%. When domain-
adapted trees are used, the f-score jumps to 89.3%.

nn The relation nn represents the dependency of nouns
to a head noun in an NP. The baseline 64.8% goes down
slightly in vanilla uptraining and goes up slightly in domain-
adapted uptraining. They are quite low when compared to
the gold POS-tagged baseline which is 83.9%. Nominal

compound Penn Treebank NPs are flat and this makes it hard
for Stanford dependencies to correctly represent the depen-
dency relation. Hence, the parsers trained on data converted
by Stanford dependencies propagate the error.

nsubj Nominal subjects have an f-score of 69.4% in the
baseline system. Vanilla uptraining adds a 4% absolute in-
crement and domain-adapted uptraining uptraining adds a
further 2.2% with a final f-score of 75.7%.

prep Uptraining helps find prepositional modifers by 3%
absolute but there is only a slight increase from vanilla up-
training to domain-adapted uptraining.

xcomp Open clausal complements have a baseline score
of 65.9%, which goes up to 81.1% with vanilla uptraining,
but drops to 78.4% with domain-adapted uptraining. Both
grammars outperform the gold POS-tagged baseline.

For sentences 1 and 6 from Table 4, the dependency trees
produced by domain-adapted training of Malt are given in
Figures 4 and 5. ppl in Sentence 1 is now correctly identi-
fied as NNS by the retrained tagger. The correct dependency
relation of ppl in the baseline system remains the same. In
the uptrained version, that is dependent on the correct head
call, however with the wrong deprel dobj. The dobj cor-
rectly attached in the baseline is now mislabelled as iobj
in the uptrained Malt. Another difference between the base-
line grammar and the grammar uptrained on domain adapted
trees is in the conjuncts of the coordination. This is a gen-
uinely ambiguous sentence. Although the baseline grammar
interpretation in Figure 1 seems more probable, the parse in
Figure 4 is also reasonable. In Sentence 6, the correct POS
tagging of i as PRP leads to a better parse tree in domain-
adapted uptraining. The nominal modifier (nn) in Figure 2
is correctly replaced with a nominal subject (nsubj) in Fig-
ure 5 although the other parsing errors remain.

Conclusions
We have examined the consequences of applying an off-
the-shelf WSJ-trained POS-tagging and dependency pars-
ing model to the language of Twitter. Encouragingly, unsu-
pervised techniques go some of the way towards improv-
ing performance over the off-the-shelf baseline . However,
much work remains to be done, given the noisy, diverse and
constantly changing nature of Twitter. Our next step is to
experiment with the Twitter-specific POS tagset and tagger
described by Gimpel et al. (2011).



Acknowledgements
This research has been supported by the Enterprise Ireland
Commercialisation Fund (CFTD/2007/229) and the Science
Foundation Ireland (Grant 07/CE/ I1142) as part of the
Centre for Next Generation Localisation (www.cngl.ie) at
Dublin City University, School of Computing, and by the
French Agence Nationale pour la Recherche, through the
SEQUOIA project (ANR-08-EMER-013). We thank the re-
viewers for their helpful comments.

References
Bermingham, A., and Smeaton, A. 2010. Classifying senti-
ment in microblogs: Is brevity an advantage? In Proceedings
of CKIM.
Bies, A.; Ferguson, M.; Katz, K.; and MacIntyre, R. 1995.
Bracketing guidelines for Treebank II style, Penn Treebank
Project. Technical Report Tech Report MS-CIS-95-06, Uni-
versity of Pennsylvania.
Bikel, D. 2004. Intricacies of collins parsing model. Com-
putational Linguistics 30(4):479–511.
Çetinoğlu, O.; Foster, J.; Nivre, J.; Hogan, D.; Cahill, A.;
and van Genabith., J. 2010. Lfg without c-structures. In
Proceedings of the Ninth International Workshop on Tree-
banks and Linguistic Theories.
Cer, D.; de Marneffe, M.-C.; Jurafsky, D.; and Manning,
C. D. 2010. Parsing to stanford dependencies: Trade-offs
between speed and accuracy. In Proceedings of LREC.
Charniak, E., and Johnson, M. 2005. Course-to-fine n-best-
parsing and maxent discriminative reranking. In Proceed-
ings of the 43rd ACL.
de Marneffe, M.-C., and Manning, C. D. 2008. The stan-
ford typed dependencies representation. In Proceedings of
the COLING Workshop on Cross-Framework and Cross-
Domain Parser Evaluation.
Foster, J. 2010. “cba to check the spelling” Investigating
parser performance on discussion forum posts. In Proceed-
ings of HLT:NAACL.
Giménez, J., and Màrquez, L. 2004. Svmtool: A general
pos tagger generator based on support vector machines. In
Proceedings of LREC, 43–46.
Gimpel, K.; Schneider, N.; OConnor, B.; Das, D.; Mills, D.;
Eisenstein, J.; Heilman, M.; Yogatama, D.; Flanigan, J.; and
Smith, N. A. 2011. Part-of-speech Tagging for Twitter:
Annotation, Features and Experiments. In Proceedings of
ACL:HLT.
Marcus, M.; Kim, G.; Marcinkiewicz, M. A.; MacIntyre, R.;
Bies, A.; Ferguson, M.; Katz, K.; and Schasberger, B. 1994.
The penn treebank: Annotating predicate argument struc-
ture. In Proceedings of the 1994 ARPA Speech and Natural
Language Workshop, 114–119.
McClosky, D.; Charniak, E.; and Johnson, M. 2006. Rerank-
ing and self-training for parser adaptation. In Proceedings
of the 21st COLING/44th ACL.
Nivre, J.; Hall, J.; and Nilsson, J. 2006. Maltparser: A data-
driven parser-generator for dependency parsing. In Proceed-
ings of LREC, 2216–2219.

Nivre, J.; Kuhlmann, M.; and Hall, J. 2009. An improved
oracle for dependency parsing with online reordering. In
Proceedings of IWPT’09, 73–76.
Petrov, S.; Chang, P.-C.; Ringgaard, M.; and Alshawi, H.
2010. Uptraining for accurate deterministic question pars-
ing. In Proceedings of EMNLP 2010.
Wu, S.; Hofman, J.; Mason, W.; and Watts, D. 2011. Who
says what to whom on twitter. In Proceedings of the Inter-
national World Wide Web Conference Committee (IW3C2).


