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Abstract

This paper investigates the use of depen-
dency structures to represent lexical seg-
mentations including shallow multiword
expressions, independently of any syntac-
tic structure. We compare our hierar-
chical segmenter on several corpora with
sequence labelers. Experimental results
show comparable scores for flat structures,
and open new perspectives for hierarchical
representations of deeper constructions,
such as nested and interleaved multiword
expressions.

1 Introduction

Lexical segmentation is the task of computing,
from a sequence of tokens, the corresponding se-
quence of lexical units. Lexical units are either
simple words or multiword expressions. They of-
ten correspond to semantic units and their recog-
nition is therefore crucial for many NLP applica-
tions like information retrieval or machine trans-
lation. For many languages, including most Euro-
pean languages, the main difficulty of lexical seg-
mentation lies in the recognition of multiword ex-
pressions (MWEs). In this paper we address the
following question: how useful are dependency
representations for shallow MWE recognition1 as
compared to commonly used sequential labelers?
We propose four different annotation schemes for
lexical segmentation based on dependencies be-
tween tokens and we evaluate them on four cor-
pora varying in sizes, languages and richness of
annotation.

1Shallow MWE recognition corresponds to locating
MWE limits. It includes the recognition of discontiguous
MWEs.

The originality of this approach is that depen-
dency relations are not used for syntactic parsing
nor joint lexical and syntactic parsing, but exclu-
sively for lexical segmentation.

We limit our study to supervised settings, where
resources for training are composed of (i) a train-
ing corpus (with MWE annotations), (ii) predicted
POS tags and lemmas and (iii) information from
MWE lexicons. The proposition is evaluated on
three languages: English, French and Hungarian.

2 Related work

Most supervised approaches to MWE recognition
focus on shallow segmentation2. State-of-the-art
results are achieved by using sequential labelers
like Conditional Random Fields (Lafferty et al.,
2001), not only for contiguous MWEs (Vincze et
al., 2011a; Constant et al., 2012), but also for dis-
contiguous ones (Schneider et al., 2014a). In or-
der to improve accuracy and linguistic representa-
tion, researchers have tried to perform joint MWE
analysis and syntactic parsing using dependency
parsers (Vincze et al., 2013; Candito and Constant,
2014).

Even though works on deeper MWE recogni-
tion are less common, we can cite the work of
(Schneider et al., 2014a) who made a first step to-
ward deeper lexical segmentation by performing a
binary classification of idiomatic MWEs (’strong
MWE’) and collocations (’weak MWE’).

Finally, as the MWE recognition task resembles
word segmentation for languages like Chinese, we
can also relate this work to approaches using de-
pendency relations to represent word segmenta-
tion in a dependency parser (Zhao, 2009; Zhang

2Shallow segmentation can be opposed to deep segmenta-
tion which includes a hierarchical representation of MWEs:
e.g. lexical structuration ((Los Angeles) Lakers)
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et al., 2014).

3 Lexical representation: IOB sequences
vs. dependency trees

One of our objectives is to compare the perfor-
mances of two types of lexical segmenters: (1)
segmenters based on sequential labeling, (2) seg-
menters based on dependency parsing. In this sec-
tion, we present these two approaches.

3.1 IOB sequential representation
We first describe the commonly used sequential
representation for MWEs using the IOB tagset.
The IOB annotation scheme is very popular for
various segmentation tasks performed with statis-
tical sequential labelers. It has been successfully
applied to contiguous MWE segmentation like in
(Vincze et al., 2011a; Constant et al., 2012). Given
a sentence w = w1, w2, ..., wn, the goal is to find
the highest scoring sequence t of tags t1, t2, ..., tn.
Each tag ti may have three values3: O marks
the simple lexical units formed of a single word
(i.e. not included in any MWE), B marks the
starting word of an MWE, and I marks the non-
starting words of an MWE. This representation is
also valid for discontiguous (or gappy) MWEs, but
only for the case where no MWE can be inserted
in a gap. Recently, Schneider et al. (2014a) have
developed an extension in order to better deal with
this issue, offering the possibility to insert MWEs
in gaps. For this purpose, they added two tags to
the IOB tagset: b marks the starting word of a
MWE inserted in an other MWE, and i marks the
non-starting words of a MWE inserted in an other
MWE.

For instance, in the following example, the
MWE have experience is discontiguous and its
gap contains another MWE a bit.

I/O have/B a/b bit/i of/o experience/I watch-
ing/O the/O usual/O assembly/B line/I (taken

from the CMWE corpus (Schneider et al., 2014b))

Although this IOB extension is useful for En-
glish in practice (Schneider et al., 2014a), it has
theoretical limitations, as it cannot include (un-
bounded) recursion in MWE inserts. Note also
that Schneider et al. (2014a) propose a tagset to
distinguish strong and weak MWEs (cf. related
work section).

3These 3 values can be enriched with additional informa-
tion, like POS tags for instance.

3.2 Dependency tree representation
In this part, we present 4 dependency tree rep-
resentations for lexical segmentation (to be per-
formed by any off-the-shelf dependency parser).
Let w = w1, w2, ..., wn be a sentence composed of
n tokens. The segmentation of w is represented
by a tree T that is formed of n+1 nodes, one root
node and one node for each word.

It includes a set A of arcs: an arc x
l−→ y is

composed of a source node x, a label l and a des-
tination node y.

3.2.1 Representation of lexical units
A lexical unit is either a simple word (i.e. a to-
ken that is not included in an MWE) or an MWE.
A lexical unit is a subtree of the lexical segmenta-
tion tree. In case of a simple word, the subtree is
limited to a single node. In the case of an MWE,
there exist various subtree representations in the
literature, either shallow ones (Nivre and Nilsson,
2004; Eryiǧit et al., 2011; Seddah et al., 2013)
or deeper ones (i.e. including syntactic structure)
(Vincze et al., 2013; Candito and Constant, 2014).
As we solely focus on lexical segmentation (inde-
pendently of any syntactic structure), we consider
only shallow representions. We specifically inves-
tigate two of them:

1. Chained representation: MWE compo-
nents are sequentially linked together like in
(Nivre and Nilsson, 2004): for each consecu-
tive word pairs (wi,wj), with i < j, within an

MWE, there exists an arc wi
MWE−−−−→ wj .

2. Non-chained representation: the first
MWE component is linked to every other
component of the MWE like in (Seddah et al.,
2013): given the first word wi of an MWE,
there exists wi

MWE−−−−→ wj for each non-first
word wj of the MWE.

The root of the MWE subtree is therefore the first
word of the MWE. Internal dependency arcs are
labeled MWE. Figure 1 displays the two possible
subtrees for the MWE give a try in the sentence I
decided to give him a try taken from the CMWE
corpus (Schneider et al., 2014b). From now on,
we call internal dependencies, the dependencies
of the MWE subtrees.

3.2.2 Representation of the segmentation
After lexical unit subtrees are built with their cor-
responding internal dependencies, it is necessary
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(a) I decided to give him a try

MWE

MWE

(b) I decided to give him a try

MWE

MWE

Figure 1: Internal dependencies: (a) Chained
MWE representation; (b) non-chained MWE rep-
resentation.

to connect them inside a valid tree4: we call
these additional dependencies external dependen-
cies. We investigate two types of representations:

1. Chained representation: Lexical units are
sequentially linked together with a depen-
dency arc: for each pair of consecutive lex-
ical units represented by their roots (wi,wj),

i < j, there exists an arc wi
LEX−−−→ wj .

2. Non-chained representation: there is a de-
pendency arc from the root node to each lex-
ical unit: for each lexical unit represented by
its root wi, there exists an arc root

LEX−−−→ wi

in A.

Figures 2 and 3 display examples of chained
external dependencies and non-chained ones (re-
spectively combined with non-chained internal de-
pendencies and chained ones). The sentence The
staff leaves a lot to be desired, taken again from
the CMWE corpus (Schneider et al., 2014b), con-
tains two MWEs leaves to be desired and a lot.
Thus, combining the two types of internal depen-
dencies and the two types of external ones of-
fers four overall representations for the lexical seg-
mentation. In the case of the non-chained external
dependencies, the resulting tree is non-projective
when a discontiguous MWE occurs. Otherwise
trees are projective.

4 Experiments

4.1 Data sets

In this part, we present the four data sets we
used to train and evaluate our lexical segmenters:
the Wiki50 corpus (Vincze et al., 2011b) and
the Comprehensive Multiword Expression corpus
(Schneider et al., 2014a) [CMWE] for English, the

4A tree is valid if it has a root node and, for each word
node, there exists a single path going from the root node to it.

The staff leaves a lot to be desired

ROOT

MWE
MWE

MWE

MWE

Figure 2: Chained external dependencies, com-
bined with non-chained internal dependencies.

ROOT The staff leaves a lot to be desired

MWE

MWE MWE
MWE

Figure 3: Non-chained external dependencies
combined with chained internal dependencies.

French treebank (Abeillé et al., 2003; Seddah et
al., 2013) [FTB] for French, and the Szeged tree-
bank (Vincze et al., 2010)[Szeged] for Hungarian.

The data sets are briefly described in table 4.1.
CMWE and Szeged are the only data sets in-
cluding discontiguous MWEs. CMWE contains
comprehensive annotations of all types of MWEs
(including discontiguous ones), but is relatively
small. Wiki50 and FTB are larger and contain
compounds and named entities, but they do not
include discontiguous MWEs. Finally Szeged is
limited to Light Verb Constructions [LVC] which
can be discontiguous. It is the largest corpus, but
as LVCs have extremely low frequency in the text,
using it to train a good system is very challenging.

Language English French Hungarian
Corpus CMWE Wiki50 FTB Szeged
# words 55,577 114,335 564,798 1,318,501
# MWEs 3,403 7,490 29,827 3,342
ratio 0.06 0.06 0.05 0.003

Table 1: Data sets

Szeged and Wiki50 are split using 80% for
the train set and 20% for the test set. For FTB
and CMWE we used the official splits. We
built smaller versions of some data sets (Wiki50
and FTB) to have comparable sizes for training
as compared with the CMWE5. We also built a
smaller version for Szeged. Nonetheless, given
the low frequency of MWEs, the trained model
obtained near to zero accuracy scores. We there-
fore ommitted it in the results. Finally, we pro-

5For each dataset, we extracted the n first sentences, such
that the number of words is the closest to the number of words
in CMWE.
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vided POS to all lexical segmenters6. We also
provided predicted lemmas and information from
MWE lexicons to all datasets, but the Szeged one.
We used external MWE resources for English (the
freely available MWE lexicons of (Schneider et
al., 2014a)) and for French (the freely available
MWE lexicons of (Candito and Constant, 2014)).

4.2 Sequential labeling

In this section, we provide results of sequential
labeling systems on our datasets. For CMWE,
we reported the state-of-the-art scores of the
perceptron-based linear model7 of (Schneider et
al., 2014a), using features based on predicted
POS, predicted lemmas and external MWE lex-
icons. For the other datasets, we ran Wapiti
(Lavergne et al., 2010) to build and test CRF mod-
els. By using the Viterbi algorithm, it has a lin-
ear complexity in the size of the sentence and a
quadratic complexity in the size of the tagset. We
used the same set of features as the one defined
in (Constant et al., 2012) showing state-of-the-art
results on the FTB for instance (Constant et al.,
2013). Results are displayed in table 4.2.

Corpus Recall Precision F-score
CMWE* 48.3 61.0 53.9
Wiki50 57.5 81.7 67.5
Wiki50-short 50.4 81.7 62.3
FTB 77.6 83.3 80.4
FTB-short 63.8 80.1 71.1
Szeged 30.0 66.8 41.4

Table 2: MWE recognition results for sequence la-
beling on test sets. Suffix -short indicates CMWE-
size training corpus. Symbol * indicates scores
provided by (Schneider et al., 2014a)

4.3 Dependency parsing

For our experiments of lexical segmentation with
dependency parsing, we used TurboParser (Mar-
tins et al., 2013). We chose a parser able to return
non-projective trees and whose scoring scheme
is rich enough to take into account sibling (for
not-chained configurations) and grand-parent re-
lations (for chained configurations). More pre-

6We use the Stanford POS tagger (Toutanova et al., 2003)
for CMWE and Wiki50. For the FTB and Szeged, we used
the predicted POS provided respectively in the SPMRL data
set (Seddah et al., 2013)via jackknifing and by the authors of
Szeged.

7We did not report the scores of the system including
cluster-based features to be fairly comparable with the de-
pendency parsing systems.

cisely, we trained the software using the default
settings, where it implements an approximate non-
projective second-order parser taking into account
consecutive sibling and grand-parent relations8.
Like the sequence labeler, the parser is given pre-
dicted POS and lemmas. Results 9 are displayed
in table 4.3.

Corpus
Chained Chained

Rec. Prec. F-scoreexternal internal

CMWE

- - 44.9 65.4 53.3
- + 45.1 64.4 53.1
+ - 43.9 60.1 50.7
+ + 45.4 56.9 50.5

Wiki50

- - 62.5 77.4 69.2
- + 62.6 75.2 68.3
+ - 63.7 74.0 68.5
+ + 65.7 72.7 69.0

wiki50-short

- - 60.6 76.3 67.5
- + 60.9 75.0 67.2
+ - 61.2 74.0 67.0
+ + 63.0 71.4 66.9

FTB

- - 76.7 79.2 77.9
- + 77.5 78.9 78.2
+ - 75.6 73.2 74.4
+ + 75.7 72.1 73.9

FTB-short

- - 68.1 72.7 70.3
- + 68.4 70.7 69.5
+ - 67.6 65.8 66.7
+ + 69.3 64.9 67.0

Szeged

- - 38.4 68.9 49.3
- + 37.1 66.7 47.6
+ - 34.2 70.1 46.0
+ + 35.6 71.8 47.6

Table 3: Test results with TurboParser

5 Discussion

When comparing the two approaches on all
datasets, we reach varying results. First of all,
we can notice that the dependency parsing sys-
tem outperforms the sequential labelling one on
Wiki50 and Szeged. For instance, on Szeged the
best parsing system outperforms the CRF-based
system by around 8 points. The MWEs annotated
in this corpus are restricted to LVCs which often
exhibit discontinuity. Then, the two systems reach
on-par scores on the CMWE. Finally, we can no-
tice that the parsing system obtains disappointing
results on FTB: it is overall lower than the sequen-
tial labeling one by more than 2 points.

Among the systems based on dependency
parsing, we can observe that the one us-

8Higher-order non-projective parsing is an NP-complete
problem. However, the concrete complexity of TurboParser
is difficult to analyze since it relies on decomposition meth-
ods. The most complex factor (implementing the spanning
tree) has quadratic time complexity. But, as factors need to
agree on partial structures, this calculation might be carried
out many times in pathological cases.

9We also ran experiments with MaltOptimizer (Balles-
teros and Nivre, 2012) [resp. Mate parser (Bohnet, 2010)]
that show lower [resp. comparable] results than [resp. with]
TurboParser.
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ing non-chained external dependencies combined
with non-chained internal dependencies, always
reaches the best results, except for FTB (rank 2).
It has very high precision scores as compared with
the others, while recall is often slightly lower. It
seems that sibling-based features capture more rel-
evant information for lexical segmentation than
grand-parent ones for MWEs of more than two to-
kens.

We can note that results on Szeged and CMWE
are overall lower than the ones on the other
datasets (cf. results of systems trained on datasets
of comparable size (suffix short)). This can be ex-
plained by the fact that the two first datasets con-
tain discontiguous MWEs, which are more diffi-
cult to predict as it requires more structural in-
formation. Furthermore, the Hungarian system
do not include lexicon-based feature, which could
also explain the lower scores on the Szeged cor-
pus, in addition with the low frequency of LVCs.

6 Conclusions and future work

This paper presents a novel representation for lex-
ical segmentations as trees over tokens that can
adequately model gappy and interleaved MWEs
without any restriction on the depth of the hier-
archical structures. Using an off-the-shelf depen-
dency parser, we were able to recover results with
near state-of-the-art accuracy. Future work will
focus on dependency representations for deeper,
i.e. nested, MWE recognition (ex. (make a (big
deal))). We would like to exploit tree representa-
tions in order to design models for joint parsing
and lexical segmentation using trees for both di-
mensions. Finally we believe that similar repre-
sentations may be useful word tokenization, espe-
cially in Morphologically Rich Languages where
token frontiers are ambiguous.
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