Substitutions on Multidimensional Sequences

Thomas Fernique

LIRMM CNRS-UMR 5506 and Université Montpellier II,

161 rue Ada 34392 Montpellier Cedex 5 - France,
PONCELET Lab. CNRS-UMI 2615 and Independent University of Moscow,
Bol’shoj Vlas’evskij per. 11. 119002 Moscow - Russia,
thomas.fernique@ens-lyon.org

Abstract. We provide in this paper a multidimensional generalization
of substitutions on words, which is defined as the action on multidimen-
sional sequences of a non-pointed substitution endowed with local rules.
The non-pointed substitutions and the local rules have in the multidi-
mensional case respectively the roles played by the substitutions defined
on letters and by the concatenation on words. This definition then al-
lows us to provide a (yet partial) multidimensional generalization of an
algebraic characterization of Sturmian words which are fixed-point or
morphic image of a fixed-point of a non-trivial substitution on words.

Introduction

A substitution acts on a word in this way: the image of each letter is a word, and
the image of the whole word is then just the concatenation of the images of its
letters. Substitutions are powerful combinatorical tools, and have natural inter-
actions with language theory, geometry of tilings, automata theory, and many
others (see e.g. [14] and the references inside). It thus would be useful to define
a similar tool in the more general framework of multidimensonal sequences, that
are sequences of letters indexed by Z™ (whereas words are sequences of letters
indexed by N). It is however a difficult problem, mainly for lack of a natural
“multidimensional concatenation”.

Such a generalization has already been introduced in [15]: for pq, ..., p, fixed
in N, a letter u indexed by (i1, ...,4,) is mapped to a set o(u) of letters indexed
by {(41,---,7Jn) | Yk, prir < jx < pr(ir +1)} (that is, a p; X ... X p,-rectangle).
But it generalizes in fact only constant-length substitutions on words (which
map letters to words all of the same length). An algebraic characterization of
all the multidimensional sequences which are fixed point of such substitutions
is also proved (see again [15]), what generalizes a similar result for words which
are fixed-point of a constant-length substitution (see e.g. [1]).

A first aim of this paper is to introduce a notion of multidimensional sub-
stitution which generalizes any type of substitutions on words, and not only the
constant-length ones (or any other particular type). Second, we would like to



give an algebraic characterization of the multidimensional sequences which are
fixed-point, of such a multidimensional substitution. More precisely, Theorem 2
generalizes the following result (see e.g. [6,9]):

Let « be an irrational number in [0,1]. One defines the Sturmian sequence
o = (un) over the alphabet {1,2} by:

Yn>1, u,=1 < (na) modl € I,

where I, = (0,1 —a] or I, = [0,1 — a). Then u, is a fized point (resp. the
morphic image of a fized point) of a substitution on words if and only if « has a
purely periodic (resp. eventually periodic) continued fraction expansion.

Notice that this characterization concerns only Sturmian sequences, that is, a
subset of the set of all the sequences. Thus, generalizing this result also requires
to define a notion of “multidimensional Sturmian sequence”.

The paper is organized as follows. In the first section, we define non-pointed
substitutions and local rules, that are our multidimensional equivalents of the
“classic” substitutions defined on letters, and of the concatenation product used
to make such substitutions act on sequences. It allows us, under conditions on
the local rules, to define our notion of multidimensional substitution. In Section
2, we describe a type of local rules which satisfy the conditions required to de-
fine a multidimensional substitution: the local rules derived from a global rule.
In Section 3, we resume the notion of generalized substitutions, define Sturmian
hyperplane sequences and then we show that these generalized substitutions pro-
vide global rules from which we can derive local rules as described in Section 2.
It yields multidimensional substitutions on Sturmian hyperplane sequences, and
allows us to give (Theorem 2) a partial generalization of the algebraic charac-
terization of fixed-points stated above.

1 Non-pointed substitutions and local rules

Let A be a finite alphabet. A pointed letter is an element L = (z,1) of Z™ x A,
where z is the location of the letter [. We denote by £ the set of pointed letters.

A pointed pattern is a set of pointed letters with distinct locations. The sup-
port of a pointed pattern is defined as the set of the locations of its letters. Two
pointed patterns are said consistent if two letters with the same location are
identical. The notions of union, intersection and inclusion are then defined for
consistent patterns as for usual sets. We denote by P the set of pointed patterns.

The lattice Z™ acts on pointed letters (resp. pointed patterns) by transla-
tion on the locations (resp. supports): the classes of equivalence of this action
are called non-pointed letters and denoted by L (resp. non-pointed patterns, de-
noted by P).



Thus, to each pointed pattern P corresponds a unique non-pointed pattern,
called its underlying non-pointed pattern and denoted P. Conversely, to each
non-pointed pattern P corresponds all the congruent pointed patterns, called
realizations of P, that have P as underlying non-pointed pattern. If P and P’
are congruent pointed patterns, one denotes v(P, P') € 7" the vector that maps
P onto P' by translation.

We are now in a position to give our multidimensional generalization of the
definition on letters of a substitution on words:

Definition 1. A non-pointed substitution is a map from L to P.

In what follows, @ denote a non-pointed substitution. We now define local
rules, which are the main ingredient of our “multidimensional concatenation”.

Definition 2. We define two types of local rules for o:

- an initial rule A* is defined on a set I(\*) = {L} of one pointed letter, and

maps L to a realization of 3(L);

an extension rule A is defined on a set E(\) = {L,L'} of two pointed let-

ters with distinct locations, and maps L and L' to disjoint realizations of

respectively (L) and o(L').

Roughly speaking, an initial rule tells us how to position (L) for a particular
pointed letter L, while an extension rule A such that E(\) = {L, L'} is used, for
a pointed pattern {A, A’} congruent to {L, L'}, to position 7(A’) relatively to
&(A) in the same way A(L') is positioned relatively to A(L). We first define the
action of @ on A-paths:

Definition 3. Let U be a pointed pattern and A be a set of local rules for 7. A
A-path of U is a sequence R = (Ra,...,Ry) of pointed letters of U such that:

there exists an initial rule \* € A such that I(\*) = {R1};
— fori=1...k—1, there exist an extension rule \; € A and x; € Z"™ such
that E(/\Z) = {Li7 L;} with R; = L; + x; and R;y, = L; + z;.

One then defines by induction a map denoted by (G, A, R) on the letters of R
(see Fig. 1):

(@, A, R)(Ry) = A" (Ry);
Notice that, when computing the action of a substitution ¢ on a word, we
proceed in the same way: the image by o of the first letter of the word (here
seen as a path) has a specified position (here given by an initial rule), while the
position of the image of a letter follows, by induction, from the position of the
concatenation of the images of the previous letters (here, we use extension rules
to do that). We then define the action of @ on pointed patterns:
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Fig. 1. Top: from left to right, an initial rule and two extension rules; bottom: compu-
tation of the image of a path using successively the three previous local rules.

Definition 4. Let A be a set of local rules for @ and U be a pointed pattern.
The set A is said to cover U if any pointed letter of U belongs to a A-path of U
and is said to be consistent on U if for any two A-paths R and R' of U which
both contain a pointed letter L, (7, A, R)(L) = (7, A, R")(L).

If A covers U and is consistent on U, one then defines the action of @ endowed
with the set of local rules A, denoted by (T, A), as follows:

(@, A)(U) = J{(@ A, R)(L) | R is a A-path of U and I € R} .

Thus, (7, A) is our notion of multidimensional substitution on pointed pat-
terns. It can be shown that it generalizes the substitutions on words as well as
the multidimensional substitutions described in [15]. The possibilities are much
larger, but it is in general not easy to obtain sets of local rules that are consistent
on a set of pointed patterns and cover this set: the next section presents a way
to obtain such sets of local rules.

2 Local rules derived from a global rule

Let @ be a non-pointed substitution and H be a set of pointed patterns. We are
here interested in a generic way to obtain sets of local rules for @ that cover ‘H
and are consistent on it (that is, that cover any pointed pattern of H and are
consistent on any of them). We derive such sets of local rules from global rules:

Definition 5. A global rule on H for @ is a map I' defined on the set of pointed
letters {L € U | U € H} such that:

~ a pointed letter L is mapped to a realization of a(L);
pointed letters with distinct locations are mapped to disjoint pointed patterns.

Let us denote by d(L, L") the distance ) |2; — 2| between the locations (z;)

and (z}) of L and L'. We introduce a notion of weak connexity:
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Definition 6. The span between two pointed letters L and L' of U € H, denoted
by sp(L, L"), is the smallest integer D such that there exists a sequence (L; =
L,L,,...,L; = L") of pointed letters of U which verifies: Vj, d(L;,Lj+1) < D.
The spans of U and H are then defined by:

sp(U) = sup sp(L,L") and sp(H) = sup sp(U).
L.L'eU UeH
For example, sp(U) = 1 if and only if U is 4-connected. Let us now derive a
set of local rules from a global rule:

Definition 7. Let Hy be a pointed pattern and I' a global rule on H for 7. A
set A of local rules for @ is said to be derived from (H, Ho,I") if it verifies:

1. if \* is an initial rule of A with I(\*) = {L}, then L € Hy and \*(L) = I'(L);

2. if X is an extension rule of A with E(\) = {L,L'}, then d(L,L") < sp(H),
ML) =T(L) and N(L') = T'(L');

3. if X and N are extension rules of A, then E(X) and E(X') are not congruent.

Such derived sets of locals rules have interesting properties:

Proposition 1. If Hy is finite and sp(H) is bounded, then any set of local rules
derived from (H,Ho, I') is finite.

Proof. Let A be derived from (#H, Hy, I'). There is no more than |Hp| initial rules
in A. There are |A|/SPCO+D"/Z" non_congruent pointed patterns {L, L'} that
verify d(L, L") < sp(H): it follows that there is a finite number of extension rules
in A. Thus, A is finite. O

Definition 8. A global rule I' on H is said context-free if, forU € H, L, L' € U
and x € 7" such that L+ z,L' +x € U, one has:
o(D(L), (L + z)) = o((L"), ['(L' + x)).

We present examples of such global rules in Section 3.

Proposition 2. If I' is a context-free global rule on H, then any set of local
rules derived from (H, Ho,I') is consistent on H.

Proof. Suppose that I' is context-free, and let A be a set of local rules de-
rived from (H,Hq,I'). Let R = (Ry,...,Ri) be a A-path of U € H. Let us
prove by induction that for all i, (7,4, R)(R;) = ['(R;). Since R is a A-path,
there exists an initial rule A* € A such that I(A*) = {R;}, and since A is de-
rived from (H, Hy,I'), (¢, A, R)(R1) = A*(R1) = I'(R1). Suppose now that
(7, Ag, R)(R;) = I'(R;). According to Definition 3, there exists an extension
rule A\; € A and x; € Z" such that E(X\;) = {L;, L} with R; = L; + x;
and Ri+1 = L; + i, and (ﬁ, Ak;R)(Ri+1) = )\(L;) + ’U()\(L,)l (E, Ak,R)(Rl))
But A is derived from (H, Ho, I'), hence A(L;) = I'(L;) and A(L}) = I'(L}).
Moreover, (57 Ak,R)(RZ) = F(Rl) = F(Lz + ZEZ) Thus, (E, Ak7R)(RZ‘+1) =
I'(L}) +v(I'(L;), I'(L; + z;). Finally, since I" is context-free, (7, Ag, R)(Rit1) =
I'(LY) +o(I'(LY), I(L; + x;)) = I'(L} + ;) = I'(Ri1). It yields that A is con-

sistent on H. O



Proposition 3. If Hy intersects any pointed pattern of H, then there exist sets
of local rules derived from (H,Hq,I') that cover H.

Proof. Let us define & = {{L,L'} | L,L' €U, U € H and d(L,L") < sp(H)},
and let £' be a maximal subset of £ that does not contain congruent pointed
patterns. Let A be the set of the following local rules:

for each L € Hy, the initial rule A\* defined on I(A\*) = {L} by A*(L) = I'(L);
— for each {L,L'} € &', the extension rule A defined on E(\) = {L,L'} by
ML) =I'(L) and \(L") = I'(L").

One easily checks that A is derived from (#, Ho, I'). Let us prove that A covers
H.Let U € H and L' € U. Since Hy intersects any pointed pattern of H, there
exists L € U U Hy. By definition, there also exists a sequence of pointed letters
(Lw = L,Ly,...,Ly = L") such that Vi, d(L;, Liz1) < sp(#H). Then, for all i
there exists ; € Z" such that {L;, L;y1} + x; € £, and there exists an initial
rule of A defined on {L;}. It yields that (Lq,..., L) is a A-path which contains
L'. Thus, A covers H. O

We can resume the previous propositions in the following theorem:

Theorem 1. Let I" be a context-free global rule on H for &. If sp(H) is bounded
and if Hy € P is a finite pointed pattern intersecting any pointed pattern of H,
then one can derive from (H,Hqy,I') a finite set of local rules that is consistent
on H and covers it.

We thus have a way to derive, from a context-free global rule, local rules
consistent on a given set of pointed pattern and covering this set. This result is
applied in the next section to a particular type of context-free global rule.

3 Sturmian hyperplane sequences and algebraicity

We first briefly resume the notion of generalized substitution (see e.g. [4,5,14]).
Let e, ..., e, denote the canonical basis of R* and let (.,.) denote the canonical
scalar product on R"”.

A face (z,i*), for x € Z™ and i € {1,...,n} is defined by:

(z,i*) ={z+Y_rje; | 0<r; <1}
i#i

Such faces generate the Z-module of the formal sums of weighted faces G =
{>-my i(x,i*) | my; € Z}, on which the lattice Z™ acts by translation: y +
(z,i*) = (y + z,4*). Faces are used to approximate hyperplanes of R":

Definition 9. Let a € R}, o # 0. The hyperplane Po, of R" is defined by:

Po ={z € R" | (z,) = 0}.



The stepped hyperplane Sy associated to Pe, is defined by:
Sa = {(z,i") | (z,a) > 0 and {(x — e;,a) < 0},
and a patch of So is a finite subset of the set of faces of Sq.

Notice that a patch of S, belongs to the Z-module G, but is geometric,
that is, without multiple faces. Let us recall that the incidence matriz M, of a
substitution on words ¢ gives at position (4,7) the number of occurences of the
letter i in the word o(j). If detM, = 1, then o is said unimodular.

Definition 10. The generalized substitution associated to the unimodular sub-
stitution o is the endomorphism ©, of G defined by:

Vi € A, Op (0,i*) = Y01 S so(jympics (My 1 (F(5)),57)
Vo € 73, Vi€ A, Oy (z,i*) = M, o + 0,(0,i%),

Vzmm(?”ﬂ*) € g: O (zmﬁ?(?ﬂ/?*)) = me,ien(m:i*),

where f(w) = (w1, |wl|s, |w|3) and |w|; is the number of occurences of the letter
i inw.

The following type of substitution is particularly interesting:

Definition 11. A substitution o is of Pisot type if its incidence matriz M,
has eigenvalues A\, u1,. .., un—1 satisfying 0 < |u;| < 1 < X. The generalized
substitution O, is then also said of Pisot type.

Indeed, the following result is proved in [4, 5]:

Proposition 4 ([4,5]). If o is of Pisot type and if @ is a left eigenvector of
M, for the dominant eigenvalue X\, then O;(Sa) C Sa and O, maps distinct
faces of the stepped hyperplane So to disjoint patches of S .

The stepped hyperplane S, is called the invariant hyperplane of ©,. It is
also proved in [11]:

Proposition 5 ([11]). If the modified Jacobi-Perron algorithm ([8]) yields a
purely periodic (resp. eventually periodic) continued fraction expansion for o €
R™, then the stepped hyperplane Sy is a fized point (resp. the image by a gener-
alized substitution of a fized point) of a generalized substitution of Pisot type.

We then define hyperplane sequences, mapping stepped hyperplanes of R"”
to (n — 1)-dimensional sequences over the alphabet {1,...,n}. The following
proposition (proved in Appendix) resumes a result given in [2, 3]:

Proposition 6. Let Vo C Z" be the set of the vertices that belong to the faces
of So- Let vy and 7o be the maps defined respectively on So and Vo by:

Va(z,i") =z+e1+...+€ei—1 and 7a(T1,...,%n) = (T1—Tpn, .-, Tn_1—Ty).

Then, v (Tesp. Ta) is a bijection from S onto Vo (resp. from Vo onto Z" 1),



Let ¢, be defined on S by ¢ (2,i*) = (e (va(z,i*)),1): it maps bijectively
the faces of Sq to the letters of a (n — 1)-dimensional sequence over {1,...,n}.
Notice that not all these (n — 1)-dimensional sequences over {1,...,n} corre-
spond to a stepped hyperplane. We thus introduce the following definition:

Definition 12. An hyperplane sequence is an (n — 1)-dimensional sequence
over {1,...,n} defined, for a« € R", by ¢ (Sa). One denotes by Ho such an
hyperplane sequence. Moreover, if o = (a1, ..., ay) is such that 1,aq, ..., oy are

linearly independent over Q, then He, is called a Sturmian hyperplane sequence.

For n = 2, Sturmian hyperplane sequences are nothing but Sturmian se-
quences over {1,2} (see [12]), and for n = 3, one retrieves the notion of two-
dimensional Sturmian sequence of [7]. Notice that an hyperplane sequence Hq
is defined on the whole Z"!: it yields sp(Hs) = 1. Let us now derive, from
generalized substitution, context-free global rules on hyperplane sequences:

Proposition 7. Let o be a Pisot unimodular substitution on words over {1,...,n}.
Let O, be the associated generalized substitution, and Se, its invariant stepped

hyperplane. Let Ho = ¢o(Se). We set L=7""1x {1,...,n} and define:

I, =¢a00,0¢," and o* 1 (0,i) € L~ I,(0,i) € P.
Then, T, is a context-free global rule on Ho for the non-pointed substitution o*.
Proof. For (z,i) € Ha and y € Z™~ !, one computes:

Ty ((x,4) +y) = Ty (x,4) + ma (M 75" (1))

It follows that I, (x,i) = [,(0,%) = o* ((0, 7)) Moreover, since @, maps distinct

faces of Su to disjoint patches of S, (see Proposition 4) and since ¢, maps
bijectively the faces of Si to the letters of He, Iy = o © O, 0 ¢t maps letters
with distinct locations to disjoint pointed patterns. Thus, I', is a global rule on
He for o*.

Then, if (2,i) € Ha, (2',i) € He and y € Z" !, one has:

(L (1), Iy ((2.4) + ) = ma (M 75" (y) = v(L (',4), [, ((2',9) + ).
Hence I, is context-free, according to Definition 8. O
Finally, combining Theorem 1 and Proposition 5 and 7, we obtain:

Theorem 2. If the modified Jacobi-Perron algorithm ([8]) yields a purely peri-
odic (resp. eventually periodic) continued fraction expansion for o € R, then
the Sturmian hyperplane sequence Heo is a fized point (resp. the image by a mul-
tidimensional substitution of a fixed point) of a multidimensional substitution.

This result can thus be seen as a multidimensional generalization of the
algebraic characterization resumed in the introduction, though it provides only
a sufficient condition for a Sturmian hyperplane sequence to be a fixed point of a



multidimensional substitution or the image by a multidimensional substitution of
such a fixed point. In fact, the proof of the algebraic characterization resumed in
the introduction uses the notion of return words of [10]. This notion has already
been generalized, in terms of tilings, in [13]: it thus gives us a possible way to
achieve the characterization of Theorem 2.

Ezample 1. Let o be the classic substitution defined on {1,2,3} by o(1) = 13,
(2) =1 and ¢(3) = 2. One computes:

00 1 (0,1%) = ((1,-1,0),1%) + (0,2%)
M;y'=[10-1], and O, : (0,2%)+ (0,1%)
010 (0,3%) + (0,2%)

which yields the non-pointed substitution:

o* 1 Too~ {100,201}, 20,0 = {300}, 300~ {1loo},

which one can also represent as follows:

o* : 1— ?7 23, 3—1.
Let us define H = {I'?((0,0),1),n > 1}. One can prove in this particular case
that sp(H) = 1. Thus, one can compute (Theorem 1) a finite set of local rules

that covers H and is consistent on it. One obtains for example the initial rule
defined by:

A" ((0,0),1) = {((0,0),1),((0,1),2)},

and five extension rules, represented as follows (the bolded letters are mapped to
the bolded letters, so the information about relative locations is still conserved):

2 2
)\112l—) 2, )\2:31|_)1, )\f;ll—)Qll
1 31 1
1 1
2
)\4:21l—)1, )\5 1'—)11
3 3 2

For example, computing the sequence (o, {\*, A1,...,A5})"((0,0),1) for n =

1,...,7 gives (the letter with location (0,0) is bolded):

2 2 2 2 2
2 2 2 21 3121 3121
1 - 1313131 —» 31 —» 31 —
1 1 1 21
31

1
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We can in this way generate arbitrarely large patches of the hyperplane sequence
Hea, where a is a left eigenvector of M,. Moreover, Hy is a fixed-point of this
multidimensional substitution.
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Appendix

Proof of Proposition 6:

Let (z,i*) and (y, j*) be two faces of Sg such that v (z,7*) = va (y,5*). I i < 7,
thenx =y+e;+...+ej_1,and (z —e;,0) = ((y + €41+ ... + €51, ) =
(y, ) + (€i41 + ... + ej_1,). Since (y,j*) € Sa, (y,a) > 0. Moreover,
(€ix1 + ...+ ej—1,a) > 0. Thus, i < j would yield (z — e;,a) > 0, what
would contradict (z,i*) € Sg. Similarly, i > j is impossible. Hence i = j, and
x = y follows. It proves that v, is one-to-one from S, to Ve .

If y € Vg, then there exist (z,i*) € So and I C {1,...,n}, i ¢ I, such that

y=1r+) ;€ Let usdenote f: k> (x+3 ,c,e; —e1—...— ek, ). One
has:
F0)=(z,0) +> (ej.a) >0,  f(n)=(r—eia)— Y (eja)<0,
jel JE1,3#i

and f is decreasing. Let kg such that f(ko — 1) > 0 and f(ko) < 0. Let yo =
y—e1—...—egy,—1. Then, (yg,a) = f(ko—1) > 0, and (yg—eg,, @) = f(ko) < 0.
Thus, (yo, k) € Sa. Since v (yo, k§) = y, it proves that v is onto from So on
Ve

Let us denote a by (a1, ..., a,). Recall that the a; are positive and not all

equal to zero. Let then = = (21,...,2,) € V4 and (2',i*) = v '(x). One has
0 < (2',a) < (e;, ) = a;. Thus:

n i—1
0< Z.’E]‘Ozj - ZO(]‘ S ;.
Jj=1 Jj=1
Suppose now 7o () = (Y1,..-,Yn_1). The previous formula yields:
n—1 n i—1 n
0< Zyjaj +xn2aj < Zaj +a; < Zaj,
j=1 j=1 i=1 J=1
and performing the division by Z?Zl aj > 0, it then gives:

1
>y Yiay

n—1
Ty, =1— ’772'7'_] yjaj-‘

0< +x, <1,

that is, since z,, € Z:

21y

Conversely, given (yi,...,yn_1) € Z™ 1, setting z,, € Z as above and then, for
i=1...n—1,2; =y;+x, yields o (z1,...,2n) = (Y1,.--,Yn—1). Thus, 74 is a
bijection from V4 to Z™ ' (and the proof provides an explicit formula for 7_"').



