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t. We provide in this paper a multidimensional generalizationof substitutions on words, whi
h is de�ned as the a
tion on multidimen-sional sequen
es of a non-pointed substitution endowed with lo
al rules.The non-pointed substitutions and the lo
al rules have in the multidi-mensional 
ase respe
tively the roles played by the substitutions de�nedon letters and by the 
on
atenation on words. This de�nition then al-lows us to provide a (yet partial) multidimensional generalization of analgebrai
 
hara
terization of Sturmian words whi
h are �xed-point ormorphi
 image of a �xed-point of a non-trivial substitution on words.Introdu
tionA substitution a
ts on a word in this way: the image of ea
h letter is a word, andthe image of the whole word is then just the 
on
atenation of the images of itsletters. Substitutions are powerful 
ombinatori
al tools, and have natural inter-a
tions with language theory, geometry of tilings, automata theory, and manyothers (see e.g. [14℄ and the referen
es inside). It thus would be useful to de�nea similar tool in the more general framework of multidimensonal sequen
es, thatare sequen
es of letters indexed by Zn (whereas words are sequen
es of lettersindexed by N). It is however a di�
ult problem, mainly for la
k of a natural�multidimensional 
on
atenation�.Su
h a generalization has already been introdu
ed in [15℄: for p1; : : : ; pn �xedin N, a letter u indexed by (i1; : : : ; in) is mapped to a set �(u) of letters indexedby f(j1; : : : ; jn) j 8k; pkik � jk < pk(ik +1)g (that is, a p1� : : :� pn-re
tangle).But it generalizes in fa
t only 
onstant-length substitutions on words (whi
hmap letters to words all of the same length). An algebrai
 
hara
terization ofall the multidimensional sequen
es whi
h are �xed point of su
h substitutionsis also proved (see again [15℄), what generalizes a similar result for words whi
hare �xed-point of a 
onstant-length substitution (see e.g. [1℄).A �rst aim of this paper is to introdu
e a notion of multidimensional sub-stitution whi
h generalizes any type of substitutions on words, and not only the
onstant-length ones (or any other parti
ular type). Se
ond, we would like to



2give an algebrai
 
hara
terization of the multidimensional sequen
es whi
h are�xed-point of su
h a multidimensional substitution. More pre
isely, Theorem 2generalizes the following result (see e.g. [6, 9℄):Let � be an irrational number in [0; 1℄. One de�nes the Sturmian sequen
eu� = (un) over the alphabet f1; 2g by:8n � 1; un = 1 , (n�) mod 1 2 I�;where I� = (0; 1 � �℄ or I� = [0; 1 � �). Then u� is a �xed point (resp. themorphi
 image of a �xed point) of a substitution on words if and only if � has apurely periodi
 (resp. eventually periodi
) 
ontinued fra
tion expansion.Noti
e that this 
hara
terization 
on
erns only Sturmian sequen
es, that is, asubset of the set of all the sequen
es. Thus, generalizing this result also requiresto de�ne a notion of �multidimensional Sturmian sequen
e�.The paper is organized as follows. In the �rst se
tion, we de�ne non-pointedsubstitutions and lo
al rules, that are our multidimensional equivalents of the�
lassi
� substitutions de�ned on letters, and of the 
on
atenation produ
t usedto make su
h substitutions a
t on sequen
es. It allows us, under 
onditions onthe lo
al rules, to de�ne our notion of multidimensional substitution. In Se
tion2, we des
ribe a type of lo
al rules whi
h satisfy the 
onditions required to de-�ne a multidimensional substitution: the lo
al rules derived from a global rule.In Se
tion 3, we resume the notion of generalized substitutions, de�ne Sturmianhyperplane sequen
es and then we show that these generalized substitutions pro-vide global rules from whi
h we 
an derive lo
al rules as des
ribed in Se
tion 2.It yields multidimensional substitutions on Sturmian hyperplane sequen
es, andallows us to give (Theorem 2) a partial generalization of the algebrai
 
hara
-terization of �xed-points stated above.1 Non-pointed substitutions and lo
al rulesLet A be a �nite alphabet. A pointed letter is an element L = (x; l) of Zn�A,where x is the lo
ation of the letter l. We denote by L the set of pointed letters.A pointed pattern is a set of pointed letters with distin
t lo
ations. The sup-port of a pointed pattern is de�ned as the set of the lo
ations of its letters. Twopointed patterns are said 
onsistent if two letters with the same lo
ation areidenti
al. The notions of union, interse
tion and in
lusion are then de�ned for
onsistent patterns as for usual sets. We denote by P the set of pointed patterns.The latti
e Zn a
ts on pointed letters (resp. pointed patterns) by transla-tion on the lo
ations (resp. supports): the 
lasses of equivalen
e of this a
tionare 
alled non-pointed letters and denoted by L (resp. non-pointed patterns, de-noted by P).



3Thus, to ea
h pointed pattern P 
orresponds a unique non-pointed pattern,
alled its underlying non-pointed pattern and denoted P . Conversely, to ea
hnon-pointed pattern P 
orresponds all the 
ongruent pointed patterns, 
alledrealizations of P , that have P as underlying non-pointed pattern. If P and P 0are 
ongruent pointed patterns, one denotes v(P; P 0) 2 Zn the ve
tor that mapsP onto P 0 by translation.We are now in a position to give our multidimensional generalization of thede�nition on letters of a substitution on words:De�nition 1. A non-pointed substitution is a map from L to P.In what follows, � denote a non-pointed substitution. We now de�ne lo
alrules, whi
h are the main ingredient of our �multidimensional 
on
atenation�.De�nition 2. We de�ne two types of lo
al rules for �:� an initial rule �� is de�ned on a set I(��) = fLg of one pointed letter, andmaps L to a realization of �(L);� an extension rule � is de�ned on a set E(�) = fL;L0g of two pointed let-ters with distin
t lo
ations, and maps L and L0 to disjoint realizations ofrespe
tively �(L) and �(L0).Roughly speaking, an initial rule tells us how to position �(L) for a parti
ularpointed letter L, while an extension rule � su
h that E(�) = fL;L0g is used, fora pointed pattern fA;A0g 
ongruent to fL;L0g, to position �(A0) relatively to�(A) in the same way �(L0) is positioned relatively to �(L). We �rst de�ne thea
tion of � on �-paths :De�nition 3. Let U be a pointed pattern and � be a set of lo
al rules for �. A�-path of U is a sequen
e R = (R1; : : : ; Rk) of pointed letters of U su
h that:� there exists an initial rule �� 2 � su
h that I(��) = fR1g;� for i = 1 : : : k � 1, there exist an extension rule �i 2 � and xi 2 Zn su
hthat E(�i) = fLi; L0ig with Ri = Li + xi and Ri+1 = L0i + xi.One then de�nes by indu
tion a map denoted by (�; �;R) on the letters of R(see Fig. 1):� (�; �;R)(R1) = ��(R1);� for i = 1 : : : k � 1, (�; �;R)(Ri+1) = �i(L0i) + v(�i(Li); (�; �;R)(Ri)).Noti
e that, when 
omputing the a
tion of a substitution � on a word, wepro
eed in the same way: the image by � of the �rst letter of the word (hereseen as a path) has a spe
i�ed position (here given by an initial rule), while theposition of the image of a letter follows, by indu
tion, from the position of the
on
atenation of the images of the previous letters (here, we use extension rulesto do that). We then de�ne the a
tion of � on pointed patterns:
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Fig. 1. Top: from left to right, an initial rule and two extension rules; bottom: 
ompu-tation of the image of a path using su

essively the three previous lo
al rules.De�nition 4. Let � be a set of lo
al rules for � and U be a pointed pattern.The set � is said to 
over U if any pointed letter of U belongs to a �-path of Uand is said to be 
onsistent on U if for any two �-paths R and R0 of U whi
hboth 
ontain a pointed letter L, (�; �;R)(L) = (�; �;R0)(L).If � 
overs U and is 
onsistent on U , one then de�nes the a
tion of � endowedwith the set of lo
al rules �, denoted by (�; �), as follows:(�; �)(U) =[ f(�; �;R)(L) j R is a �-path of U and L 2 Rg :Thus, (�; �) is our notion of multidimensional substitution on pointed pat-terns. It 
an be shown that it generalizes the substitutions on words as well asthe multidimensional substitutions des
ribed in [15℄. The possibilities are mu
hlarger, but it is in general not easy to obtain sets of lo
al rules that are 
onsistenton a set of pointed patterns and 
over this set: the next se
tion presents a wayto obtain su
h sets of lo
al rules.2 Lo
al rules derived from a global ruleLet � be a non-pointed substitution and H be a set of pointed patterns. We arehere interested in a generi
 way to obtain sets of lo
al rules for � that 
over Hand are 
onsistent on it (that is, that 
over any pointed pattern of H and are
onsistent on any of them). We derive su
h sets of lo
al rules from global rules :De�nition 5. A global rule on H for � is a map � de�ned on the set of pointedletters fL 2 U j U 2 Hg su
h that:� a pointed letter L is mapped to a realization of �(L);� pointed letters with distin
t lo
ations are mapped to disjoint pointed patterns.Let us denote by d(L;L0) the distan
eP jxi�x0ij between the lo
ations (xi)and (x0i) of L and L0. We introdu
e a notion of weak 
onnexity:



5De�nition 6. The span between two pointed letters L and L0 of U 2 H, denotedby sp(L;L0), is the smallest integer D su
h that there exists a sequen
e (L1 =L;L2; : : : ; Lk = L0) of pointed letters of U whi
h veri�es: 8j, d(Lj ; Lj+1) � D.The spans of U and H are then de�ned by:sp(U) = supL;L02U sp(L;L0) and sp(H) = supU2H sp(U):For example, sp(U) = 1 if and only if U is 4-
onne
ted. Let us now derive aset of lo
al rules from a global rule:De�nition 7. Let H0 be a pointed pattern and � a global rule on H for �. Aset � of lo
al rules for � is said to be derived from (H; H0; � ) if it veri�es:1. if �� is an initial rule of � with I(��) = fLg, then L 2 H0 and ��(L) = � (L);2. if � is an extension rule of � with E(�) = fL;L0g, then d(L;L0) � sp(H),�(L) = � (L) and �(L0) = � (L0);3. if � and �0 are extension rules of �, then E(�) and E(�0) are not 
ongruent.Su
h derived sets of lo
als rules have interesting properties:Proposition 1. If H0 is �nite and sp(H) is bounded, then any set of lo
al rulesderived from (H; H0; � ) is �nite.Proof. Let � be derived from (H; H0; � ). There is no more than jH0j initial rulesin �. There are jAjj(sp(H)+1)n=Znj non-
ongruent pointed patterns fL;L0g thatverify d(L;L0) � sp(H): it follows that there is a �nite number of extension rulesin �. Thus, � is �nite. utDe�nition 8. A global rule � on H is said 
ontext-free if, for U 2 H, L;L0 2 Uand x 2 Zn su
h that L+ x; L0 + x 2 U , one has:v(� (L); � (L+ x)) = v(� (L0); � (L0 + x)):We present examples of su
h global rules in Se
tion 3.Proposition 2. If � is a 
ontext-free global rule on H, then any set of lo
alrules derived from (H; H0; � ) is 
onsistent on H.Proof. Suppose that � is 
ontext-free, and let � be a set of lo
al rules de-rived from (H; H0; � ). Let R = (R1; : : : ; Rk) be a �-path of U 2 H. Let usprove by indu
tion that for all i, (�; �;R)(Ri) = � (Ri). Sin
e R is a �-path,there exists an initial rule �� 2 � su
h that I(��) = fR1g, and sin
e � is de-rived from (H; H0; � ), (�; �k; R)(R1) = ��(R1) = � (R1). Suppose now that(�; �k; R)(Ri) = � (Ri). A

ording to De�nition 3, there exists an extensionrule �i 2 � and xi 2 Zn su
h that E(�i) = fLi; L0ig with Ri = Li + xiand Ri+1 = L0i + xi, and (�; �k; R)(Ri+1) = �(L0i) + v(�(Li); (�; �k; R)(Ri)).But � is derived from (H; H0; � ), hen
e �(Li) = � (Li) and �(L0i) = � (L0i).Moreover, (�; �k; R)(Ri) = � (Ri) = � (Li + xi). Thus, (�; �k; R)(Ri+1) =� (L0i) + v(� (Li); � (Li +xi). Finally, sin
e � is 
ontext-free, (�; �k; R)(Ri+1) =� (L0i) + v(� (L0i); � (L0i + xi)) = � (L0i + xi) = � (Ri+1). It yields that � is 
on-sistent on H. ut



6Proposition 3. If H0 interse
ts any pointed pattern of H, then there exist setsof lo
al rules derived from (H; H0; � ) that 
over H.Proof. Let us de�ne E = ffL;L0g j L;L0 2 U; U 2 H and d(L;L0) � sp(H)g,and let E 0 be a maximal subset of E that does not 
ontain 
ongruent pointedpatterns. Let � be the set of the following lo
al rules:� for ea
h L 2 H0, the initial rule �� de�ned on I(��) = fLg by ��(L) = � (L);� for ea
h fL;L0g 2 E 0, the extension rule � de�ned on E(�) = fL;L0g by�(L) = � (L) and �(L0) = � (L0).One easily 
he
ks that � is derived from (H; H0; � ). Let us prove that � 
oversH. Let U 2 H and L0 2 U . Sin
e H0 interse
ts any pointed pattern of H, thereexists L 2 U [H0. By de�nition, there also exists a sequen
e of pointed letters(L1 = L;L2; : : : ; Lk = L0) su
h that 8i, d(Li; Li+1) � sp(H). Then, for all ithere exists xi 2 Zn su
h that fLi; Li+1g + xi 2 E 0, and there exists an initialrule of � de�ned on fL1g. It yields that (L1; : : : ; Lk) is a �-path whi
h 
ontainsL0. Thus, � 
overs H. utWe 
an resume the previous propositions in the following theorem:Theorem 1. Let � be a 
ontext-free global rule on H for �. If sp(H) is boundedand if H0 2 P is a �nite pointed pattern interse
ting any pointed pattern of H,then one 
an derive from (H; H0; � ) a �nite set of lo
al rules that is 
onsistenton H and 
overs it.We thus have a way to derive, from a 
ontext-free global rule, lo
al rules
onsistent on a given set of pointed pattern and 
overing this set. This result isapplied in the next se
tion to a parti
ular type of 
ontext-free global rule.3 Sturmian hyperplane sequen
es and algebrai
ityWe �rst brie�y resume the notion of generalized substitution (see e.g. [4, 5, 14℄).Let e1; : : : ; en denote the 
anoni
al basis of Rn and let h:; :i denote the 
anoni
als
alar produ
t on Rn .A fa
e (x; i�), for x 2 Zn and i 2 f1; : : : ; ng is de�ned by:(x; i�) = fx+Xj 6=i rjej j 0 � rj � 1g:Su
h fa
es generate the Z-module of the formal sums of weighted fa
es G =fPmx;i(x; i�) j mx;i 2 Zg, on whi
h the latti
e Zn a
ts by translation: y +(x; i�) = (y + x; i�). Fa
es are used to approximate hyperplanes of Rn :De�nition 9. Let � 2 Rn+ , � 6= 0. The hyperplane P� of Rn is de�ned by:P� = fx 2 Rn j hx;�i = 0g:



7The stepped hyperplane S� asso
iated to P� is de�ned by:S� = f(x; i�) j hx;�i > 0 and hx � ei;�i � 0g ;and a pat
h of S� is a �nite subset of the set of fa
es of S�.Noti
e that a pat
h of S� belongs to the Z-module G, but is geometri
,that is, without multiple fa
es. Let us re
all that the in
iden
e matrix M� of asubstitution on words � gives at position (i; j) the number of o

uren
es of theletter i in the word �(j). If detM� = �1, then � is said unimodular.De�nition 10. The generalized substitution asso
iated to the unimodular sub-stitution � is the endomorphism �� of G de�ned by:8>>>><>>>>:8i 2 A; ��(0; i�) =P3j=1Ps:�(j)=p�i�s �M�1� (f(s)); j�� ;8x 2 Z3; 8i 2 A; ��(x; i�) = M�1� x+��(0; i�);8Pmx;i(x; i�) 2 G; �� (Pmx;i(x; i�)) =Pmx;i��(x; i�);where f(w) = (jwj1; jwj2; jwj3) and jwji is the number of o

uren
es of the letteri in w.The following type of substitution is parti
ularly interesting:De�nition 11. A substitution � is of Pisot type if its in
iden
e matrix M�has eigenvalues �; �1; : : : ; �n�1 satisfying 0 < j�ij < 1 < �. The generalizedsubstitution �� is then also said of Pisot type.Indeed, the following result is proved in [4, 5℄:Proposition 4 ([4, 5℄). If � is of Pisot type and if � is a left eigenve
tor ofM� for the dominant eigenvalue �, then ��(S�) � S� and �� maps distin
tfa
es of the stepped hyperplane S� to disjoint pat
hes of S�.The stepped hyperplane S� is 
alled the invariant hyperplane of �� . It isalso proved in [11℄:Proposition 5 ([11℄). If the modi�ed Ja
obi-Perron algorithm ([8℄) yields apurely periodi
 (resp. eventually periodi
) 
ontinued fra
tion expansion for � 2Rn , then the stepped hyperplane S� is a �xed point (resp. the image by a gener-alized substitution of a �xed point) of a generalized substitution of Pisot type.We then de�ne hyperplane sequen
es, mapping stepped hyperplanes of Rnto (n � 1)-dimensional sequen
es over the alphabet f1; : : : ; ng. The followingproposition (proved in Appendix) resumes a result given in [2, 3℄:Proposition 6. Let V� � Zn be the set of the verti
es that belong to the fa
esof S�. Let v� and �� be the maps de�ned respe
tively on S� and V� by:v�(x; i�) = x+e1+ : : :+ei�1 and ��(x1; : : : ; xn) = (x1�xn; : : : ; xn�1�xn):Then, v� (resp. ��) is a bije
tion from S� onto V� (resp. from V� onto Zn�1).



8 Let �� be de�ned on S� by ��(x; i�) = (��(v�(x; i�)); i): it maps bije
tivelythe fa
es of S� to the letters of a (n� 1)-dimensional sequen
e over f1; : : : ; ng.Noti
e that not all these (n � 1)-dimensional sequen
es over f1; : : : ; ng 
orre-spond to a stepped hyperplane. We thus introdu
e the following de�nition:De�nition 12. An hyperplane sequen
e is an (n � 1)-dimensional sequen
eover f1; : : : ; ng de�ned, for � 2 Rn , by ��(S�). One denotes by H� su
h anhyperplane sequen
e. Moreover, if � = (�1; : : : ; �n) is su
h that 1; �1; : : : ; �n arelinearly independent over Q, then H� is 
alled a Sturmian hyperplane sequen
e.For n = 2, Sturmian hyperplane sequen
es are nothing but Sturmian se-quen
es over f1; 2g (see [12℄), and for n = 3, one retrieves the notion of two-dimensional Sturmian sequen
e of [7℄. Noti
e that an hyperplane sequen
e H�is de�ned on the whole Zn�1: it yields sp(H�) = 1. Let us now derive, fromgeneralized substitution, 
ontext-free global rules on hyperplane sequen
es:Proposition 7. Let � be a Pisot unimodular substitution on words over f1; : : : ; ng.Let �� be the asso
iated generalized substitution, and S� its invariant steppedhyperplane. Let H� = ��(S�). We set L = Zn�1� f1; : : : ; ng and de�ne:�� = �� Æ�� Æ ��1� and �� : (0; i) 2 L 7! ��(0; i) 2 P :Then, �� is a 
ontext-free global rule on H� for the non-pointed substitution ��.Proof. For (x; i) 2 H� and y 2 Zn�1, one 
omputes:��((x; i) + y) = ��(x; i) + ��(M�1� ��1� (y)):It follows that ��(x; i) = ��(0; i) = �� �(0; i)�. Moreover, sin
e �� maps distin
tfa
es of S� to disjoint pat
hes of S� (see Proposition 4) and sin
e �� mapsbije
tively the fa
es of S� to the letters of H�, �� = �� Æ�� Æ��1� maps letterswith distin
t lo
ations to disjoint pointed patterns. Thus, �� is a global rule onH� for ��.Then, if (x; i) 2 H�, (x0; i) 2 H� and y 2 Zn�1, one has:v(��(x; i); ��((x; i) + y)) = ��(M�1� ��1� (y)) = v(��(x0; i); ��((x0; i) + y)):Hen
e �� is 
ontext-free, a

ording to De�nition 8. utFinally, 
ombining Theorem 1 and Proposition 5 and 7, we obtain:Theorem 2. If the modi�ed Ja
obi-Perron algorithm ([8℄) yields a purely peri-odi
 (resp. eventually periodi
) 
ontinued fra
tion expansion for � 2 Rn , thenthe Sturmian hyperplane sequen
e H� is a �xed point (resp. the image by a mul-tidimensional substitution of a �xed point) of a multidimensional substitution.This result 
an thus be seen as a multidimensional generalization of thealgebrai
 
hara
terization resumed in the introdu
tion, though it provides onlya su�
ient 
ondition for a Sturmian hyperplane sequen
e to be a �xed point of a



9multidimensional substitution or the image by a multidimensional substitution ofsu
h a �xed point. In fa
t, the proof of the algebrai
 
hara
terization resumed inthe introdu
tion uses the notion of return words of [10℄. This notion has alreadybeen generalized, in terms of tilings, in [13℄: it thus gives us a possible way toa
hieve the 
hara
terization of Theorem 2.Example 1. Let � be the 
lassi
 substitution de�ned on f1; 2; 3g by �(1) = 13,�(2) = 1 and �(3) = 2. One 
omputes:M�1� = 0�0 0 11 0 �10 1 0 1A ; and �� : (0; 1�) 7! ((1;�1; 0); 1�) + (0; 2�)(0; 2�) 7! (0; 1�)(0; 3�) 7! (0; 2�) ;whi
h yields the non-pointed substitution:�� : 10;0 7! f10;0; 20;1g; 20;0 7! f30;0g; 30;0 7! f10;0g;whi
h one 
an also represent as follows:�� : 1 7! 21 ; 2 7! 3; 3 7! 1:Let us de�ne H = f�n� ((0; 0); 1); n � 1g. One 
an prove in this parti
ular 
asethat sp(H) = 1. Thus, one 
an 
ompute (Theorem 1) a �nite set of lo
al rulesthat 
overs H and is 
onsistent on it. One obtains for example the initial rulede�ned by: �� : ((0; 0); 1) 7! f((0; 0); 1); ((0; 1); 2)g;and �ve extension rules, represented as follows (the bolded letters are mapped tothe bolded letters, so the information about relative lo
ations is still 
onserved):�1 : 21 7! 23 1 ; �2 : 3 1 7! 211 ; �3 : 11 7! 22 11 ;�4 : 2 1 7! 213 ; �5 13 7! 1 12 :For example, 
omputing the sequen
e (��; f��; �1; : : : ; �5g)n((0; 0); 1) for n =1; : : : ; 7 gives (the letter with lo
ation (0; 0) is bolded):1 7! 21 7! 23 1 7! 23 11 7! 22 13 11 7! 2 23 1 2 13 11 7! 2 23 1 2 13 12 13 11 7! : : :



10We 
an in this way generate arbitrarely large pat
hes of the hyperplane sequen
eH�, where � is a left eigenve
tor of M�. Moreover, H� is a �xed-point of thismultidimensional substitution.A
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11AppendixProof of Proposition 6:Let (x; i�) and (y; j�) be two fa
es of S� su
h that v�(x; i�) = v�(y; j�). If i < j,then x = y + ei + : : : + ej�1, and hx � ei;�i = h(y + ei+1 + : : : + ej�1;�i =hy;�i + hei+1 + : : : + ej�1;�i. Sin
e (y; j�) 2 S�, hy;�i > 0. Moreover,hei+1 + : : : + ej�1;�i � 0. Thus, i < j would yield hx � ei;�i > 0, whatwould 
ontradi
t (x; i�) 2 S�. Similarly, i > j is impossible. Hen
e i = j, andx = y follows. It proves that v� is one-to-one from S� to V�.If y 2 V�, then there exist (x; i�) 2 S� and I � f1; : : : ; ng, i =2 I , su
h thaty = x+Pj2I ej . Let us denote f : k 7! hx +Pj2I ej � e1 � : : :� ek;�i. Onehas:f(0) = hx;�i+Xj2I hej ;�i > 0; f(n) = hx� ei;�i � Xj =2I;j 6=ihej ;�i � 0;and f is de
reasing. Let k0 su
h that f(k0 � 1) > 0 and f(k0) � 0. Let y0 =y�e1�: : :�ek0�1. Then, hy0;�i = f(k0�1) > 0, and hy0�ek0 ;�i = f(k0) � 0.Thus, (y0; k�0) 2 S�. Sin
e v�(y0; k�0) = y, it proves that v� is onto from S� onV�.Let us denote � by (�1; : : : ; �n). Re
all that the �i are positive and not allequal to zero. Let then x = (x1; : : : ; xn) 2 V� and (x0; i�) = v�1� (x). One has0 < hx0;�i � hei;�i = �i. Thus:0 < nXj=1 xj�j � i�1Xj=1 �j � �i:Suppose now ��(x) = (y1; : : : ; yn�1). The previous formula yields:0 < n�1Xj=1 yj�j + xn nXj=1 �j � i�1Xj=1 �j + �i � nXj=1 �j ;and performing the division by Pnj=1 �j > 0, it then gives:0 < Pn�1j=1 yj�jPnj=1 �j + xn � 1;that is, sin
e xn 2 Z: xn = 1� &Pn�1j=1 yj�jPnj=1 �j ' :Conversely, given (y1; : : : ; yn�1) 2 Zn�1, setting xn 2 Z as above and then, fori = 1 : : : n�1, xi = yi+xn yields ��(x1; : : : ; xn) = (y1; : : : ; yn�1). Thus, �� is abije
tion from V� to Zn�1 (and the proof provides an expli
it formula for ��1� ).


