On self-assembly of planar octagonal tilings of finite type

Galanov Ilya Laboratoire d'Informatique de Paris Nord Université Paris 13

Table of Contents

- Introduction
- Q Cut-and-project Tilings with Local Rules
- 3 The Local Self-Assembly Algorithm
- Window
- Defective Seeds
- 6 Shadows

3

Table of Contents

Introduction

Out-and-project Tilings with Local Rules

The Local Self-Assembly Algorithm

Window

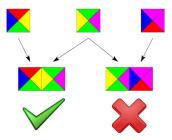
6 Defective Seeds

6 Shadows

What is a tiling?

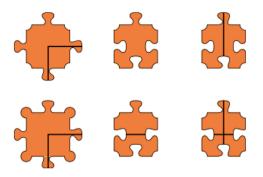
• *Tiling*: covering of the plane with copies of basic shapes without gaps and overlaps. The set of basic shapes is called a *prototile set* and the elements are called *tiles*.

Wang tiles (1961)



- A set of tiles is called *aperiodic* if copies of them can cover the whole plane but only in a non-periodic way.
- Berger in 1964 constructed the first aperiodic tileset: 20426 tiles!

Robinson tiling (1971)



Prototiles of Robinson tiling

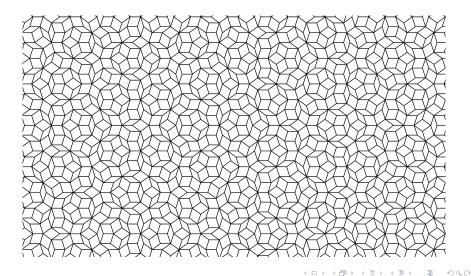
Penrose tiling (1974)

< 4 → <

Penrose tiling (1974)

Prototileset of Penrose tilings

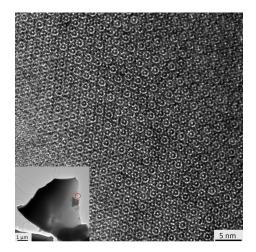
Penrose Tiling (1974)



Motivation

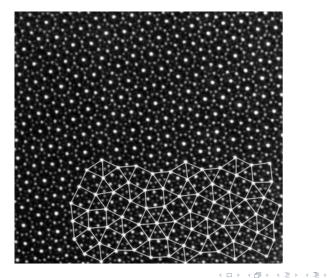
- Rapid development of aperiodic tilings started after discovery of *quasicrystals* in 1982 by Dan Shechtman (Nobel prize in 2011);
- The atomic arrangement of a quasicrystal breaks the periodicity (no translational symmetry);
- Due to specific local structure of these materials the growth process of such crystals is still poorly understood.

Quasicrystals



< 口 ト < 🗗

Quasicrystals



E

Question

Is it possible to grow an aperiodic tiling *locally*?

The meaning of the locality constraint:

- units of the growing cluster must be added one by one;
- · decisions are local, i.e. according to tiles within a fixed distance;
- no information must be stored between the steps.

3

- 一司

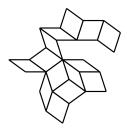
- 一司

- 一司

< A



- 一司



< A



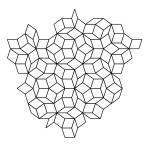
< A

Vertex-atlas and Local rules

- Vertex-atlas $\mathcal{A}(r)$: all the patterns of radius r;
- Local rules: a finite set of patterns that characterize the tiling.

Main Obstacle: Deceptions

• Deceptions: patterns allowed by local rules which cannot be extended to a tiling of the entire plane;



Theorem (Dworkin, Shieh, 1995)

Deceptions exist for all aperiodic tilesets.

Possible Solution: avoid making choices

- (a) is allowed;
- (b) is forbidden.

- 一司

Self-Assembly Algorithm (Socolar, 1991)

- Start with a finite pattern of Penrose tiling;
- Keep adding the forced tiles one by one until it is possible;
- When there are none left, add a thick tile to a special site;
- Repeat.

Theorem (Socolar, 1991)

The algorithm can build any Penrose tiling.

Self-Assembly Algorithm (Socolar, 1991)

- Start with a finite pattern of Penrose tiling;
- Keep adding the forced tiles one by one until it is possible;
- When there are none left, add a thick tile to a special site;
- Repeat.

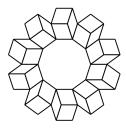
Theorem (Socolar, 1991)

The algorithm can build any Penrose tiling.

• However, this algorithm is *not* local.

Defective Seeds

With a *correct* seed it is impossible to get all the tiles, but with a *defective* seed one can grow a tiling of the entire plane except for a finite region!



The decapod, an example of such a seed for Penrose tiling.

December 12, 2019

25 / 90

Demonstration

Demonstration.

Ξ

-

Image: A matrix

Table of Contents

Introduction

Out-and-project Tilings with Local Rules

3 The Local Self-Assembly Algorithm

Window

Defective Seeds

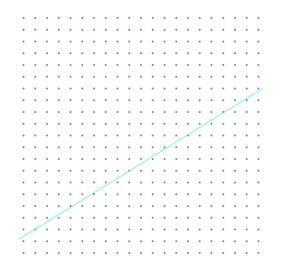
6 Shadows

December 12, 2019 27 / 90

3

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

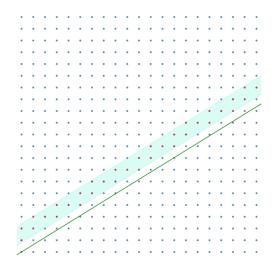


◆ロ ▶ ◆檀 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ 釣�(♡

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•		
•	•	•	•	•	•	•			•			•		•		/			•	•
•	•	•	•	•	•			•				•		•			•		•	•
•	•	•	•	•		•	•	•	•	•	•	•				•				•
•	•	•	•			•	•		•		:		•						•	•
•	•		•			•				•						•			•	•
•	•		•																•	•
:	:	:	:	:									:	:		:	:	:	:	:
	:	:																	:	

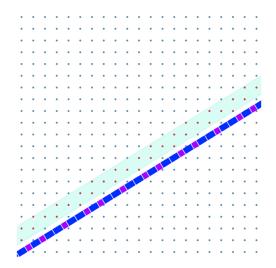
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•					•		•
•	•	•	•	•	•	•	•	•	•	•	•	•						•	•	•
•	•	•	•	•		•	•		•		•				•			•	•	•
•		•	•	•		•				•								•		•
•	•	•	•		•					•								•		•
•		•	•			•				•							•			•
•	•	•	•	•	•					•					•		•		•	•
•	•	•	•	•						•					•		•		•	•
•	•	•			:									•			•	•		•
•														•				•		•
7	1				•					:		•			•		•		•	
:	2		:	:	:	:	:	:	:		:	:	:	:	:		:			
	:	:	:	:						:		:						:		
	•		•				•		•		•		•	•	•		•	•	•	•

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ─ 臣 ─ 釣��

December 12, 2019 32 / 90



◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

December 12, 2019 34 / 90

- 一司

Cut-and-project tilings

Definition

Let *E* be a *d*-dim. affine space in \mathbb{R}^n called the slope. Select the *d*-dim. faces with vertices in \mathbb{Z}^n lying in $E + [0, 1]^n$. Project them onto *E* to get a so-called *planar* $n \to d$ tiling.

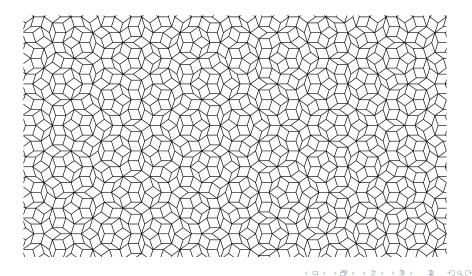
Cut-and-project tilings

Theorem (De Bruijn, 1981)

Penrose tiling is planar $5 \rightarrow 2$ with the slope generated by

$$u = \begin{pmatrix} 1 \\ \cos(2\pi/5) \\ \cos(4\pi/5) \\ \cos(6\pi/5) \\ \cos(8\pi/5) \end{pmatrix} \quad v = \begin{pmatrix} 0 \\ \sin(2\pi/5) \\ \sin(4\pi/5) \\ \sin(6\pi/5) \\ \sin(8\pi/5) \end{pmatrix}$$

Example: Penrose Tiling

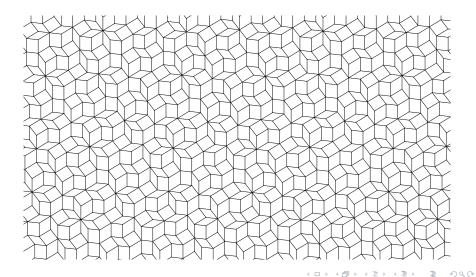


Example: Golden-Octagonal

Golden-Octagonal tiling is planar 4 \rightarrow 2 with the slope generated by

$$u = \begin{pmatrix} -1 \\ 0 \\ \phi \\ \phi \end{pmatrix} \quad v = \begin{pmatrix} 0 \\ 1 \\ \phi \\ 1 \end{pmatrix}$$

Example: Golden-Octagonal

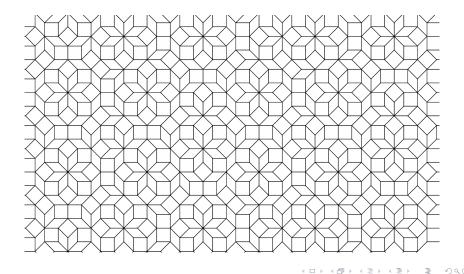


Example: Ammann-Beenker

Ammann-Beenker tiling is planar 4 \rightarrow 2 with the slope generated by

$$u = \begin{pmatrix} 1\\ \cos(\pi/4)\\ \cos(2\pi/4)\\ \cos(3\pi/4) \end{pmatrix} \quad v = \begin{pmatrix} 0\\ \sin(\pi/4)\\ \sin(2\pi/4)\\ \sin(3\pi/4) \end{pmatrix}$$

Example: Ammann-Beenker



Local Rules

Definition (Local rules)

A *d*-plane $E \subset \mathbb{R}^n$ is said to admit *local rules* if there exists a vertex-atlas $\mathcal{A}(r)$ so that any $n \to d$ tiling with the same atlas is planar with the slope parallel to E.

Theorem (Bedaride, Fernique, 2017)

A planar $4 \rightarrow 2$ tiling admits local rules if and only if it is determined by its subperiods (easily checked on the generating vectors).

- Penrose tillings have local rules.
- Golden-Octagonal tilings have local rules.
- Ammann-Beenker tilings do not have local rules!

Proposition

In order to have a local self-assembly algorithm for a planar tiling it is necessary for the slope of the tiling to admit local rules.

Table of Contents

Introduction

Out-and-project Tilings with Local Rules

3 The Local Self-Assembly Algorithm

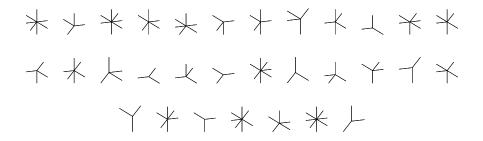
Window

Defective Seeds

6 Shadows

3

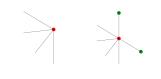
1-Atlas of Golden-Octagonal Tilings



3

(4 回) (4 \Pi) (4 \Pi)

Forced Vertex Example:



- 一司

Local Algorithm

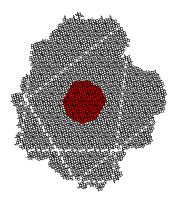
Given r > 0, a vertex-atlas $\mathcal{A}(r)$ and a finite pattern S:

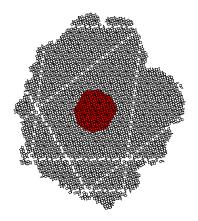
- pick at random a vertex v in S and let P(v, r) be the subpattern of radius r and center v;
- consider the set F of all the elements in the vertex-atlas A(r) that matches with the subpattern P(v, r);
- add to S all the vertices that appear in every pattern of F;
- Repeat.

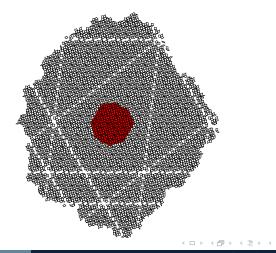
Main Conjecture

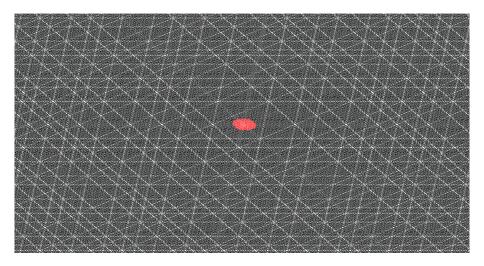
Conjecture

For a planar tiling \mathcal{T} with local rules, a seed S, and a big enough vertex-atlas, the algorithm generates the intersection of all the tilings with slopes parallel to the slope of \mathcal{T} which have S as a subset.

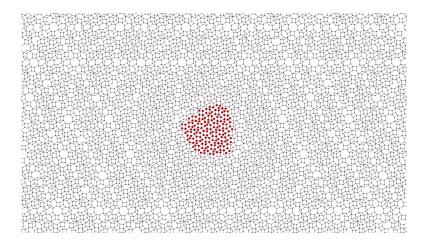






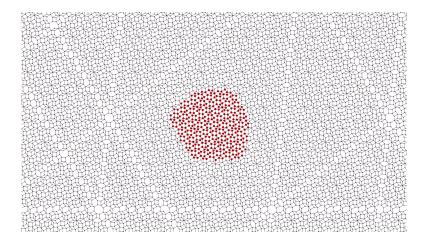


Smaller Seed

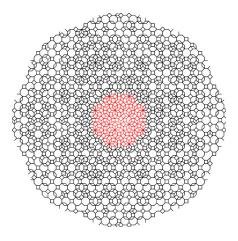


< A

Bigger Seed



Ammann-Beenker



Ammann-Beenker tiling does not have local rules and will not grow.

Conclusions

- · Infinite growth is observed for infinite family of tilings
- Algorithm permits to jump over undefined tiles and avoid being stuck
- The algorithm is local but it misses some tiles (Conway worms)
- Bigger seed \rightarrow bigger proportion of the plane covered

Table of Contents

Introduction

Out-and-project Tilings with Local Rules

The Local Self-Assembly Algorithm

Window

6 Defective Seeds

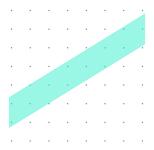
6 Shadows

Window

Definition (Window)

The window W of a planar tiling with a slope $E \subset \mathbb{R}^n$ is the orthogonal projection of $[0, 1]^n$ onto E^{\perp} , where E^{\perp} is a complementary space to E

$$W = \pi^{\perp}([0,1]^n).$$



Regions in the Window

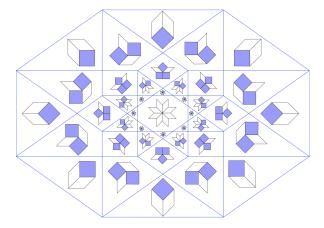
Proposition

To every pattern of a tiling we can assign a region in the window:

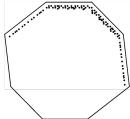
$$R(P) = \bigcap_{x:\pi(x)\in P} (W - \pi^{\perp}(x)).$$

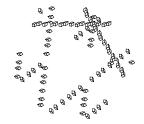
December 12, 2019 59 / 90

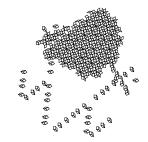
Subregions in the window

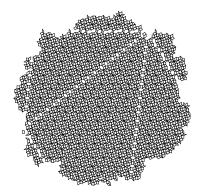


- 一司









December 12, 2019 64 / 90

Conclusions

- Empty stripes consist of patterns which are close to the border of the window when projectied to the perpendicular space
- Bigger seed \to more information about the position of the window \to bigger proportion of the plane covered

Table of Contents

Introduction

Out-and-project Tilings with Local Rules

The Local Self-Assembly Algorithm

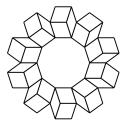
Window

Defective Seeds

6 Shadows

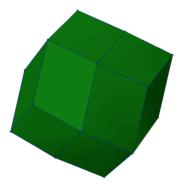
December 12, 2019 66 / 90

Reminder: Defective Seed for Penrose Tilings



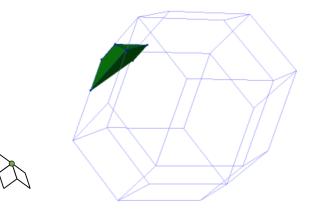
• Growth starting from the decapod covers the entire plane except for finite (and untileable) region in the center

Window



The window for Penrose tiling.

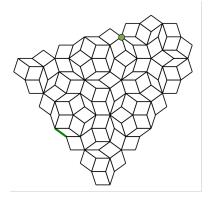
- 一司

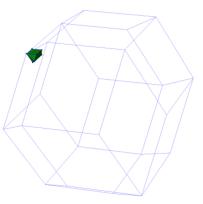


-

• • • • • • • •

E





<ロト <回ト < 回ト < 回

E

 $R(tiling) = \{point\}.$

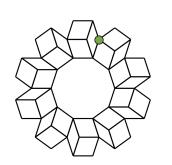
3

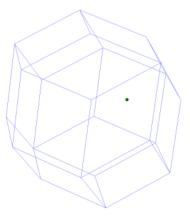
-

E

Examples

 $R(decapod) = \{point\}$





< 🖓

Ξ

Defective Seeds For Tilings with Local Rules

Lemma

For any tiling with local rules T and for any $R > \lceil \max(||p_i||_1) \rceil$, where $\{p_i\}$ is the set of subperiods of T, there exist a seed D with following properties:

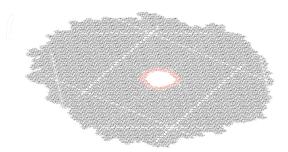
• every subpattern of D of radius R is correct (i.e. it is a subset of a tiling with the same slope)

December 12, 2019

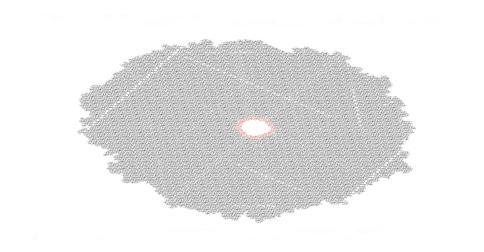
73 / 90

• *R*(*D*) = {*point*}

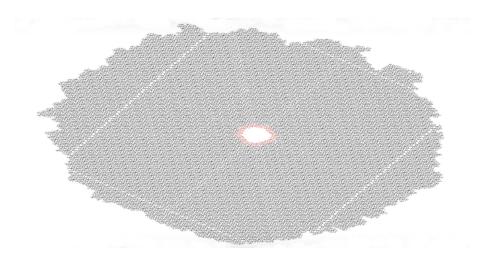
Golden-Octagonal Defective Seed



Golden-Octagonal Defective Seed



Golden-Octagonal Defective Seed



Defective Seeds

Conjecture

For all the planar tilings with local rules there is a set of defective seeds such that the growth with such seeds will produce a tiling of the entire plane except for a finite region.

December 12, 2019

77 / 90

Table of Contents

Introduction

Out-and-project Tilings with Local Rules

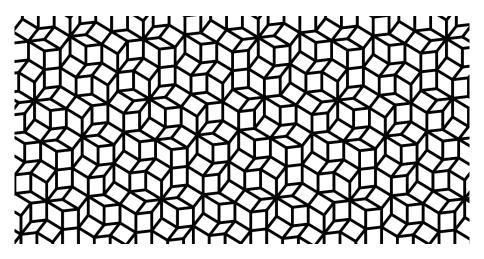
The Local Self-Assembly Algorithm

Window

6 Defective Seeds

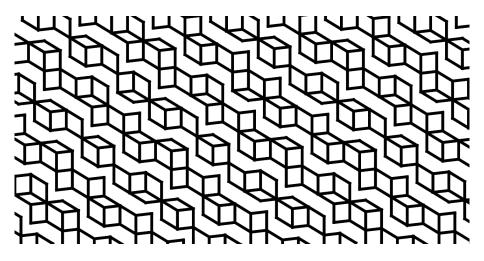
6 Shadows

3



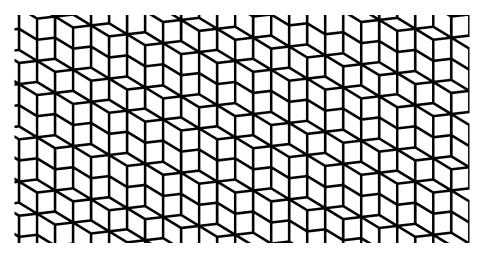
E

イロト イヨト イヨト イヨト



E

イロト イヨト イヨト イヨト

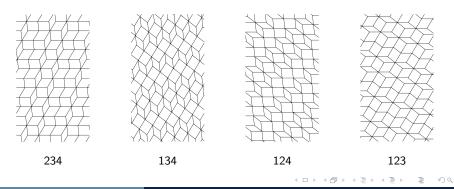


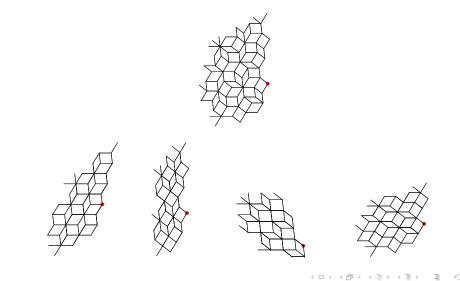
E

イロト イロト イヨト イヨト

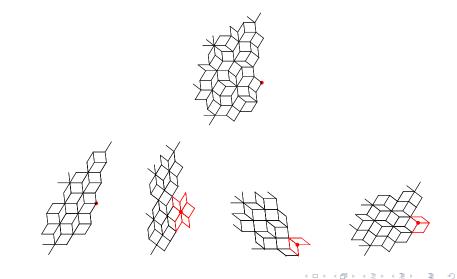
Definition

The *ijk*-shadow of a $4 \rightarrow 2$ planar tiling is the orthogonal projection of its *lift* to the space generated by e_i, e_j and e_k .

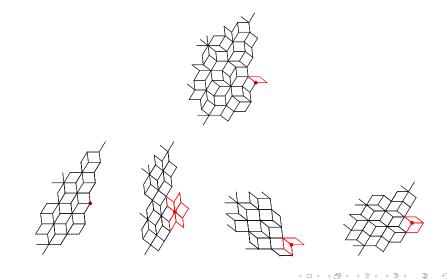




Shadows Can Vote!

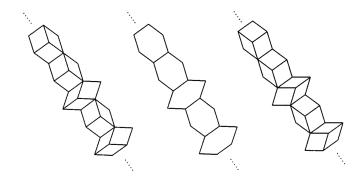


Shadows Can Vote!



Thank you for your attention!

Conway worms



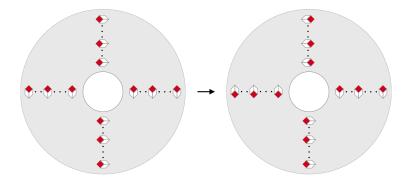
Ξ

э

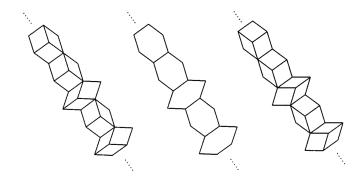
-

Image: A mathematical states and a mathem

now to Construct The Defective Seeds?



Conway worms



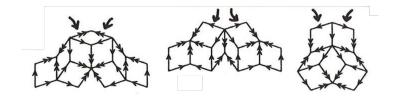
Ξ

э

-

Image: A mathematical states and a mathem

Marginal sites



Ξ

э

- ∢ 🗗 ト