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This note answers to Steve Finch’s question at the end of his webpage [1] on
“Feller’s Coin Tossing Constants”. The question is how to adapt known techniques
(the classical Bernoulli model) in order to study motifs in a random text with
respect to a Markovian model?

1. FELLER’S CoIN T0SSING CONSTANTS. BERNOULLI MODEL.

We are interested in the probability w(n) that in n independent tosses of an
coin, no run of k£ (or more) consecutive heads appears.
This means that we only accept sequences of the shape

Ly=(+H+HH+-- -+ H"YTtH+TYHH + .-+ TTH 1) T*

where T =T 4+ T? + T° + ... stands for a positive number of consecutive 7', and
A* = A+ A+ A% +... stands for a nonnegative number of consecutive occurrences
of A, and ¢ stands for the empty word.

This is a regular expression which define a language, that is, a set of words.
Note that the above expression is non-ambiguous, that is, any sequence without &
consecutive heads is decomposable in a unique way via the above expression. This
implies that the number of valid sequences of length n is exactly the number of
words of length n which can generated by the above expression.

Let a,, be the number of valid sequences (=words belonging to L) of length n
and consider now the generating function Lj(z) associated to Ly, defined by

Li(2) = Z anz™.

n>0

Since Chomsky—Schiitzenberger (1963), it is well known that such a generating
function (associated to a language which is given by a regular expression) is rational.
The symbolic method shows us how to convert immediately a regular expression
into its generating function. Replace the letters H and T by z and then (e + H +

HH + --- 4+ H*™') becomes Z::f, T* becomes -, T becomes 1% and so on.
Thus
2k -1 1 1
L =
T T

If you want to take of the fact that the probability to have H or T (that is,
you want to consider a Bernoulli probabilistic model with parameter (p,q)), then
replace H by pz and T by gz.
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This leads to
(pz)k —1 1 1 1— (p2)*

pz—1 1_ a9z )*pz 1 gz - 1 —z+qz(pz)k
1—qz pz—1

Lk (Z) =

Evaluation with k =3 and p=¢ = % gives

7 13 3
Lip(z)=1+2z+2"+ §z3 + 1—6z4 + Zz‘r’ +0(2%).
Remind that asymptotics of coefficients of a rational function depends directly

on the poles of this function :

Proposition 1. If F' is a rational function with poles p1, ..., pm # 0, then it exists
m polynomials P1,. .., P, (where P; has degree order of the pole p; minus 1) such
that

m

Fo = ["F(:) = Y Pi(m)oy ™

Proof. Use the decomposition into partial fraction form F(z) and

1) m4+k-1
")z = p) ™" = (pn+)k( —l:—l )

this gives a polynomial of degree k — 1 in n. O

Considering only the dominant term into the asymptotics leads to the following
result

Theorem 1. The probability to get a sequence of length n without k consecutive
heads is asymptotically

1—pa
(k+1-ka)qa
where a is the smallest (with respect to the modulus) root of the denominator
1— 2+ g2(p2)*
of the generating function Ly (2).

w(n) =a, = a " +ola")

Proof. Consider Li(z) = ggz; For k > 1, the smallest root o of B is a simple root,
thus

One gets 8 = ;];1,(&)) and w(n) = fa™". O
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2. FELLER’S COIN T0SSING CONSTANTS. MARKOV MODEL.

For the Markov model (that is, the probability to toss H or T' depends now on
the last toss), the same idea applies.

Simply rewrite £, = (e + S)(T+S)*T* (where S = H + --- + H*~!) in such a
way that it is easy to see when a H follows H or T (idem for T'). Firstly expand
the previous expression for Lj:

Ly =e+TT* + (TT*S)(TT*S)* (e + TT*) + S(1 + TT*) + S(TT*S)" (e + TT*)

And then rewrite T; for any T beginning a word, rewrite Ty for any T following
a H and rewrite S; = H;(H + --- 4+ H*2) for a run of heads beginning a word
(whereas S; = Hy (H + --- + H*2) stands for intermediate sequences of heads)

Ly = e+ T,T* + (TiT*S)(ToT* S)* (e + ToT™*) + +5; (¢ + (ToT*S)*) (e + ToT™)

Finally, replace T' by p112, To by po1z and T; by ¢1z. Replace also H by pgoz,
H; by p1oz and H; by ipz. This leads to
102 102 (10112)16_1 -1 1+ %

+ Po1z k—1
1 —pooz 1—pooz pnz—1 11— 1{2’0;17012(”1;22_171

Lk(z) =1+

_ P102 (pr1z)* 11
(pllz)k - 1 1*2’002p01z 1;112’*l (]_ + ﬂ)

+7:12' 1 —+ —
puz =1 1- 1811;)0;17012@“2)’“ 1 1 —pooz

p112—1
This simplifies to

A(z) _  pu+ (porpi — piy)z + (P (0 — 1))2* + (P (1 = por — ig)) 2" +!
B(z)  pi1 + (pripor — p3 — pi1)z + (P2 — po1p11)2 + (po1pf; (1 — pi1))2htt

Li(z) =

For sure, setting £k = 3 and pgp = p1o = p11 = Po1 = % gives the same result as
in the previous exemple for the Bernoulli case:

16 — 2z° 7 13 3
S 442+l P40

L - " 6 .
H&) = 516, 1 2 g 16° "4 (%)

As for the Bernoulli model, one deals now with the asymptotics of a rational
generating function and one gets:

Theorem 2. Under a Markov model (ZOO zm , with an wnitial probability iy to
10 P11

begin with a tail, and i1 to begin with a head, the probability to get a sequence of
length n without k consecutive heads is asymptocally

w(n) = fa™" +o(a™")

where a is the smallest (with respect to the modulus) root of the denominator B(z)
of the generating function Ly(z) and where

—A(a) (_1 + (2p11 — po1)a + (po1p11 —pfl)OP) (i1 + (po1 —i1)ar)

b= aB'(a)  poipioc (—1 — k + k(p11 + poo)a + (P11 — po1) (1 — k)a?)
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3. GENERAL PATTERNS, BERNOULLI OR MARKOV MODEL.

For general patterns, it is easier to adapt the automaton point of view. An
automaton is graph with the edges (the “transitions”) are oriented and where the
vertices (the “states”) can be of three types “initial”, “final” or “intermediary” (a
state can be both intial, final, and intermediary). What is more, each transition is
marked by a letter of the alphabet (say H and T in our coin-tossing problem).

A word is said to be recognized by the automaton if it is possible to start in a
initial state, then to read each letter of the word following some transition in the
automaton and finally ending in a final state when one reads the last letter of the
word. A classical resultasserts that the sets of words recognized by an automata
corresponds to a regular expressions (and reciprocally). Thus, an automaton can
be associated to the regular expression for £;. A Markov chain is simply can be
considered as an automaton for which the transitions are probabilized. For the
Bernoulli model, the automata recognizing the pattern (= theregular expression)
under study can be easily built, then the generating function can be made explicit
and asymptotics follow. For the Markov model, making a kind of tensor product
between the automata and of the Markov matrix gives a new automata and then
proceed as in the classical Bernoulli model (note that we used a slightly different
trick in the previous section).

That’s what Nicodéme, Salvy & Flajolet explain in their article [2]. They give
an algorithm for making explicit the (bivariate) generating function for the number
of occurrences of any regular expression (thus for every pattern, or even an infinite
set of patterns). The bivariate generating function Fg(z,u) = Y., poq faruf2"
gives the probablity f,,k to get k occurrences of the pattern E in a random text
of length n.

The text can be random under two models : Bernoulli’s model or Markov’s
model.

The bivariate generating function can be used to perform asymptotics (average,
higher moments...). Thus, they proved that a Gaussian law holds.

Naturally, setting & = 0 in the bivariate generating function gives the probability
that there is zero occurrence of the given pattern in a text of length n.

Note that most of these computations can be done automatically, e.g. in Maple,
with the help of the packages [3] Combstruct and Regexpcount. A worksheet will
be available “soon”. :-)
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