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Arrowed tiles (Beenker, 1982)
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Arrowed tiles (Beenker, 1982)

N 7

Which tilings do form arrowed square and rhombus tiles?
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Arrowed tilings

Theorem N
The arrowed tilings digitize the planes (1,t,1,1,2/t,1), t € R.

Corollary

The Ammann-Beenker tilings maximize the ratio rhombi/squares.
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Arrowed tilings

Theorem N
The arrowed tilings digitize the planes (1,t,1,1,2/t,1), t € R.

Corollary

The Ammann-Beenker tilings maximize the ratio rhombi/squares.

Underlying idea

» rhombi = aluminium and squares = manganese (for example);
» Ammann-Beenker tiling = quasicrystal Al\@l\/[nl;
» Al;Mns, AlysMngg, AlxsoMnige = quasicrystal approximants.
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Alternating rhombi

Consider an octagonal tiling. Assume it can be arrowed.
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Alternating rhombi

Consider a “stripe” of tiles (also called Conway worms).
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Alternating rhombi

-

If rhombi do not alternate orientation, then tiles cannot be arrowed.
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Alternating rhombi

Conversely, consider an octagonal tiling where rhombi alternate.
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Alternating rhombi

Endow rhombi with arrows pointing towards the acute angles.
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Alternating rhombi

Endow squares with parallel arrows being equally oriented.
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Alternating rhombi

Gluing each arrow with the tile on its left yields arrowed tiles.
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Planar octagonal tilings
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Lift: homeomorphism which maps rhombi on 2-faces of unit 4-cubes.
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Planar octagonal tilings
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Shadows and subperiods
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Shadows and subperiods
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Shadows and subperiods
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Shadow: orthogonal projection of the lift along a basis vector.
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Shadows and subperiods
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Subperiod: shadow period. Rhombus alternation forces simple ones
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Pliucker coordinates
Definition (Pliicker, 1865)
E = Ri+ RV C R?* has coord. (Gj); = (uiv; — ujv;);; € P°(R).

Proposition
The tile proportions of planar tilings are given by the Pliicker coord.

Example

The Ammann-Beenker tilings are the planar tilings of thickness 1
and slope (1,/2,1,1,1/2,1); they have v/2 rhombi for 1 square.
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Linear and quadratic relations

Proposition
Subperiods of planar tilings yield linear relations on Pliicker coord.

Example
Subperiods forced by arrowed tiles yield: Gio = Gia = Gp3 = Gag.
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Linear and quadratic relations

Proposition
Subperiods of planar tilings yield linear relations on Pliicker coord.

Example
Subperiods forced by arrowed tiles yield: Gio = Gia = Gp3 = Gag.

Proposition (Pliicker, 1865)
(G,'J'),'_,' S PS(R) describes a plane iff G12 G34 = G13 G24 — G14 G23.

Lemma N
The planar arrowed tilings have slope (1,t,1,1,2/t,1), t € R.
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Planarity

Lemma
Arrowed tilings are planar with a uniformly bounded thickness.
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Planarity

Lemma

Arrowed tilings are planar with a uniformly bounded thickness.

Theorem _
The arrowed tilings digitize the planes (1,t,1,1,2/t,1), t € R.

Corollary

The Ammann-Beenker tilings maximize the ratio rhombi/squares.
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Remark

Arrowing tiles amouts to forbidding arbitrarily big patterns.
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Forbidding finite patterns forces closed rational intervals of slopes.

Thus not {v/2}, i.e., Ammann-Benker tilings (cf. Burkov, 1988).
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Remark

Arrowing tiles amouts to forbidding arbitrarily big patterns.

Forbidding finite patterns forces closed rational intervals of slopes.
Thus not {v/2}, i.e., Ammann-Benker tilings (cf. Burkov, 1988).

Thus not Gi3 = Gy, i.e., equiprobable orientations of squares.
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Beyond Ammann-Beenker tilings
Here, subperiods characterize a family of slopes and the planarity.

When they characterize finitely many slopes, the planarity follows.
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All this extends to general canonical projection tilings!
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All this extends to general canonical projection tilings!
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Beyond Ammann-Beenker tilings
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Thank you for your attention
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