
A MARKOVIAN GENERALIZATION OF FELLER'S COINTOSSING CONSTANTSCYRIL BANDERIER & MATHIAS VANDENBOGAERT.PERSONAL NOTE. 27 NOVEMBER 2000ALGORITHMS PROJECT, INRIA.HTTP://ALGO.INRIA.FR/This note answers to Steve Finch's question at the end of his webpage [1] on\Feller's Coin Tossing Constants". The question is how to adapt known techniques(the classical Bernoulli model) in order to study motifs in a random text withrespect to a Markovian model?1. Feller's Coin Tossing Constants. Bernoulli Model.We are interested in the probability w(n) that in n independent tosses of ancoin, no run of k (or more) consecutive heads appears.This means that we only accept sequences of the shapeLk = (�+H +HH + � � �+Hk�1)(T+H + T+HH + � � �+ T+Hk�1)�T �where T+ = T + T 2 + T 3 + : : : stands for a positive number of consecutive T , andA� = A0+A+A2+ : : : stands for a nonnegative number of consecutive occurrencesof A, and � stands for the empty word.This is a regular expression which de�ne a language, that is, a set of words.Note that the above expression is non-ambiguous, that is, any sequence without kconsecutive heads is decomposable in a unique way via the above expression. Thisimplies that the number of valid sequences of length n is exactly the number ofwords of length n which can generated by the above expression.Let an be the number of valid sequences (=words belonging to Lk) of length nand consider now the generating function Lk(z) associated to Lk , de�ned byLk(z) =Xn�0 anzn :Since Chomsky{Sch�utzenberger (1963), it is well known that such a generatingfunction (associated to a language which is given by a regular expression) is rational.The symbolic method shows us how to convert immediately a regular expressioninto its generating function. Replace the letters H and T by z and then (�+H +HH + � � � + Hk�1) becomes zk�1z�1 , T � becomes 11�z , T+ becomes z1�z and so on.Thus Lk(z) = zk � 1z � 1 11� z1�z zk�zz�1 11� zIf you want to take of the fact that the probability to have H or T (that is,you want to consider a Bernoulli probabilistic model with parameter (p; q)), thenreplace H by pz and T by qz. 1



2 CYRIL BANDERIERThis leads toLk(z) = (pz)k � 1pz � 1 11� qz1�qz (pz)k�pzpz�1 11� qz = 1� (pz)k1� z + qz(pz)kEvaluation with k = 3 and p = q = 12 givesLk(z) = 1 + z + z2 + 78z3 + 1316z4 + 34z5 +O(z6):Remind that asymptotics of coe�cients of a rational function depends directlyon the poles of this function :Proposition 1. If F is a rational function with poles �1; : : : ; �m 6= 0, then it existsm polynomials P1; : : : ; Pm (where Pj has degree order of the pole �j minus 1) suchthat Fn = [zn]F (z) = mXj=1 Pj(n)��nj :Proof. Use the decomposition into partial fraction form F (z) and[zn](z � �)�k = (�1)k�n+k �n+ k � 1k � 1 �this gives a polynomial of degree k � 1 in n.Considering only the dominant term into the asymptotics leads to the followingresultTheorem 1. The probability to get a sequence of length n without k consecutiveheads is asymptoticallyw(n) = an = 1� p�(k + 1� k�)q���n + o(��n)where � is the smallest (with respect to the modulus) root of the denominator1� z + qz(pz)kof the generating function Lk(z).Proof. Consider Lk(z) = A(z)B(z) . For k > 1, the smallest root � of B is a simple root,thus Lk(z)�x�� A(�)B0(�) 1z � �:One gets � = �A(�)�B0(�) and w(n) = ���n.



A MARKOVIAN GENERALIZATION OF FELLER'S COIN TOSSING CONSTANTS 32. Feller's Coin Tossing Constants. Markov Model.For the Markov model (that is, the probability to toss H or T depends now onthe last toss), the same idea applies.Simply rewrite Lk = (� + S)(T+S)�T � (where S = H + � � � + Hk�1) in such away that it is easy to see when a H follows H or T (idem for T ). Firstly expandthe previous expression for Lk:Lk = �+ TT � + (TT �S)(TT �S)�(�+ TT �) + S(1 + TT �) + S(TT �S)+(�+ TT �)And then rewrite Ti for any T beginning a word, rewrite T0 for any T followinga H and rewrite Si = Hi(H + � � � + Hk�2) for a run of heads beginning a word(whereas Si = H1(H + � � �+Hk�2) stands for intermediate sequences of heads)Lk = �+ TiT � + (TiT �S)(T0T �S)�(�+ T0T �) + +Si ��+ (T0T �S)+� (�+ T0T �)Finally, replace T by p11z, T0 by p01z and Ti by i1z. Replace also H by p00z,H1 by p10z and Hi by i0z. This leads toLk(z) = 1 + i0z1� p00z + i0z1� p00z p01z (p11z)k�1 � 1p11z � 1 1 + p10z1�p00z1� p10z1�p00zp01z (p11z)k�1�1p11z�1+i1z (p11z)k�1 � 1p11z � 1 0@1 + p10z1�p00zp01z (p11z)k�1�1p11z�11� p10z1�p00zp01z (p11z)k�1�1p11z�1 1A�1 + p10z1� p00z� :This simpli�es toLk(z) = A(z)B(z) = p11 + (p01p11 � p211)z + (pk11(i0 � 1))zk + (pk+111 (1� p01 � i0))zk+1p11 + (p11p01 � p211 � p11)z + (p211 � p01p11)z2 + (p01pk11(1� p11))zk+1For sure, setting k = 3 and p00 = p10 = p11 = p01 = 12 gives the same result asin the previous exemple for the Bernoulli case:Lk(z) = 16� 2z316� 16z + z4 = 1+ z + z2 + 78z3 + 1316z4 + 34z5 +O(z6):As for the Bernoulli model, one deals now with the asymptotics of a rationalgenerating function and one gets:Theorem 2. Under a Markov model �p00 p01p10 p11�, with an initial probability i0 tobegin with a tail, and i1 to begin with a head, the probability to get a sequence oflength n without k consecutive heads is asymptocallyw(n) = ���n + o(��n)where � is the smallest (with respect to the modulus) root of the denominator B(z)of the generating function Lk(z) and where� = �A(�)�B0(�) = ��1 + (2p11 � p01)�+ (p01p11 � p211)�2� (i1 + (p01 � i1)�)p01p10� (�1� k + k(p11 + p00)�+ (p11 � p01)(1� k)�2) :



4 CYRIL BANDERIER3. General patterns, Bernoulli or Markov Model.For general patterns, it is easier to adapt the automaton point of view. Anautomaton is graph with the edges (the \transitions") are oriented and where thevertices (the \states") can be of three types \initial", \�nal" or \intermediary" (astate can be both intial, �nal, and intermediary). What is more, each transition ismarked by a letter of the alphabet (say H and T in our coin-tossing problem).A word is said to be recognized by the automaton if it is possible to start in ainitial state, then to read each letter of the word following some transition in theautomaton and �nally ending in a �nal state when one reads the last letter of theword. A classical resultasserts that the sets of words recognized by an automatacorresponds to a regular expressions (and reciprocally). Thus, an automaton canbe associated to the regular expression for Lk. A Markov chain is simply can beconsidered as an automaton for which the transitions are probabilized. For theBernoulli model, the automata recognizing the pattern (= theregular expression)under study can be easily built, then the generating function can be made explicitand asymptotics follow. For the Markov model, making a kind of tensor productbetween the automata and of the Markov matrix gives a new automata and thenproceed as in the classical Bernoulli model (note that we used a slightly di�erenttrick in the previous section).That's what Nicod�eme, Salvy & Flajolet explain in their article [2]. They givean algorithm for making explicit the (bivariate) generating function for the numberof occurrences of any regular expression (thus for every pattern, or even an in�niteset of patterns). The bivariate generating function FE(z; u) = Pn;k�0 fn;kukzngives the probablity fn; k to get k occurrences of the pattern E in a random textof length n.The text can be random under two models : Bernoulli's model or Markov'smodel.The bivariate generating function can be used to perform asymptotics (average,higher moments...). Thus, they proved that a Gaussian law holds.Naturally, setting k = 0 in the bivariate generating function gives the probabilitythat there is zero occurrence of the given pattern in a text of length n.Note that most of these computations can be done automatically, e.g. in Maple,with the help of the packages [3] Combstruct and Regexpcount. A worksheet willbe available \soon". :-) References[1] Steve Finch. Feller's coin tossing constants. 1998. http://www.mathsoft.com/asolve/constant/feller/feller.html.[2] Pierre Nicod�eme, Bruno Salvy, and Philippe Flajolet. Motif statistics. In J. Ne�setril, editor,Algorithms, volume 1643 of Lecture Notes in Computer Science, pages 194{211, 1999. Pro-ceedings of 7th Annual European Symposium on Algorithms ESA'99, Prague, July 1999.[3] Algorithms Project. AlgoLib (Libraries for Maple), 2000. http://algo.inria.fr.


