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Résumé

Le but de cette thèse est d’établir des résultats énumératifs sur certaines classes de che-
mins et d’animaux. Ces résultats sont obtenus en appliquant la théorie des empilements
de pièces développée par Viennot. Nous étudions les excursions discrètes (ou chemins de
Dyck généralisés) de hauteur bornée ; nous obtenons des interprétations combinatoires
et des extensions de résultats de Banderier, Flajolet et Bousquet-Mélou. Nous décrivons
et énumérons plusieurs classes de chemins auto-évitants, dits chemins faiblement dirigés.
Ces chemins sont plus nombreux que les chemins prudents qui forment la classe natu-
relle la plus grande jusqu’alors. Nous calculons le périmètre de site moyen des animaux
dirigés, prouvant des conjectures de Conway et Le Borgne. Enfin, nous obtenons des ré-
sultats nouveaux sur l’énumération des animaux de Klarner et les animaux multi-dirigés
de Bousquet-Mélou et Rechnitzer.

Mots clés : combinatoire énumérative, combinatoire analytique, séries génératrices, empi-
lements de pièces

Abstract

The goal of this thesis is to establish enumerative results on several classes of paths and
animals. These results are applications of the theory of heaps of pieces developed by
Viennot. We study discrete excursions (or generalized Dyck paths) with bounded height ;
we obtain combinatorial interpretations and extensions of results from Banderier, Flajolet
and Bousquet-Mélou. We describe and enumerate several subclasses of self-avoiding walks
(SAW), called weakly directed walks. These classes are larger than the class of prudent
walks, which is the largest natural subclass of SAW enumerated so far. We compute
the average site perimeter of directed animals, proving conjectures from Conway and
Le Borgne. Finally, we obtain new results on the enumeration of Klarner animals and
multi-directed animals defined by Bousquet-Mélou and Rechnitzer.

Keywords : enumerative combinatorics, analytic combinatorics, generating functions, heaps
of pieces
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Introduction

Cette thèse s’inscrit dans le domaine de la combinatoire énumérative. Notre but sera
d’appliquer la théorie des empilements de pièces de Viennot à plusieurs problèmes d’énu-
mération de chemins et d’animaux. La théorie des empilements est développée dans le
chapitre 1. Dans cette introduction, nous commençons par présenter succintement le do-
maine de la combinatoire énumérative. Nous présentons ensuite les familles de chemins et
d’animaux que nous étudierons. Enfin, nous résumons chapitre par chapitre les contribu-
tions de la thèse.

La combinatoire énumérative

Problèmes d’énumération

L’objet de la combinatoire est l’étude de structures discrètes, en général possédant une
description simple. Étant donné un ensemble fini de telles structures, énumérer cet en-
semble consiste à déterminer son cardinal. Des problèmes d’énumération interviennent
naturellement dans de nombreux domaines de recherche ; on peut notamment citer l’ana-
lyse d’algorithmes, où ils apparaissent dans des calculs de complexité, et la physique
statistique, où ils apparaissent dans la détermination des fonctions de partition.

Par exemple, un chemin de Dyck est un chemin constitué de pas montant ou descendant
d’une unité qui commence et finit à hauteur 0 et reste à une hauteur positive. Comme
montré figure 1, on compte 5 chemins de Dyck de longueur 6.

Figure 1 – Les cinq chemins de Dyck de longueur 6.

En pratique, on souhaite décrire une méthode pour calculer le nombre d’objets de taille n,
pour tout entier n, sans avoir à les construire exhaustivement. Un cadre formel est celui
de classe combinatoire : une classe combinatoire est un ensemble C muni d’une fonction
de taille |.| à valeur dans les entiers, tel que, pour tout entier n fixé, l’ensemble Cn des
objets de C de taille n est fini. On note dans ce cas cn le cardinal de l’ensemble Cn.
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Pour reprendre l’exemple ci-dessus, les nombres de chemins de Dyck de longueur 2n, pour
n > 0, sont les célèbres nombres de Catalan, donnés par

cn = 1
n+ 1

(
2n
n

)
. (0.1)

Les nombres de Catalan sont sans doute la suite d’entiers la plus célèbre de la combinatoire
énumérative. On peut renvoyer à [50], ou à l’entrée A000108 de l’Online Encyclopedia of
Integer Sequences [48] pour de très nombreux exemples où elle intervient.

Une autre question naturelle consiste à trouver un équivalent simple du nombre cn quand n
tend vers l’infini. C’est le domaine de la combinatoire analytique [27]. Dans notre exemple
des nombres de Catalan, la formule de Stirling permet de trouver, à partir de (0.1),

cn ∼
4n

πn3/2 . (0.2)

Un cadre un peu plus général que celui ci-dessus est celui des classes paramétrées. Une
classe paramétrée est une classe C munie d’un paramètre p (un paramètre, aussi appelé
statistique, est une fonction de C dans N). Par exemple, de nombreux paramètres naturels
existent sur les chemins de Dyck, tels que la hauteur maximale d’un sommet, ou encore
le nombre de pics (pas montants suivis d’un pas descendant).

Notons cn,k le nombre d’objets de la classe paramétrée C tels que |C| = n et p(C) = k.
L’énumération paramétrée consiste à calculer ces nombres pour tous entiers n, k. On peut
également s’intéresser au problème plus faible de trouver la valeur moyenne, notée pn, du
paramètre p sur les objets de taille n.

D’autres problèmes asymptotiques apparaissent dans le cas des classes paramétrées. La
connaissance des nombres cn,k est équivalente à celle de la distribution du paramètre p
parmi les objets de taille n. On peut s’intéresser à l’évolution de cette distribution quand
n tend vers l’infini, et notamment à déterminer une distribution limite. Plus modestement,
on peut déterminer un équivalent simple de la valeur moyenne pn.

Séries génératrices

La méthode la plus simple pour déterminer les nombres cn est de donner une formule
close, à la manière de (0.1), permettant de les calculer. Les séries génératrices sont une
autre présentation des nombres cn. La série génératrice (dite ordinaire) de la classe com-
binatoire C est la série formelle

C(t) =
∑
n>0

cnt
n,

ou de manière équivalente,

C(t) =
∑
C∈C

t|C|.

Les séries génératrices possèdent de nombreuses propriétés agréables : des informations sur
la structure des objets de C se traduisent souvent en équations donnant la série C(t) (voir
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ci-dessous). De ce fait, elles constituent un outil fondamental en combinatoire énumérative.
Par exemple, la série génératrice des nombres de Catalan est

C(t) = 1−
√

1− 4t
2t . (0.3)

En effectuant un développement de Taylor, on retrouve l’expression (0.1) donnant le
nombre cn. Une expression telle que (0.3) donnant la série génératrice d’une classe fournit
donc une méthode pour l’énumérer ; dans certains cas, on peut donner une telle expression
alors qu’aucune formule close simple n’existe pour les coefficients cn.

Les séries génératrices les plus simples sont les séries rationnelles, qui sont égales au
quotient de deux polynômes. Les séries algébriques sont un peu plus complexes : on dira
que la série C(t) est algébrique s’il existe un polynôme P (x, y) non nul tel que P (t, C(t)) =
0. Par exemple, la série C(t) des nombres de Catalan vérifie l’équation

C(t) = 1 + tC(t)2. (0.4)

Trouver une équation de ce type est très utile car on peut s’en servir pour calculer algo-
rithmiquement les coefficients cn, y compris s’il n’existe pas d’expression telle que (0.3)
donnant directement la série C(t).

Une famille encore plus générale de séries est celle des séries différentiellement finies, ou D-
finies [50, chapitre 6]. Une série est D-finie si elle est solution d’une équation différentielle
linéaire à coefficients polynômiaux. Là encore, une telle équation sur la série C(t) permet
de retrouver les coefficients cn. Il existe aussi des séries qui ne sont pas D-finies. Nous en
rencontrerons plusieurs dans cette thèse.

Une fois connue la série C(t), ou une équation qui la définit, on peut aussi chercher
à en déduire l’asymptotique des coefficients cn. Une technique utilisée est l’analyse de
singularité, et est présentée en détail dans le livre [27]. Cette technique repose sur l’étude
des valeurs de la série C(t) au voisinage de son cercle de convergence.

Enfin, soit p un paramètre de la classe C et soit cn,k le nombre d’objets C de C tels que
|C| = n et p(C) = k. On définit la série bivariée Cp(t, u) de la manière suivante :

Cp(t, u) =
∑
n>0

cn,kt
nuk =

∑
C∈C

t|C|up(C).

Comme ci-dessus, la connaissance de la série Cp(t, u), ou d’une équation qui la définit,
permet de calculer les coefficients cn,k. De plus, soit pn la valeur moyenne du paramètre p
parmi les objets de taille n. Notons P (t) la série définie par

P (t) =
∑
n>0

pncnt
n =

∑
C∈C

p(C)t|C|.

Le coefficient pncn est la somme des quantités p(C) pour tous les objets C de taille n ;
on l’appellera la valeur totale du paramètre sur les objets de taille n. On peut calculer la
série P (t) à partir de la série bivariée Cp(t, u) de la manière suivante :

P (t) = ∂Cp
∂u

(t, 1).

Une fois connue la série P (t), on peut calculer les coefficients pncn ; une simple division
par cn donne la valeur moyenne cherchée pn.
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Méthodes d’énumération

Nous exposons maintenant les principales méthodes pour répondre aux problèmes d’énu-
mération. Dans cette thèse, nous nous intéressons principalement aux méthodes les plus
combinatoires, c’est-à-dire qui utilisent de manière centrale la structure combinatoire des
objets à énumérer.

La méthode la plus élémentaire est la méthode bijective, qui consiste à décrire une bijection
entre l’ensemble à énumérer et un ensemble dont le cardinal est déjà connu. Une bijection
est d’autant plus intéressante qu’elle est simple à décrire et qu’elle préserve la structure
des objets, par exemple si des paramètres naturels des objets sont envoyés sur d’autres
paramètres naturels. Bien sûr, une telle approche n’est pas toujours possible.

Une autre méthode, souvent appelée méthode récursive, est de décrire une décomposition
canonique des objets de la classe C à énumérer en sous-objets plus petits. Ces sous-objets
peuvent eux-mêmes appartenir à la classe C où à d’autres classes dont l’énumération est
connue. Par exemple, on peut décomposer les chemins de Dyck de hauteur 2n au premier
retour à la hauteur 0, ce qui donne deux chemins de Dyck dont la somme des longeurs
fait 2n− 2 (figure 2). On obtient ainsi la formule de récurrence, valable pour n > 1 :

cn =
n−1∑
k=0

ckcn−1−k,

avec la condition initiale c0 = 1. Cette formule est équivalente à l’équation (0.4) qui définit
la série C(t) et permet de calculer les nombres cn.

Figure 2 – En considérant le premier retour à la hauteur 0, on obtient une décom-
position canonique des chemins de Dyck non vides. Cette décomposition comprend
un pas montant, un pas descendant et deux chemins de Dyck plus petits. Cette
décomposition se traduit en une formule de récurrence sur les nombres cn ou en une
équation donnant la série C(t).

Chemins

Les chemins sont des objets combinatoires étudiés sous de très nombreuses formes. Les
chemins de Dyck, mentionnés plus haut, en sont un exemple. Dans cette thèse, nous nous
intéressons à deux grandes familles de chemins.

Excursions discrètes

La première famille de chemins que nous étudions est celle des excursions discrètes. Les
excursions discrètes sont une généralisation des chemins de Dyck : ce sont des chemins
qui commencent et terminent à hauteur 0 et restent à une hauteur positive. En revanche,
contrairement aux chemins de Dyck, leurs pas peuvent monter ou descendre d’un nombre
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quelconque d’unités. Pour cette raison, les excursions discrètes sont également appelées
chemins de Dyck généralisés [37, 23].

Étant donné un ensemble fini S ⊆ Z, on s’intéresse aux excursions dont l’incrément de
hauteur de chaque pas est dans S (figure 3). Les chemins de Dyck correspondent au cas
S = {−1, 1}. Plusieurs méthodes existent pour énumérer ces excursions : l’utilisation
de certaines propriétés des séries de Laurent [28], les méthodes par grammaires [37, 23],
la méthode du noyau [8, 2] ou encore l’identification des séries génératrices avec des
fonctions de Schur [6]. Le résultat principal d’énumération, qu’on peut obtenir par toutes
ces méthodes, affirme que la série génératrice des excursions est algébrique. De plus, si
S ⊆ {−b, . . . , a}, la série possède un polynôme annulateur de degré

(
a+b
a

)
[2]. Si l’ensemble

S est symétrique (−S = S), alors on peut trouver un polynôme annulateur de degré 2a
[6].

Figure 3 – Une excursion de hauteur 4 à pas dans S = {1,−2,−3}.

Chemins auto-évitants

La deuxième famille de chemins qui nous intéresse est celle des chemins auto-évitants. Un
chemin du réseau carré est dit auto-évitant s’il ne visite pas deux fois le même sommet.
Énumérer les chemins auto-évitants est un problème très étudié depuis plusieurs décen-
nies ; on renvoit au livre [42] pour une introduction complète au sujet. On conjecture que
le nombre an de chemins auto-évitants de longueur n et la distance moyenne dn entre
leurs extrémités vérifient

an ∼ λµnnγ, dn ∼ κnν ,

avec γ = 11/32 et ν = 3/4. Plusieurs méthodes prédisent ces valeurs, même si aucune
n’est rigoureuse pour l’instant : études numériques [32, 44], comparaison avec d’autres
modèles [17, 43], arguments probabilistes utilisant des processus SLE [38], énumération
de chemins auto-évitants sur des réseaux aléatoires [26]... Ces valeurs se maintiennent sur
d’autres réseaux, à la différence de la constante de croissance µ qui dépend du réseau. Il
a été récemment prouvé que la constante µ vaut

√
2 +
√

2 sur le réseau triangulaire [25] ;
elle pourrait également être un nombre biquadratique, valant environ 2,64, sur le réseau
carré [33].

Vu la difficulté à énumérer les chemins auto-évitants, il est naturel d’étudier des classes
restreintes. Idéalement, on cherche des sous-classes qui aient à la fois une description
simple et naturelle et une structure permettant de les énumérer. On cherche également à
ce que ces sous-classes soient les plus grandes possibles. Ainsi, la classe naturelle la plus
grande qu’on sache énumérer pour l’instant est constituée de chemins prudents [4, 22, 18],
avec une constante de croissance d’environ 2,48.
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Animaux

Un animal du réseau carré est un ensemble connexe et fini de sommets (figure 4). Les
animaux sont étudiés en combinatoire et en physique statistique, où ils sont par exemples
liés à des problèmes de percolation.

Figure 4 – Un animal du réseau carré.

Comme les chemins auto-évitants, les animaux sont des objets très simples à définir ; ils
sont en revanche tout aussi difficiles à énumérer. On appelle sites les sommets d’un animal ;
l’aire d’un animal est son nombre de sites. Notons an le nombre d’animaux d’aire n du
réseau carré. Le seul résultat connu sur les nombres an est que la quantité a1/n

n tend vers
une constante K quand n tend vers l’infini, avec

3,87 6 K 6 4,65.

On conjecture que la valeur an est équivalente à κµn/n [14].

Face à la difficulté du problème, on s’intéresse encore à des sous-familles qui soient plus
faciles à énumérer. Presque toutes les familles énumérables pour l’instant sont définies
soit par une propriété de convexité (par exemple, les animaux à colonnes convexes), soit
par une direction privilégiée. C’est cette dernière propriété qui nous intéresse dans cette
thèse ; nous étudions deux familles, les animaux dirigés et les animaux de Klarner (aussi
appelés animaux multi-dirigés).

Animaux dirigés

Soit S un ensemble fini de sommets. Un animal A est dit dirigé de source S si tout site
de A peut être atteint à partir de S par un chemin ne prenant que des pas Nord et Est
et ne passant que par des sites de A. Le nom de ces animaux vient du fait qu’ils ont
une direction privilégiée, le Nord-Est. On peut également définir des animaux dirigés sur
deux autres réseaux, le réseau triangulaire et le réseau hexagonal. La figure 5 montre des
animaux dirigés à une seule source (on parle de source ponctuelle) sur les trois réseaux.

Contrairement aux animaux généraux, l’énumération des animaux dirigés de source ponc-
tuelle sur le réseau carré est bien connue [20, 29, 3]. La série génératrice de ces animaux
vaut

A(t) = 1
2

√ 1 + t

1− 3t − 1
.

Deux méthodes principales existent pour l’énumération des animaux dirigés. La première,
originellement employée par Dhar [20] puis reprise par d’autres auteurs [5, 41, 1], repose
sur la comparaison avec des modèles de gaz. La deuxième méthode utilise une bijection
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Figure 5 – Des animaux dirigés de source ponctuelle sur les réseaux carré, tri-
angulaire et hexagonal dirigés. Les réseaux sont tournés de sorte que la direction
privilégiée est représentée vers le haut.

avec des empilements de pièces [3]. Cette dernière méthode est explicitée et étendue au
chapitre 4.

Les deux méthodes évoquées ci-dessus peuvent être étendues au réseau triangulaire. En
revanche, le réseau hexagonal leur résiste pour l’instant. En fait, le problème semble intrin-
sèquement plus difficile : la série génératrice des animaux dirigés sur le réseau haxagonal
n’est probablement pas D-finie [31], alors qu’elle est algébrique sur les deux autres réseaux.

D’autres problèmes sur les animaux dirigés consistent à prendre en compte d’autres para-
mètres que l’aire. Les problèmes de ce type sont très nombreux (voir par exemple [15, 5]).
Des résultats précis existent pour certains paramètres (largeur, nombre de sites portés à
droite...), mais d’autres sont plus difficiles à étudier (hauteur, périmètre...).

Animaux de Klarner

Les animaux de Klarner forment un autre famille d’animaux. Comme les animaux dirigés,
ils se déclinent sur les réseaux carré et triangulaire, auxquels s’ajoutent le réseau carré
droit (c’est-à-dire le réseau carré avec la direction privilégiée Nord ; pour éviter l’ambiguïté,
nous appellerons réseau carré biaisé le réseau carré, représenté figure 5, dont la direction
privilégiée est le Nord-Est). La définition formelle est donnée au chapitre 5 ; sur les réseaux
carré biaisé et triangulaire, les animaux de Klarner sont des animaux dirigés pouvant avoir
plusieurs sources (figure 6). Pour cette raison, on les qualifie également de multi-dirigés.
En particulier, tout animal dirigé de source ponctuelle est multi-dirigé.

Figure 6 – Deux animaux multi-dirigés sur le réseau carré biaisé (à gauche) et le
réseau triangulaire (au milieu). À droite, un animal de Klarner sur le réseau carré
droit.

Ces animaux ont été introduits par Klarner [35], sur les réseaux carré droit et triangulaire.
Bousquet-Mélou et Rechnitzer [10] ont ensuite repris les animaux de Klarner sur le réseau
triangulaire et leur ont donné une définition plus agréable, liée à certains empilements de
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pièces. Ils ont aussi étendu la définition au réseau carré biaisé et leur ont donné le nom
d’animaux multi-dirigés.

La formule suivante, due à Bousquet-Mélou et Rechnitzer, donne la série génératrice des
animaux multi-dirigés sur le réseau triangulaire :

K(t) = D

(1−D)
(

1−∑k>1
Dk+1

1−Dk(1+D)

) ,
où D désigne la série génératrice des nombres de Catalan,

D = 1−
√

1− 4t
2t − 1.

Une formule analogue est valable sur le réseau carré biaisé, avec une valeur différente de la
série D. Une interprétation combinatoire de ces formules a été ensuite donnée par Viennot
[53]. En revanche, aucune formule de ce type n’existe pour l’instant sur le réseau carré
droit.

En utilisant des matrices de transfert, Klarner a montré que le nombre d’animaux de
Klarner d’aire n sur le réseau carré droit est au moins proportionnel à 3,72n, ce qui est
supérieur aux autres classes d’animaux énumérées jusqu’à présent (par exemple, le nombre
d’animaux dirigés est en 3n sur le réseau carré). La formule ci-dessus permet de déduire
que, sur le réseau carré biaisé, le nombre d’animaux multi-dirigés est proportionnel à
3,58n.

Résumé de la thèse

Chapitre 1

Le chapitre 1 sert de préliminaires aux autres chapitres, donnant plusieurs résultats qui
seront appliqués plus loin. Il présente la théorie des empilements, puis donne un certain
nombre d’extensions nouvelles répondant à nos besoins. Notamment, il énonce une géné-
ralisation du lemme d’inversion permettant de compter les empilements évitant certains
motifs et il montre comment énumérer les empilements marqués d’une pièce.

Chapitre 2

Le chapitre 2 donne des méthodes d’énumération des excursions discrètes dans plusieurs
cas : celui où S ne contient pas de pas strictement supérieurs à 1 (cas des chemins de
Łukasiewicz), et celui où S est fini. Dans ce dernier cas, nous donnons une explication
combinatoire à la forme des séries des excursions de hauteur bornée [2, 6]. Notre approche
fournit aussi des résultats nouveaux dans le cas où l’ensemble S des pas est symétrique.

Chapitre 3

Le chapitre 3 présente une nouvelle sous-classe de chemins auto-évitants, que nous ap-
pelons chemins faiblement dirigés. Nous énumérons cette classe en utilisant les résultats
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précédents sur les chemins de Łukasiewicz. Nous montrons qu’elle possède une constante
de croissance de 2,54 environ, ce qui la rend plus grande que celle des chemins prudents.
Nous montrons également que la série génératrice des chemins faiblement dirigés, à la
différence des séries comptant des classes plus simples, admet une frontière naturelle dans
le plan complexe, et donc n’est pas D-finie. Nous donnons également un algorithme de
génération aléatoire des chemins faiblement dirigés. Enfin, nous présentons une classe de
chemins encore plus grande, mais plus difficile à énumérer.

Chapitre 4

Le chapitre 4 étudie trois paramètres des animaux dirigés : le nombre de sites adjacents,
le nombre de boucles et le périmètre de site. Nous obtenons une forme générale des séries
génératrices donnant la valeur moyenne de chaque paramètre sur plusieurs réseaux carrés
et triangulaires. Ceci fournit une preuve combinatoire de résultats de Bousquet-Mélou [5]
et prouve des conjectures de Conway et Le Borgne [15, 39].

Chapitre 5

Le chapitre 5 étudie les animaux de Klarner sur les trois réseaux triangulaire, carré biaisé
et carré droit. Nous donnons des équations caractérisant les séries génératrices de ces
animaux, et nous en déduisons des résultats asymptotiques. Nous donnons également des
bijections entre les animaux de Klarner et certaines familles de chemins de Dyck.
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Chapitre 1

Empilements de pièces

Ce premier chapitre a pour but de présenter la théorie des empilements et d’établir un
certain nombre d’extensions. Ces résultats seront appliqués tout au long de la thèse.

Le chapitre est organisé comme suit. La section 1.1 présente succintement quelques élé-
ments de théorie des ensembles partiellement dirigés, qui sont le fondement de la théorie
des empilements. La section 1.2 donne la définition formelle des monoïdes d’empilements,
ainsi qu’une vision alternative, les monoïdes partiellement commutatifs. La section 1.3
étudie ensuite au lemme d’inversion, qui est le résultat fondamental de la théorie, et en
donne une généralisation permettant d’énumérer les empilements évitant certains motifs.
La section 1.4 donne quelques résultats pour énumérer les empilements dont on a marqué
certaines pièces. Enfin, la section 1.5.1 définit deux modèles d’empilements, les empile-
ments de segments et ceux de dimères, qui interviennent dans cette thèse à de nombreuses
reprises.
Notation. Si S est un ensemble et R une relation sur S, on notera indifféremment x R y
ou xy ∈ R pour signifier que x et y sont liés par la relation R.

1.1 Ensembles partiellement ordonnés

Avant de définir les empilements, nous donnons ici quelques éléments de théorie des en-
sembles partiellement ordonnés dont nous aurons besoin. Aucune preuve n’est donnée ;
une introduction plus complète au domaine peut être trouvée dans [49, chapitre 3].

1.1.1 Définitions, relation de couverture

Définition 1.1. Soit P un ensemble. Un ordre partiel sur P est une relation 6 telle que :
– 6 est réflexive : pour tout x ∈ P , x 6 x ;
– 6 est antisymétrique : pour tous x, y ∈ P , si x 6 y et y 6 x, alors x = y ;
– 6 est transitive : pour tous x, y, z ∈ P , si x 6 y et y 6 z, alors x 6 z.
Un ordre partiel strict sur P est une relation < telle que :
– < est irréflexive : pour tout x ∈ P , x ≮ x ;
– < est transitive : pour tous x, y, z ∈ P , si x < y et y < z, alors x < z.
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Ces deux notions sont en fait essentiellement les mêmes : à tout ordre partiel strict < sur
P , on peut associer un ordre partiel 6 défini par x 6 y si x < y ou x = y. Réciproquement,
à tout ordre partiel 6 on peut associer un ordre partiel strict < défini par x < y si x 6 y
et x 6= y. Dans la suite, 6 désignera un ordre partiel sur P et < son ordre partiel strict
associé.

Un élément x de P est dit minimal s’il n’existe pas de y tel que y < x. Il est dit maximal
s’il n’existe pas de y tel que x < y. Si x et y sont deux éléments de P , on dit que y couvre
x si x < y et qu’il n’existe pas de z tel que x < z < y.

Supposons que l’ensemble P est fini. L’ordre 6 est engendré par sa relation de couverture :
ceci signifie que pour tous x, y dans P , on a x 6 y si et seulement si il existe une suite
finie x0, . . . , xn telle que x0 = x, xn = y, et xi+1 couvre xi pour tout i. La couverture
est en fait la plus petite relation ayant cette propriété : si R est une relation engendrant
l’ordre 6 et y couvre x, alors xy est dans R.

Le diagramme de Hasse de P est le graphe sont les sommets sont les éléments de P et dont
les arêtes sont x → y si y couvre x. Par convention, quand on représente ce diagramme,
toutes les arêtes pointent vers le haut, ce qui permet d’omettre leur orientation. Un
exemple se trouve figure 1.1.

1.1.2 Segments initiaux et finaux

Définition 1.2. Un sous-ensemble S de P est un segment initial si tout élément inférieur
à un élément de S est encore dans S :

x ∈ S et y 6 x⇒ y ∈ S.

Un sous-ensemble S est un segment final si tout élément supérieur à un élément de S est
dans S :

x ∈ S et x 6 y ⇒ y ∈ S.

Enfin, un sous-ensemble X est une antichaîne si ses éléments sont deux à deux non
comparables :

x, y ∈ X ⇒ x ≮ y.

Soit S un segment initial de P . Il est facile de vérifier que le complémentaire P \S est un
segment final, et vice-versa.

Soit X un sous-ensemble de P . On définit les deux ensembles suivants :

↓X = {y ∈ P | ∃x ∈ X, y 6 x} ;
↑X = {y ∈ P | ∃x ∈ X, x 6 y}.

L’ensemble ↓X est toujours un segment initial et l’ensemble ↑X est toujours un segment
final. Le lemme suivant montre que tout segment initial ou final admet une représentation
canonique de ce type.

Lemme 1.3. Soit S un segment initial (resp. final) de P . Il existe une unique antichaîne
X tel que S = ↓X (resp. ↑X). De plus, X est l’ensemble des éléments maximaux (resp.
minimaux) de S.
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1.1.3 Extensions linéaires

Définition 1.4. Un ordre v sur P est dit total si, pour tout x et tout y de P , on a x v y
ou y v x.

Un ordre total v est une extension linéaire de 6 si x 6 y implique x v y pour tous x, y.

En utilisant le lemme de Zorn, on montre que tout ordre 6 admet une extension linéaire.
Le résultat suivant montre également qu’on peut trouver des extensions linéaires vérifiant
certaines conditions supplémentaires.

Lemme 1.5. Un élément x de P est minimal (resp. maximal) si et seulement si il existe
une extension linéaire v de 6 tel que x est minimal (resp. maximal) pour v.

Deux éléments x et y de P sont tels que y couvre x si et seulement si il existe une extension
linéaire v de 6 telle que y couvre x pour v.

1.2 Empilements et monoïdes partiellement commu-
tatifs

1.2.1 Empilements de pièces

La théorie des empilements de pièces que nous développons ici est due à Viennot [52] ; on
peut également citer [36, 3] sur le sujet.

Définition 1.6. Un modèle d’empilements est un alphabet A (éventuellement infini),
muni d’une relation C telle que :

1. C est réflexive : pour tout a ∈ A, aa ∈ C ;
2. C est symétrique : pour tous a, b ∈ A, si ab ∈ C alors ba ∈ C.

Les éléments de A sont des positions, et deux positions a et b sont dites concurrentes si
ab est dans C. Intuitivement, deux positions sont concurrentes si elles se chevauchent, de
sorte qu’une pièce à position b peut être posée sur une pièce à position a.

Un empilement du modèle (A,C) est représenté sur la figure 1.1. Il consiste en un certain
nombre de pièces, toutes à une position dans A, qui s’empilent les unes sur les autres si
leurs positions sont concurrentes.

Définition 1.7. Un empilement de pièces H du modèle (A,C) est un triplet (P, `,4), où
P est un ensemble fini dont les éléments sont appelés pièces, ` est un étiquetage de P à
valeurs dans A et 4 est un ordre partiel sur P vérifiant pour toutes pièces x et y :

1. si `(x) et `(y) sont concurrentes, alors x 4 y ou y 4 x ;
2. si y couvre x pour l’ordre 4, alors `(x) et `(y) sont concurrentes.

Les pièces deH minimales pour l’ordre4 sont appelées pièces minimales deH. L’ensemble
de leurs positions est noté min(H). Les pièces qui sont maximales sont appelées pièces
maximales et l’ensemble de leurs positions est noté max(H).

Enfin, un empilement (P, `,4) est trivial si P est une antichaîne pour 4.
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Figure 1.1 – À gauche, un empilement d’un modèle à quatre positions a, b, c,
d, et relation de concurrence C = {aa, bb, cc, dd, ab, ba, bc, cb, cd, dc}. À droite, le
diagramme de Hasse de la relation 4, avec une arête entre x et y si y couvre x.

Un empilement de pièces s’entend à isomorphisme près : deux empilements (P1, `1,41) et
(P2, `2,42) sont isomorphes s’il existe une bijection de P1 dans P2 envoyant `1 sur `2 et
41 sur 42. On considérera alors qu’il s’agit du même empilement.

L’étiquette `(x) d’une pièce x est appelée la position de x. Une pièce y est dite au dessus
d’une pièce x si x 4 y ; la pièce x est dite au dessous de y.

Un empilement trivial est un ensemble de pièces dont aucune ne repose sur une autre ;
la donnée d’un tel empilement est équivalente à celle des positions de ses pièces, qui sont
deux à deux non concurrentes. Pour cette raison, on fera souvent la confusion entre un
empilement trivial et l’ensemble des positions de ses pièces.

1.2.2 Monoïde des d’empilements

Si H1 et H2 sont deux empilements, on forme le produit H1H2 en laissant tomber H2 sur
H1. Un exemple est montré figure 1.2. Le résultat suivant donne une définition rigoureuse
de ce produit.

Proposition 1.8. Soit H1 = (P1, `1,41) et H2 = (P2, `2,42) deux empilements tels que
P1 ∩ P2 = ∅. Soit P = P1 ∪ P2. Il existe un unique empilement (P, `,4) tel que :

1. les restrictions de ` et 4 à P1 sont `1 et 41 ;
2. les restrictions de ` et 4 à P2 sont `2 et 42 ;
3. l’ensemble P1 est un segment initial de P pour 4.

L’empilement (P, `,4) ainsi construit sera appelé le produit de H1 et de H2, et noté H1H2.

b
a
a b

d

d
c

c

b

b

a
a

d

d
c

c

Figure 1.2 – Le produit de deux empilements du modèle de la figure 1.1.

Preuve. Soit (P, `,4) un empilement vérifiant les conditions voulues. L’étiquetage ` est
entièrement déterminé par ses restrictions à P1 et P2. Soit x et y deux pièces de P telles
que y couvre x pour 4. Le fait que P1 est un segment initial rend impossible le fait que
y soit dans P1 et x dans P2. Il y a donc trois cas possibles :
(a) x ∈ P1, y ∈ P1 et x 41 y ;
(b) x ∈ P2, y ∈ P2 et x 42 y ;
(c) x ∈ P1, y ∈ P2 et `(x) et `(y) sont concurrentes.
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De plus, si deux pièces x et y vérifient (a), (b) ou (c), alors on doit avoir x 4 y. Un ordre
étant engendré par sa relation de couverture, on en déduit que 4 est l’ordre engendré par
(a), (b) et (c), donc entièrement déterminé.

Soit maintenant 4 l’ordre engendré par les trois relations ci-dessus. Prouvons que (P, `,4)
est un empilement vérifiant les conditions de la proposition. Il est clair, par construction,
que deux pièces x et y telles que `(x) et `(y) sont concurrentes sont comparables. De plus,
si y couvre x, alors x et y vérifient (a), (b) ou (c). On en déduit que `(x) et `(y) sont
concurrentes. Donc (P, `,4) est bien un empilement.

Par construction encore, la restriction de 4 à P1 et P2 est bien 41 et 42, respectivement,
et aucune pièce de P1 n’est jamais au dessus d’une pièce de P2.

Le produit ainsi défini est associatif [52]. On note 1 l’empilement vide, qui ne contient
aucune pièce. L’empilement 1 est un élément neutre pour le produit. Soit H(A,C) l’en-
semble des empilements du modèle (A,C) : cet ensemble est ainsi muni d’une structure
de monoïde.

1.2.3 Monoïdes partiellement commutatifs

Les monoïdes partiellement commutatifs, également appelés monoïdes de Cartier–Foata,
apparaissent dans [12]. Le lien avec les monoïdes d’empilements est établi dans [36].

Soit A∗ le monoïde des mots sur l’alphabet A. Le monoïde partiellement commutatif asso-
cié à la relation de concurrence C est défini comme le quotient de A∗ par une congruence,
c’est-à-dire une relation d’équivalence compatible avec la multiplication [13, section 1.5].
Plus précisément, on note ≡C la plus petite congruence de A∗ telle que ab ≡C ba pour
toutes les lettres a et b telles que ab 6∈ C.

Définition 1.9. Le monoïde partiellement commutatif sur l’alphabet A et avec relation
de concurrence C est le monoïde quotient A∗/ ≡C . On le note L(A,C).

Cette construction signifie concrètement que L(A,C) est le monoïde ayant pour généra-
teurs les lettres de A, muni de la relation ab = ba si a et b ne sont pas concurrentes.
Notons que par convention, une lettre a est toujours concurrente à elle-même malgré
l’égalité aa = aa.

Soit a1 · · · an un mot du monoïde L(A,C). On associe à ce mot un empilement, en créant
une pièce xi de position ai pour tout i, et en les empilant dans l’ordre pour i de 1 à n. Si
deux positions a et b ne sont pas concurrentes, l’ordre dans lequel on empile les pièces de
positions a et b n’a pas d’importance, ce qui correspond au fait que a et b commutent.

Cette transformation montre que les monoïdes H(A,C) et L(A,C) sont isomorphes. Par
la suite, nous confondrons un mot de H(A,C) et son empilement associé.
Exemple. L’empilement de la figure 1 est associé au mot baadcbdc, qui peut également
s’écrire dbcdaabc.

Propriété 1.10. Soit H un empilement. On a les propriétés suivantes :
– La position a est dans min(H) si et seulement si H s’écrit aH ′.
– La position b est dans max(H) si et seulement si H s’écrit H ′b.
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– Soit a et b deux positions concurrentes. Il existe deux pièces x et y, de positions a et b,
telles que y couvre x si et seulement si H s’écrit H ′abH ′′.

Preuve. Toutes ces propriétés sont des conséquences directes du lemme 1.5.

1.2.4 Séries génératrices

Soit (A,C) un modèle d’empilements. On associe à chaque position a de A un poids a,
pris dans un anneau de séries formelles. Le poids d’un empilement H, noté H, est le
produit des poids des pièces qui le composent. On définit ainsi la série génératrice H des
empilements du modèle H(A,C), si cette série existe :

H =
∑

H∈H(A,C)
H.

Dans la suite, nous travaillerons avec des poids universels, c’est-à-dire que nous considére-
rons que la série H appartient à l’anneau des séries formelles avec une indéterminée a pour
chaque position a. Ceci garantit l’existence de cette série. Pour travailler avec d’autres
poids, il suffit de prendre une spécialisation de la série H. Par exemple, en spécialisant
chaque indéterminée a en t, on obtient la série génératrice des empilements comptés selon
leur nombre de pièces :

H(a = t) =
∑

H∈H(A,C)
t|H|.

Cette série n’est en revanche définie que si l’ensemble A est fini.

Soit maintenant S un sous-ensemble de A. On note HS la série génératrice des empilements
dont les pièces minimales sont S :

HS =
∑

min(H)=S
H.

De même, on notera H[S] la série génératrice des empilements dont les pièces minimales
sont incluses dans S :

H[S] =
∑

min(H)⊆S
H.

Par souci de clarté, on se tiendra à la même convention dans toute la thèse : chaque
fois qu’une série génératrice compte des empilements d’un modèle, un indice [S] indique
qu’on compte les empilements H tels que min(H) ⊆ S, alors qu’un indice S indique qu’on
compte les empilements H tels que min(H) = S. Les deux séries génératrices ci-dessus
sont liées par :

H[S] =
∑
T⊆S

HT ; (1.1)

HS =
∑
T⊆S

(−1)|S\T |H[T ]. (1.2)

On définit à présent la série génératrice alternée des empilements triviaux :

T =
∑

T trivial
(−1)|T |T.
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De même, on définit la série alternée des empilements triviaux inclus dans un ensemble
de lettres S :

T[S] =
∑
T⊆S

(−1)|T |T.

1.3 Théorèmes d’inversion

Les résultats présentés ici permettent de calculer plusieurs séries génératrices comptant
des empilements. Comme indiqué précédemment, nous supposerons que les poids des
positions sont universels ; il est possible de spécialiser une identité à d’autres poids si les
spécialisations de toutes les séries qu’elle implique sont bien définies.

1.3.1 Inversion de Viennot

Le lemme d’inversion [52] est le principal résultat d’énumération sur les empilements, avec
de multiples applications. Il permet de calculer les séries H et H[S], définies ci-dessus, à
partir des séries génératrices des empilements triviaux.

Théorème 1.11 (Cartier–Foata, Viennot). Les séries formelles 1 H et T sont inverses
l’une de l’autre :

HT = 1. (1.3)

Plus généralement, la série H[S] vérifie :

H[S]T = T[A\S]. (1.4)

Si l’alphabet A est fini, la série T est un polynôme, souvent facile à calculer ; ceci fournit
une méthode pour calculer H. En particulier, si A est fini, alors la série H est rationnelle.

Dans la suite, nous donnerons une généralisation de ce résultat.

Soit maintenant S un ensemble de positions. On appelle bord de S, et on note ∂S, les
positions a de S telles qu’il existe b hors de S tel que a et b sont concurrentes.

Corollaire 1.12. Soit S et T deux ensembles de positions tels que ∂S ⊆ T ⊆ S. On a :

H[T ] = T[S\T ]H[S].

Preuve. Considérons l’ensemble A \ T . Il est union disjointe de S \ T et A \ S ; de plus,
comme T contient le bord de S, aucune position de S \T n’est concurrente à une position
de A \ S. La série des empilements triviaux inclus dans A \ T vaut donc :

T[A\T ] = T[S\T ]T[A\S].

Le résultat découle donc du théorème 1.11 appliqué à H[T ] et H[S].

1. En réalité, ce résultat (ainsi que le corollaire 1.12 et le théorème 1.16) est valable dans une algèbre
de séries formelles partiellement commutatives de variables A et avec la relation ab = ba si ab 6∈ C.
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1.3.2 Empilements à motifs exclus et modèles ordonnés

Définition 1.13. Soit H un empilement et soit a et b deux positions concurrentes. L’em-
pilement H contient le motif ab s’il existe deux pièces x et y, de positions respectives a
et b, telles que y couvre x.

Notons qu’un motif n’est pas symétrique : les motifs ab et ba sont différents. Par la
définition des empilements, un empilement ne peut contenir un motif ab que si ab est
dans C. La propriété 1.10 indique que dans ce cas, l’empilement H contient le motif ab si
et seulement si H s’écrit H ′abH ′′.
Étant donné un certain nombre de motifs interdits, notre but sera d’énumérer les empi-
lements ne contenant aucun de ces motifs. Soit (A,C) un modèle d’empilements. On se
donne une partition C = C1 ∪ C2 de la relation de concurrence (les relations C1 et C2 ne
sont pas nécessairement symétriques : ainsi, il est possible que le motif ab soit dans C1
mais ba dans C2). On définit :
– H1 l’ensemble des empilements dont tous les motifs sont dans C1,
– H2 l’ensemble des empilements dont tous les motifs sont dans C2.
On note H1 et H2 la série de H1 et la série alternée de H2, respectivement :

H1 =
∑

H1∈H1

H1

H2 =
∑

H2∈H2

(−1)|H2|H2.

Soit S un sous-ensemble de A. On définit de même les séries H1
[S] et H2

[S] comptant les
empilements dont les pièces minimales sont à positions dans S.
En choisissant C1 = C et C2 = ∅, on retrouve pour H1 l’ensemble de tous les empile-
ments et pour H2 l’ensemble des empilements triviaux. Le théorème 1.11 fournit alors un
lien entre les séries H1 et H2. Nous donnerons un résultat similaire dans le cas général,
moyennant certaines conditions sur le modèle.
Définition 1.14. Un modèle ordonné d’empilements est un modèle d’empilements (A,C)
muni d’un ordre partiel strict < sur A vérifiant les conditions suivantes pour toutes posi-
tions a, b et c :

0. si b < a, alors ab 6∈ C ;
1. si ac 6∈ C, b < a et bc ∈ C, alors c < a ;
2. si ac 6∈ C, ab ∈ C et c < b, alors c < a.

De plus, soit C1 ∪ C2 une partition de la relation de concurrence C. Cette partition est
dite compatible avec l’ordre < si pour toutes positions a, b, c :

3. Si ac 6∈ C, ab ∈ C1 et cb ∈ C2, alors c < a.
4. Si ac 6∈ C, ba ∈ C2 et bc ∈ C1, alors c < a.

Les conditions 1, 2, 3 et 4 sont illustrées figure 1.3.
Notons qu’en particulier, tout modèle d’empilements (A,C) peut être étendu en un modèle
ordonné d’empilements par l’ordre vide, qui vérifie toujours les conditions 0, 1 et 2. De
plus, la partition C1 = C, C2 = ∅ est toujours compatible avec l’ordre vide. Un autre
exemple est donné dans la section 1.5.1.
Le résultat suivant montre que, si toutes les positions non concurrentes sont comparables,
les conditions 1 et 2 sont automatiquement vérifiées.
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Figure 1.3 – À gauche, les conditions 1 et 2 impliquant l’inégalité c < a si (A,C,<)
est un modèle ordonné d’empilements. À droite, les conditions 3 et 4 impliquant
l’inégalité c < a si C1 ∪ C2 est une partition compatible.

Lemme 1.15. Soit (A,C) un modèle d’empilements et < une relation d’ordre strict sur
A telle que pour toutes positions a, b :

a < b ou b < a⇐⇒ ab 6∈ C.

Alors (A,C,<) est un modèle ordonné d’empilements.

Preuve. La condition 0 est vraie par hypothèse. Pour prouver la condition 1, supposons
par l’absurde qu’on ait trois lettres a, b, c telles que ac 6∈ C, b < a et bc ∈ C mais c ≮ a.
On a donc a < c, donc b < c, ce qui contredit le fait que b et c sont concurrentes. Le cas
de la condition 2 est symétrique.

Nous pouvons à présent énoncer le résultat permettant d’énumérer les empilements à
motifs exclus. Ce résultat sera appliqué dans les chapitres suivants.

Théorème 1.16. Soit (A,C,<) un modèle ordonné d’empilements et C1∪C2 une partition
compatible de C. Les séries génératrices H1 et H2 sont inverses l’une de l’autre :

H1H2 = 1. (1.5)

Plus généralement, soit S un segment initial de A pour l’ordre <. On a :

H1
[S]H2 = H2

[A\S]. (1.6)

Ce théorème implique bien le lemme d’inversion : en choisissant C1 = C et C2 = ∅, on
retrouve pour H1 les empilements généraux et pour H2 les empilements triviaux. Cette
partition est toujours compatible avec l’ordre vide ; de plus, tout sous-ensemble S de A
est un segment final pour l’ordre vide.

Pour prouver ce théorème, on fixe H1 un empilement de H1
[S] et H2 un empilement de H2.

On définit les ensembles suivants :

Z1 =
{
a ∈ max(H1)

∣∣∣ aH2 ∈ H2
}

;

Z2 =
{
b ∈ min(H2)

∣∣∣ H1b ∈ H1
[S]

}
;

Z = Z1 ∪ Z2.

Les positions de Z sont appelées les positions transférables de (H1, H2). Si a est dans Z1,
notons H1 = H ′1a. Le transfert de a est l’application (H ′1a,H2) 7→ (H ′1, aH2). De même si
b est dans Z2 et H2 = bH ′2, le transfert de b est l’application (H1, bH

′
2) 7→ (H1b,H

′
2).

Lemme 1.17. Soit a dans Z et soit (H ′1, H ′2) les empilements obtenus en transférant a.
L’ensemble des positions transférables de (H ′1, H ′2) est encore Z.
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Preuve. Prouvons tout d’abord que si deux positions b et c sont dans Z, avec b 6= c, alors
b et c ne sont pas concurrentes. Les positions de Z1 sont incluses dans max(H1), donc
sont deux à deux non concurrentes ; de même pour celles de Z2. Soit donc b dans Z1 et
c dans Z2 : comme b est transférable, bc n’est pas dans C1 ; comme c est transférable, bc
n’est pas dans C2. Donc bc n’est pas dans C.

Soit maintenant Z ′ l’ensemble des positions transférables de (H ′1, H ′2). On remarque que
le transfert de la position a est involutif : a est dans Z ′, et le transfert de a effectué à
partir des empilements (H ′1, H ′2) donne (H1, H2). Ainsi, il suffit de prouver que Z ⊆ Z ′ :
en appliquant le même raisonnement aux empilements (H ′1, H ′2), on montre que Z ′ ⊆ Z.

Soit donc b dans Z avec a 6= b : comme a et b ne sont pas concurrentes, transférer a n’a
pas d’incidence sur le transfert de b. En particulier, on a b ∈ Z ′, ce qui montre bien que
Z ⊆ Z ′.

Lemme 1.18. Supposons que (H1, H2) n’est pas dans {1} ×H2
[A\S]. L’ensemble Z est non

vide.

Prouver ce lemme est la partie la plus difficile ; c’est là qu’intervient le fait que le modèle
(A,C) est ordonné. Avant tout, nous montrons comment on en déduit le théorème.

Preuve du théorème 1.16. Tout d’abord, on note que l’équation (1.6) implique (1.5) : il
suffit de choisir S = A, qui est bien un segment final.

Soit v un ordre total sur A. Soit D le domaine
(
H1

[S] ×H2
)
\
(
{1} ×H2

[A\S]

)
. On définit

une application Φ: D → D de la façon suivante. Soit (H1, H2) dans D et Z l’ensemble des
positions transférables. Soit a la position de Z la plus petite pour l’ordre v. On définit
Φ(H1, H2) comme le résultat du transfert de a.

Le lemme 1.18 assure que Φ est bien définie, et le lemme 1.17 assure que Φ est une
involution. De plus, comme Φ transfère une pièce de ou vers H2, les contributions de
(H1, H2) et de Φ(H1, H2) dans la série H1

[S]H2 sont opposées et s’annulent. Ainsi, seules
les contributions des éléments hors de D restent, ce qui prouve l’équation (1.6).

Reste donc à prouver le lemme 1.18. La preuve utilise de manière centrale les conditions
0 à 5 décrites dans la définition 1.14 et illustrées sur la figure 1.3. Nous commençons par
énoncer deux lemmes supplémentaires.

Lemme 1.19. Soit H un empilement et a une position. On suppose qu’aucune pièce de
H n’est à une position conucurrente à a et qu’il existe une pièce de H à position b telle
que b < a. Alors il existe une position c dans min(H) telle que c < a.

Symétriquement, s’il existe une pièce b de H telle que a < b, alors il existe une position
c dans min(H) telle que a < c.

Preuve. Soit x une pièce de H à position b, et soit y une pièce minimale de H telle que
y 4 x ; on note c la position de y. Il existe donc des pièces x0, . . . , xn dans H, telles que
xi couvre xi+1 pour tout 0 6 i < n et xn = y. Soit bi la position de xi : les positions bi et
bi+1 sont donc concurrentes pour tout i.

Par hypothèse, a n’est concurrente avec aucune des bi. La condition 1 implique que pour
tout i, si bi < a alors bi+1 < a. Or b0 = b < a ; de proche en proche, on trouve bien
c = bn < a.
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Le cas symétrique est identique et utilise cette fois la condition 2.

Lemme 1.20. Soit H2 un empilement de H2 et a dans A tel que aH2 n’est pas dans H2.
Alors il existe b dans min(H2) tel que :
– soit ab est dans C1,
– soit b < a.
Symétriquement, soit H1 un empilement de H1 et b dans A tel que H1b n’est pas dans H1.
Alors il existe c dans max(H1) tel que :
– soit cb est dans C2,
– soit c < b.

Ce lemme est illustré figure 1.4.

Preuve. Traitons tout d’abord le premier cas. Supposons que H2 est dans H2 mais pas
aH2, et notons x la pièce minimale de aH2 à position a. Il existe donc une pièce y, à
position b, qui couvre x et telle que ab ∈ C1. On distingue deux cas de figure.

1. Soit y est une pièce minimale de H2, auquel cas b remplit les conditions du lemme.
2. Soit y n’est pas une pièce minimale de H2. Dans ce cas, soit H ′2bH ′′2 une écriture de

l’empilement H2 telle qu’on ait

aH2 = H ′2abH
′′
2 .

Pour que cette dernière égalité soit vraie, la lettre a doit commuter avec toutes
les lettres de H ′2. On en déduit qu’aucune pièce de H ′2 n’est concurrente à a. Soit
maintenant z une pièce de H ′2 telle que y couvre z et soit c la position de z. On
a donc cb ∈ C2. La condition 3 implique donc que c < a. Le lemme 1.19 donne
l’existence de d dans min(H ′2), donc dans min(H2), tel que d < a.

Le cas symétrique est traité de la même manière et utilise la condition 4.

a

b

C1

a

b

c

d
C1

C2
b

c

C2

b

c

d

e
C2

C1

Figure 1.4 – À gauche, la preuve du lemme 1.20. Si aH2 n’est pas dans H2, il
existe b tel que ab ∈ C1. Si b n’est pas dans min(H2), on prouve l’existence d’une
pièce à position d telle que d < a et d ∈ min(H2). À droite, la deuxième partie du
lemme 1.20.

Preuve du lemme 1.18. Par l’absurde, supposons que Z soit vide. Si H1 est vide, alors
H2 n’est pas dans H2

[A\S] par hypothèse. Il existe donc b dans min(H2) tel que b ∈ S.
L’empilement b étant dans H1

[S], b est dans Z. C’est une contradiction.

Supposons maintenant H1 non vide. Soit a dans max(H1), minimale pour l’ordre <. La
position a n’étant pas transférable, l’empilement aH2 n’est pas dans H2. Le lemme 1.20
assure donc l’existence d’un b dans min(H2) tel que b < a ou ab ∈ C1.
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De plus, la position b n’est pas dans Z2 par hypothèse, donc H1b n’est pas dans H1
[S]. Ceci

signifie soit que min(H1b) n’est pas inclus dans S, soit que H1b n’est pas dans H1. Nous
avons donc quatre cas à traiter.
– Soit b < a et min(H1b) n’est pas inclus dans S. Notons y la pièce maximale de H1b à
position b ; la seule pièce minimale de H1b pouvant être à position non dans S est y, ce
qui montre que b n’est pas dans S et y est minimale. Aucune pièce de H1 n’est donc à
position concurrente à b. Le lemme 1.19 assure qu’il existe c dans min(H1), donc dans
S, tel que b < c. Ceci contredit le fait que S est un segment initial.

– Soit ab ∈ C1 et min(H1b) n’est pas inclus dans S. Notons à nouveau y la pièce maximale
de H1b à position b. La pièce y couvrant une pièce à position a, les empilements H1 et
H1b ont les mêmes pièces minimales, ce qui contredit le fait que min(H1) ⊆ S.

– Soit b < a et H1b n’est pas dans H1. Le lemme 1.20 fournit un c dans max(H1) tel que
c < b ou cb ∈ C2. La condition 1 montre donc que c < a, ce qui contredit la minimalité
de a.

– Soit ab ∈ C1 et H1b n’est pas dans H1. Le lemme 1.20 fournit un c dans max(H1) tel
que c < b ou cb ∈ C2. Les conditions 2 et 3 montrent donc que c < a, ce qui contredit
la minimalité de a.

Dans ce mémoire, nous donnons plusieurs applications du théorème 1.16. La première, et
la plus simple, de ces applications est l’énumération des empilements stricts, déjà bien
connue par ailleurs.

1.3.3 Empilements stricts

Définition 1.21. Un empilement est dit strict s’il ne contient aucun motif de type aa
pour a une lettre de A.

Soit C1 l’ensemble des motifs ab pour a 6= b et C2 celui des motifs de type aa. Avec
les notations de la section précédente, l’ensemble des empilements stricts est H1. Les
empilements de H2 sont qualifiés de multi-triviaux (voir figure 1.5).

b

b
a

d
c

c

a
a
a

d
d

Figure 1.5 – À gauche, un empilement strict. À droite, un empilement multi-trivial.

Considérons maintenant le modèle ordonné d’empilements (A,C,∅). Il est facile de vérifier
que la partition C = C1 ∪ C2 est compatible avec l’ordre vide. De plus, tout ensemble S
de positions est un segment initial de A pour l’ordre vide.

On définit la série génératrice Hs des empilements stricts et la série génératrice alternée
Tm des empilements multi-triviaux. De même, on définit les séries Hs

[S] et Tm
[S] pour tout

ensemble S de positions. Le théorème 1.16 donne :

HsTm = 1;
Hs

[S]Tm = Tm
[A\S].
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Un empilement multi-trivial est construit en remplaçant chaque pièce d’un empilement
trivial par une pile de taille arbitraire formée de pièces à la même position. Chaque pièce
de position a ayant pour poids −a, la série Tm

[S] est donnée par la substitution :

Tm
[S] = T[S]

(
a→ a

1 + a

)
; (1.7)

Ainsi, on a, après application du lemme d’inversion :

Hs
[S] = H[S]

(
a→ a

1 + a

)
. (1.8)

Alternativement, un empilement général est construit en remplaçant chaque pièce d’un
empilement strict par une pile de taille arbitraire. Chaque pièce de position a a cette fois
un poids a, ce qui donne :

H[S] = Hs
[S]

(
a→ a

1− a

)
.

Ces deux identités sont bien sûr équivalentes.

1.4 Empilements marqués

Un problème auquel nous serons confrontés est d’énumérer des empilements marqués
d’un certain ensemble de pièces. Le but de cette section est d’introduire des outils pour
manipuler ce type d’objets.

1.4.1 Empilements marqués et factorisations d’empilements

Définition 1.22. Un empilement marqué est un couple (H,X), où H est un empilement
et X un ensemble de pièces de H formant une antichaîne pour 4 (i.e. un ensemble de
pièces deux à deux non comparables).

Soit H = (P, `,4) un empilement. On s’intéresse maintenant à factoriser l’empilement
H, c’est-à-dire à trouver un couple (H1, H2) d’empilements tels que H = H1H2. La pro-
position 1.8, qui définit le produit de deux empilements, montre que ceci est équivalent à
trouver une partition P = P1 ∪ P2, où P1 est un segment initial de P .

Définition 1.23. Soit (H,X) un empilement marqué. La factorisation de H créée en
tirant les pièces de X vers le bas, notée F↓(H,X), est le couple (H1, H2) tel que H = H1H2
et où les pièces de H1 sont celles au dessous d’une pièce de X (y compris les pièces de X
elles-mêmes).

De même, la factorisation de H créée en poussant les pièces de X vers le haut, noté
F↑(H,X), est le couple (H1, H2) tel que H = H1H2 et où les pièces de H2 sont celles au
dessus d’une pièce de X (figure 1.6).



30 Chapitre 1. Empilements de pièces

Figure 1.6 – À gauche, un empilement marqué. Au centre, son image par F↓. À
droite, son image par F↑.

Proposition 1.24. Les applications F↓ et F↑ sont des bijections de l’ensemble des empi-
lements marqués vers celui des couples d’empilements.

De plus, soit (H,X) un empilement marqué et (H1, H2) la factorisation F↓(H,X). Les
pièces maximales de H1 sont exactement les pièces de X. De même, si (H1, H2) =
F↑(H,X), alors les pièces minimales de H2 sont les pièces de X.

Preuve. D’après la proposition 1.8, trouver une factorisation de H revient à trouver une
partition P1 ∪ P2 de P , tel que P1 est un segment initial et P2 un segment final. La
proposition découle donc du lemme 1.3.

Ainsi, on ramène l’étude des empilements marqués à celle de couples d’empilements, plus
agréables à traiter. Étant donnés deux empilements H1 et H2, nous montrons maintenant
comment trouver les positions des pièces minimales du produit H1H2.

Définition 1.25. Soit H un empilement. On appelle voisinage de H, et on note v(H),
l’ensemble des positions a telles qu’au moins une pièce de H est à une position concurrente
à a.

Lemme 1.26. Soit H1 et H2 deux empilements. L’ensemble des positions des pièces mi-
nimales du produit H1H2 est donné par :

min(H1H2) = min(H1) ∪
(
min(H2) \ v(H1)

)
.

Preuve. Toute pièce minimale de H1 est encore minimale dans H1H2, car elle ne peut
couvrir aucune pièce de H2.

Soit maintenant y une pièce minimale de H2. La pièce y n’est pas minimale dans H1H2
si et seulement si il existe une pièce x de H1 telle que y couvre x. Ceci signifie que les
positions de x et y sont concurrentes, donc que la position de y est dans v(H1).

Soit H un empilement tel que min(H) = S. En écrivant l’empilement H sous la forme
SH2, on trouve ainsi :

HS = SH[v(S)], (1.9)

où S est le produit des poids des positions de S. Cette identité fournit une alternative à
l’équation (1.2) pour calculer la série HS en fonction de séries de type H[T ].
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1.4.2 Empilements stricts et presque stricts

Nous traitons maintenant le cas des empilements stricts marqués. Comme précédemment,
nous cherchons à ramener leur étude à celle de couples d’empilements stricts. Pour cela,
nous définissons un objet intermédiaire.
Définition 1.27. Un empilement marqué (H,X) est dit presque strict si aucune pièce
non marquée n’est couverte par une pièce de même position.

Soit (H,X) un empilement marqué presque strict. On appelle pile de H un ensemble
maximal de pièces à la même position empilées directement les unes sur les autres ; on
appelle piles marquées les piles de H contenant une pièce de X. Ces piles consistent
toujours en une ou deux pièces, et la pièce marquée est toujours en dessous. On appelle
X+ l’ensemble consistant en la pièce du dessus de chaque pile marquée. On définit les
transformations, illustrées figure 1.7 :

F s
↓ (H,X) = F↓(H,X);
F s
↑ (H,X) = F↑(H,X+).

Figure 1.7 – À gauche, un empilement marqué presque strict. Au centre, son image
par F s↓ . À droite, son image par F s↑ . Les deux factorisations séparant toujours les
deux pièces l’une sur l’autre à la même position, tous les facteurs obtenus sont
stricts.

Lemme 1.28. Les applications F s
↓ et F s

↑ sont des bijections de l’ensemble des empilements
marqués presque stricts vers l’ensemble des couples d’empilements stricts.
De plus, soit (H,X) un empilement marqué presque strict et (H1, H2) la factorisation
F s
↓ (H,X). L’ensemble max(H1) est égal à l’ensemble des positions des pièces de X. De

même, si (H1, H2) = F s
↑ (H,X), alors l’ensemble min(H2) est l’ensemble des positions des

pièces de X.

Preuve. Tout d’abord, on remarque que si (H1, H2) est égal à F s
↓ (H,X) ou F s

↑ (H,X),
alors H1 et H2 sont stricts. En effet, si deux pièces x et y sont dans la même pile avec y
au dessus de x, alors x est toujours dans H1 et y dans H2.
L’ensemble X étant l’ensemble des pièces inférieures de chaque pile marquée, la transfor-
mation (H,X) 7→ (H,X+) est injective ; les fonctions F↓ et F↓ étant injectives, F s

↓ et F s
↑

sont aussi injectives.
Soit maintenant H1 et H2 deux empilements ; soit X l’ensemble des pièces maximales de
H1 et Y l’ensemble des pièces minimales de H2. Soit Y − l’ensemble des pièces inférieures
de chaque pile de l’empilement H1H2 contenant une pièce de Y . On a :

(H1, H2) = F s
↓ (H,X) = F s

↑ (H,Y −),
ce qui prouve la surjectivité et donne les ensembles max(H1) et min(H2).
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Tout empilement marqué presque strict s’obtient à partir d’un empilement strict en rem-
plaçant chaque pièce marquée par une pile marquée, de taille 1 ou 2. En termes de séries
génératrices, cela correspond, pour chaque pièce x de X de position a, à une multipli-
cation par 1 + a. Ainsi, on peut ramener l’étude des empilements marqués stricts aux
empilements marqués presque stricts, et donc aux paires d’empilements stricts.

1.4.3 Empilements marqués d’une pièce

En application de ce qui précède, nous traitons le cas des empilements marqués d’une
seule pièce, à position fixée. Soit (A,C) un modèle d’empilements et a une position de A.

Notons M(a) la série génératrice des empilements marqués d’une pièce de position a et
V(a) la série génératrice des empilements H évitant a, i.e. tels que a 6∈ v(H). De même,
soit M(a)s la série des empilements stricts marqués d’une pièce de position a et V(a)s la
série des empilements stricts évitant a.

Les séries V(a) et V(a)s peuvent être facilement calculées en utilisant le théorème d’inver-
sion (théorème 1.11) : en effet, les empilements évitant a sont exactement les empilements
du modèle dont les positions sont A \ v(a).

Soit S un sous-ensemble de A ; on note M(a)
[S] et V(a)

[S] , les séries comptant les mêmes
empilements que ci-dessus, dont les pièces minimales sont à positions dans S. On fait de
même pour les empilements stricts.

Lemme 1.29. Supposons que la position a est dans S. On a :

M(a)
[S] = H[S]H{a}; (1.10)

M(a)s
[S] = 1

1 + a
Hs

[S]Hs
{a}. (1.11)

Supposons maintenant que a n’est pas dans S. On a :

M(a)
[S] =

(
H[S] −V(a)

[S]

)
H{a}; (1.12)

M(a)s
[S] = 1

1 + a

(
Hs

[S] −V(a)s
[S]

)
Hs
{a}. (1.13)

Preuve. Soit (H, {x}) un empilement marqué d’une pièce à position a. On utilise la bijec-
tion F↑ pour construire un couple (H1, H2), tel que min(H2) = {a}. Le lemme 1.26 assure
que :

min(H) = min(H1) ∪
(
{a} \ v(H1)

)
.

Si a est dans S, alors min(H) est inclus dans S si et seulement si min(H1) l’est : ceci prouve
l’équation (1.10). Si a n’est pas dans S, alors min(H) est inclus dans S si et seulement si
min(H1) l’est et a est dans v(H1). La série H[S]−V(a)

[S] comptant les empilements ayant a
dans leur voisinage, on a bien prouvé l’équation (1.12).

Considérons maintenant le cas des empilements stricts. Soit M(a)∗
[S] la série comptant les

empilements marqués d’une pièce de position a presque stricts. Ils sont obtenus en rem-
plaçant une pièce de position a par une pile d’une ou deux pièces. On a donc :

M(a)∗
[S] = (1 + a)M(a)s

[S] .
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On utilise maintenant la bijection F s
↑ pour transformer les empilements marqués en couples

d’empilements stricts. On prouve ainsi les identités (1.11) et (1.13) de la même manière
que (1.10) et (1.12).

1.5 Empilements de segments et de dimères

Pour finir ce chapitre, nous définissons deux modèles particuliers d’empilements de pièces :
les empilements de segments, et un cas particulier, les empilements de dimères. Les empile-
ments de dimères forment sans doute le modèle d’empilements le plus utilisé, notamment
pour l’énumération des animaux dirigés [3]. Les empilements de segments, plus généraux,
ont été étudiés dans [11].
Ces deux modèles d’empilements nous seront utiles à de nombreuses reprises au cours de
cette thèse.

1.5.1 Empilements de segments

Définition 1.30. Un segment est un couple d’entiers (i, j) tel que i 6 j. L’ensemble
des sommets du segment (i, j) est l’ensemble {i, . . . , j} ; l’ensemble des arêtes du segment
(i, j) est l’ensemble {i, . . . , j − 1} ; la longueur du segment (i, j) est l’entier j − i, égal au
nombre d’arêtes du segment.
Deux segments sont concurrents s’ils ont au moins un sommet en commun ; de manière
équivalente, ils sont concurrents si leurs arêtes sont consécutives. Enfin, soient q0, q1, . . .
des indéterminées. On attribue à chaque segment de longueur ` le poids q`.

L’ensemble des segments muni de cette relation de concurrence et de ces poids définit un
modèle d’empilements de pièces. Un empilement de segments est représenté figure 1.8.
Comme indiqué dans la définition, un segment de longueur non nulle peut être représenté
par son ensemble de sommets ou par son ensemble d’arêtes. L’une ou l’autre vision sera
plus commode selon les applications.
On s’intéresse maintenant à l’énumération des empilements de segments. Soit k un entier
positif ou nul et soit Vk l’ensemble {0, . . . , k}. On pose également V−1 = ∅. On considère le
sous-modèle, appelé modèle borné de largeur k, constitué des segments dont les sommets
sont dans Vk. On note Hk la série comptant les empilements de segments de ce modèle.
Le théorème 1.11 donne

Hk = 1
Tk
,

où Tk est la série alternée des empilements triviaux de segments contenus dans Vk.
Soit T (z) la série génératrice des séries Tk−1 (l’utilité de ce décalage d’indice est apparente
ci-dessous) :

T (z) =
∑
k>0

Tk−1z
k.

On note également Q(z) la série des indéterminées q` :

Q(z) =
∑
`>0

q`z
`.
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Lemme 1.31. La série génératrice T (z) vaut :

T (z) = 1
1− z + zQ(z) .

Preuve. Un empilement trivial de segments, observé de gauche à droite, peut être vu
comme une séquence d’éléments de deux types (figure 1.9) :
– un sommet libre ;
– un segment de longueur `, contenant `+ 1 sommets.
La série Tk étant alternée, le poids effectif d’un segment de longueur ` est −q`. On ajoute
maintenant l’indéterminée z comptant le nombre de sommets. L’ensemble Vk−1 comptant
k sommets, on a ∑

k>0
Tk−1z

k = 1
1−

(
z −∑`>0 q`z`+1

) .
Le résultat s’ensuit.

1.5.2 Adjacences droites et gauches

Définition 1.32. Soit a = (ia, ja) et b = (ib, jb) deux segments. Le motif ab est une
adjacence à droite si ja = ib ; il est une adjacence à gauche si jb = ia.

Ces notions sont illustrés figure 1.8.

Figure 1.8 – Un empilement de segments contenant une adjacence à droite et une
adjacence à gauche, marquées sur la figure.

On s’intéresse maintenant aux empilements de segments sans adjacence à droite. Pour
énumérer ces empilements, nous utiliserons les résultats de la section 1.3.2. Notons C la
relation de concurrence entre les segments, C2 l’ensemble des adjacences à droite et C1 le
complémentaire à C de C2.

Soient a = (ia, ja) et b = (ib, jb) deux segments. On note a < b si on a l’inégalité ja < ib.

Lemme 1.33. Le modèle des segments muni de la relation d’ordre < est un modèle
ordonné. La partition C1 ∪ C2 de C est compatible avec cet ordre.

Preuve. Soit a = (ia, ja) et b = (ib, jb) deux segments non concurrents. Leurs ensembles
de sommets sont disjoints, donc on a nécessairement ja < ib ou jb < ia, donc a < b ou
b < a. Le lemme 1.15 implique donc que le modèle des segments muni de l’ordre < est
ordonné.

Prouvons que la condition 3 de la définition 1.14 est vérifiée. Soient a = (ia, ja), b = (ib, jb)
et c = (ic, jc) trois segments tels que ab ∈ C1, cb ∈ C2 et ac 6∈ C. Par l’absurde, supposons
que c ≮ a ; ceci implique que a < c. Comme cb est dans C2, on a jc = ib ; comme a < c,
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on a ja < ic ; enfin, comme ib 6 jb et ic 6 jc, on a ja < ib. Les segments a et b sont donc
non concurrents, ce qui contredit le fait que ab ∈ C1.

De même, on prouve la condition 4 : supposons que bc ∈ C1, ba ∈ C2 et ac 6∈ C. Supposons
par l’absurde que a < c. On a donc jb = ia et ja < ic, ce qui implique jb < ic, donc b < c,
ce qui contredit le fait que bc ∈ C1.

Les conditions du théorème 1.16 sont donc remplies. On dira qu’un empilement est quasi-
trivial si tous ses motifs sont dans C2.

À nouveau, plaçons nous dans le modèle des segments inclus dans Vk. Notons Hd
k la série

des empilements sans adjacence droite de ce modèle. Notons également T dk la série alternée
des empilements quasi-triviaux. Le théorème 1.16 affirme que

Hd
k = 1

T dk
.

Notons T d(z) la série génératrice des séries T dk , cette fois sans décalage d’indice :

T d(z) =
∑
k>0

T dk z
k.

Lemme 1.34. La série T d(z) vaut

T d(z) = 1
1− z +Q(z) .

Preuve. La preuve reprend celle du lemme 1.31, à la différence que deux segments a et
b d’un empilement quasi-trivial sont autorisés à être adjacents à droite. On choisit cette
fois la vision par arêtes plutôt que par sommets. Un empilement quasi trivial, observé de
gauche à droite, peut se voir comme une séquence de deux types d’éléments :
– une arête non occupée ;
– un segment de longueur `, occupant ` arêtes.
Ceci permet de conclure de la même manière que pour le lemme 1.31. L’absence de
décalage d’indice est due au fait que seules k arêtes relient les sommets de Vk.

Figure 1.9 – En haut, un empilement trivial de segments inclus dans V6. En bas,
un empilement quasi-trivial de segments inclus dans V10.

Dans ce qui précède, nous avons tenu compte uniquement des adjacences à droite. Dans le
chapitre 5, nous chercherons à énumérer des empilements de segments sans adjacence ni
à droite, ni à gauche. Posons C ′2 l’ensemble des motifs ab où a et b sont adjacents à droite
ou à gauche et C ′1 son complémentaire à C. Le lemme suivant montre que l’approche
développée ci-dessus ne peut pas fonctionner dans ce cas.



36 Chapitre 1. Empilements de pièces

Lemme 1.35. Il n’existe pas d’ordre partiel < sur le modèle des segments rendant com-
patible la partition C ′1 ∪ C ′2.

Ce lemme montre qu’il est impossible d’appliquer le théorème 1.16 pour énumérer les
empilements sans adjacence. Soit Hgd

k la série des empilements sans adjacence de segments
inclus dans Vk. Expérimentalement, les séries 1/Hgd

k ne vérifient pas d’équation aussi
simple que les séries Tk et T dk , ce qui tend à montrer que le problème est effectivement
plus difficile.

Preuve. Posons a = (1, 1), b = (0, 2) et c = (0, 0). Les motifs ab et ba sont dans C ′1, tandis
que les motifs bc et cb sont dans C ′2. De plus, les segments a et c ne sont pas concurrents.

Supposons que la partition C ′1 ∪ C ′2 est compatible avec l’ordre <. La condition 3 de
la définition 1.14 implique que c < a, et la condition 4 implique que a < c. C’est une
contradiction.

1.5.3 Empilements de dimères

Définition 1.36. On appelle dimère un segment de longueur 1.

Les dimères sont donc les segments contenant une seule arête. Pour cette raison, on
confondra souvent un dimère avec son unique arête.

En utilisant la même relation de concurrence que pour les segments, l’ensemble des dimères
est un modèle d’empilements. Attribuons le poids t à chaque dimère. Le modèle des
empilements de dimères étant un sous-modèle de celui des segments, les séries génératrices
des empilements de dimères peuvent être obtenues en effectuant dans les séries comptant
les empilements de segments les substitutions q1 = t et q` = 0 pour ` 6= 1. Ainsi, la série
génératrice Q(z) vaut tz.

Soit Hk(t) la série génératrice des empilements de dimères inclus dans Vk. Comme le
montre le lemme 1.31, cette série s’écrit 1/Tk(t), avec

∑
k>0

Tk−1(t)zk = 1
1− z + tz2 .

Définition 1.37. Les polynômes de Fibonacci, notés Fk(t), sont les polynômes obéissant
à la relation de récurrence suivante :

F0(t) = F1(t) = 1 ;
Fk(t) = Fk−1(t)− tFk−2(t), k > 2.

Cette définition est équivalente à
∑
k>0

Fkz
k = 1

1− z + tz2 .

On en déduit l’identité Tk−1(t) = Fk(t). Pour cette raison, les polynômes de Fibonacci
apparaîtront chaque fois qu’un problème d’énumération fait intervenir des empilements
de dimères.
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Considérons maintenant le modèle des segments de longueur > 1 inclus dans Vk, et utili-
sons les poids q` = t` pour ` > 1. La série Q(z) vaut donc

Q(z) = tz

1− tz .

Notons Hd
k (t) la série comptant les empilements de segments sans adjacence droite de ce

modèle. D’après la lemme 1.34, cette série vaut 1/T dk (t), avec

∑
k>0

T dk (t)zk = 1
1− z + tz

1−tz
= 1− tz

1− z + tz2 .

On réécrit cette égalité comme

1 + z
∑
k>0

T dk (t)zk = 1
1− z + tz2 .

On en déduit que la série T dk (t) vaut le polynôme de Fibonacci Fk+1(t). On a donc l’égalité
T dk (t) = Tk(t), donc aussi Hd

k (t) = Hk(t).

Cette égalité s’explique par une bijection entre empilements de segments sans adjacence
droite et empilements de dimères. Cette bijection s’obtient en remplaçant chaque segment
[i, j] par l’empilement de dimères [i, i + 1] · · · [j − 1, j] (figure 1.10). La bijection inverse
consiste à regrouper en segments tous les dimères adjacents à droite.

Figure 1.10 – La bijection entre empilements de segments de longueur non nulle
sans adjacence droite et empilements de dimères. Chaque segment est remplacé par
une suite de dimères adjacents à droite.
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Chapitre 2

Excursions discrètes

Rappelons qu’une excursion discrète est un chemin qui prend des pas de hauteur dans un
ensemble S ⊆ Z, qui commence et termine à hauteur 0 et qui ne visite que des hauteurs
positives (figure 3). On définit la hauteur d’une excursion comme la hauteur maximale
d’un de ses sommets.

On considère maintenant pour tout pas s de S un poids qs à valeur dans un corps K.
Notons Ek la série génératrice des excursions de hauteur au plus k comptées selon ces
poids. Il est classique [2] que cette série est rationnelle, et s’écrit sous la forme

Ek = Fk
Fk+1

,

où les Fk sont des polynômes, dont nous donnerons une interprétation combinatoire par
la suite.

Soit F (z) la série
F (z) =

∑
k>0

Fkz
k. (2.1)

Supposons que cette série est rationnelle, et s’écrit F (z) = N(z)/D(z). Soit E la série
génératrice des excursions sans contrainte de hauteur. En écrivant la relation de récurrence
des polynômes Fk et en faisant tendre k vers l’infini, on trouve l’identité D(E) = 0 (une
preuve plus détaillée se trouve dans [6]). Ainsi, la série E est algébrique sur le corps K.

Dans son article [6], Bousquet-Mélou montre que la série F (z) est rationnelle si l’ensemble
S des pas autorisés est fini. Plus précisément, si max S = a et minS = −b, on peut prendre
les polynômes N(z) et D(z) de degrés respectifs da,b − a− b et da,b, où da,b =

(
a+b
a

)
. Ceci

montre donc que la série E est algébrique de degré au plus da,b. Bousquet-Mélou montre
également que, si l’ensemble S est symétrique, ce qui implique a = b, le dénominateur
peut être réduit au degré 2a.

Dans ce chapitre, nous étudions les excursions discrètes dans deux cas. Le premier est
celui des chemins de Łukasiewicz, dont l’ensemble des pas S est inclus dans Z− ∪ {1}.
Nous verrons que, dans ce cas, la série F (z) est rationnelle dès que la série ∑j q−jz

j l’est.

Le deuxième est le cas plus classique où l’ensemble S est fini. Nous donnons une explica-
tion combinatoire au fait que la série F (z) est rationnelle en donnant des interprétations
combinatoires du numérateur N(z) et du dénominateur D(z), ainsi que de leurs degrés.
Nous étudions aussi le cas où l’ensemble S est symétrique. Dans ce cas, nous montrons que
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la fraction rationnelle N(z)/D(z) se simplifie, et nous en déduisons plusieurs propriétés
intéressantes des polynômes Fk et des séries Ek.
Le chapitre est organisé comme suit. La section 2.1 donne des outils classiques, dus à
Viennot, pour relier les chemins dans un graphe quelconque aux empilements de cycles
élémentaires ; nous utilisons ces outils pour interpréter combinatoirement les polynômes
Fk. La section 2.2 applique ces résulats à l’étude des chemins de Łukasiewicz. La sec-
tion 2.3, quant à elle, étudie le cas où l’ensemble des pas S est fini, ainsi que le cas
particulier où il est, de plus, symétrique.

2.1 Chemins dans un graphe orienté

Dans cette section, on notera G = (V,A) un graphe orienté. Un chemin de G est une suite
α = a1 · · · an d’arcs de A consécutifs (c’est-à-dire que le point d’arrivée de chaque arc est
le point de départ du suivant). Si s est le point de départ de a1 et t le point d’arrivée de
an, on dira que α joint s à t et on notera α : s→ t. Pour tout sommet s de V , on définit
également le chemin vide au point s, noté εs, qui ne contient aucun arc et joint s à s.
Un sommet u est visité par un chemin α si u est le point de départ ou d’arrivée d’un arc
de α. L’ensemble des sommets visités par α est appelé le support de α, et noté supp(α).
Comme pour les empilements, on attribue à chaque arc a un poids a. Si α = a1 · · · an est
un chemin de G, on note α son poids, défini comme le produit des poids des arcs qui le
composent :

α = a1 · · · an.
On note également Wst la série génératrice des chemins de G joignant s à t :

Wst =
∑

α : s→t
α.

De la même manière que pour les empilements, nous supposerons que les poids des arcs
sont universels, c’est-à-dire que nous travaillons dans l’anneau des séries formelles avec une
indéterminée a pour chaque arc a. Ceci garantit l’existence de Wst ; considérer d’autres
poids revient ensuite à spécialiser cette série.

2.1.1 Matrice d’adjacence

Supposons l’ensemble des sommets V fini. On peut alors, sans perte de généralité, supposer
que V = {0, . . . , k − 1}. On note A la matrice d’adjacence de G, dont le coefficient Aij
vaut la somme des poids a pour tous les arcs a joignant i à j ; on note également W la
matrice dont le coefficient (i, j) vaut la série Wij définie ci-dessus.
Il est classique que, si n > 0, le coefficient (i, j) de la matrice An compte les chemins de
G de longueur n joignant i à j. Ainsi, la matrice W vaut :

W =
∑
n>0

An = (1− A)−1,

où 1 désigne la matrice identité. La formule de Cramer donne donc le coefficient Wij :

Wij = cofji(1− A)
det(1− A) , (2.2)
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où cofji(1− A) désigne le cofacteur de coordonnées (j, i) dans la matrice 1− A.

Dans la suite, nous donnons une interprétation classique, due à Viennot, de cette formule
utilisant des empilements de pièces.
Remarque. On a supposé ici l’ensemble V fini, ce qui suffira à nos besoins. Dans le cas où
cet ensemble est infini, il reste possible d’écrire la formule (2.2). Cette équation implique
alors un déterminant infini, défini par exemple dans [30]. Tout le reste de cette section
reste valable dans ce cadre, mais nous omettrons les détails.

2.1.2 Empilements de cycles

On s’intéresse désormais aux cycles du graphe G, c’est-à-dire les chemins ayant même
point de départ et d’arrivée, vus à une permutation cyclique des arcs près. Le poids d’un
cycle γ, noté γ, est égal à son poids en tant que chemin, c’est-à-dire au produit des poids
des arcs qui le composent.

Définition 2.1. Un chemin est dit auto-évitant s’il ne passe pas deux fois par le même
sommet. De même, un cycle non vide est dit élémentaire s’il ne passe pas deux fois par
le même sommet. Deux chemins ou cycles sont concurrents si leurs supports ne sont pas
disjoints.

Nous noterons β : s t si le chemin auto-évitant β joint s à t.

Muni de cette relation de concurrence, l’ensemble des cycles élémentaires de G est un
modèle d’empilements de pièces. Nous présentons maintenant un lien, dû à Viennot, entre
les chemins et les empilements de ce modèle.

Définition 2.2. Soit α = a1 · · · an un chemin joignant s à t. On construit inductivement
une suite (βi)06i6n de chemins auto-évitants, et une suite (Hi)06i6n d’empilements de
cycles, de la manière suivante :
– β0 = εs (le chemin vide au point s) et H0 = 1 ;
– si i > 0, on distingue deux cas :
– si la concaténation βi−1ai est un chemin auto-évitant, alors βi = βi−1ai et Hi+1 = Hi ;
– sinon, on écrit βi−1ai = βiγ, où γ est un cycle élémentaire ; on pose ensuite Hi =
γHi−1.

Dans le deuxième cas, on dira que l’arc ai est un arc terminal du chemin α. Enfin, on
pose f(α) = (βn, Hn).

Plus intuitivement, on construit le couple f(α) = (β,H) en parcourant le chemin α.
Dès que le chemin atteint un sommet déjà visité, le cycle élémentaire comstitué des pas
depuis la première visite se « détache » de α. Une fois tous les cycles détachés, il ne reste
qu’un chemin auto-évitant β. De plus, soient γ1, . . . , γm les cycles qui se sont détachés.
L’empilement H est construit en empilant ces cycles dans l’ordre inverse :

H = γm · · · γ1.

Un arc est terminal s’il provoque un détachement de cycle. Cette construction est illustrée
figure 2.1.
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0 1 2 3 4
a1 a2 a3

a4

a5
a6

a7

a8

α

0 1 2

2 4

1 2 3 4

a1

a2 a3

a4

a5

a6

a7

a8

(β,H)

Figure 2.1 – En haut, un chemin α = a1 · · · a8 joignant les sommets 0 et 2. En
suivant ce chemin, l’arc a4 fait se détacher le cycle γ1 = a2a3a4 ; l’arc a7 fait se
détacher le cycle γ2 = a7 ; enfin, l’arc a8 fait se détacher le cycle γ3 = a6a8. Il reste
ainsi un chemin auto-évitant β = a1a5. L’empilement de cycles ainsi obtenu est
H = γ3γ2γ1. Son unique cycle minimal, γ3, est concurrent à β.

Théorème 2.3 (Viennot). L’application f est une bijection entre les chemins joignant s
à t et les couples (β,H), où β est un chemin auto-évitant de s à t et H est un empilement
de cycles élémentaires tel que tous les cycles minimaux de H sont concurrents à β.

Nous dirons que deux arcs a et b sont consécutifs si le point d’arrivée de a est égal au
point de départ de b. Le lemme suivant permet de caractériser les chemins contenant des
arcs terminaux consécutifs.

Lemme 2.4. Soit α un chemin et (β,H) = f(α). Soient a et b deux arcs terminaux de
α ; soient γa et γb les cycles de l’empilement H contenant les arcs a et b. Supposons de
plus que les arcs a et b sont consécutifs dans le graphe G.

Les arcs a et b apparaissent consécutivement dans le chemin α si et seulement si γa couvre
γb dans l’empilement H.

Preuve. Notons u le sommet d’arrivée de l’arc a, qui est le sommet de départ de l’arc b.
Tout d’abord, on note que les cycles γa et γb visitent tous deux u, donc sont concurrents.

Supposons que les arcs a et b apparaissent consécutivement dans le chemin α. Les deux
arcs étant terminaux, les cycles γa et γb se détachent consécutivement. Les cycles étant
empilés dans l’ordre inverse, on en déduit que γa couvre γb dans l’empilement H.

Supposons maintenant que les arcs a et b n’apparaissent pas consécutivement. Soit η le
chemin compris entre a et b : ce chemin va de u à u, et visite donc deux fois le sommet u.
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Par conséquent, un cycle δ visitant u se détache entre γa et γb. Le cycle δ étant concurrent
à la fois à γa et à γb, le cycle γa ne couvre pas γb.

Nous allons maintenant utiliser le théorème 2.3 pour calculer la série génératrice des
chemins joignant s à t. On remarque que les arcs contenus dans le chemin α et dans f(α)
sont les mêmes, de sorte que la bijection f conserve le poids.

Si S est un ensemble de cycles élémentaires, on rappelle qu’on noteH[S] la série génératrice
des empilements de cycles H tels que min(H) ⊆ S. Le théorème implique que :

Wst =
∑

β : s t
βH[v(β)],

où v(β) désigne l’ensemble des cycles élémentaires concurrents à β. En particulier, dans
le cas où s = t, le seul chemin auto-évitant β possible est le chemin vide. En notant v(s)
l’ensemble des cycles élémentaires contenant s, on a donc :

Wss = H[v(s)].

Notons maintenant F la série alternée des empilements triviaux de cycles :

F =
∑
γ1···γr

(−1)rγ1 · · · γr,

où γ1 · · · γr désigne un empilement trivial de cycles élémentaires. SiX est un sous-ensemble
de V , notons F[X] la série alternée des empilements triviaux de cycles dont tous les sommets
sont dans X. En utilisant le théorème 1.11, on trouve :

Wst =
∑

β : s t

βF[V \supp(β)]

F
; (2.3)

et en particulier :

Wss = F[V \{s}]

F
. (2.4)

Esquissons à partir de cette formule une preuve du fait que la série Ek, comptant les
excursions de hauteur au plus k dont les pas sont dans un ensemble fixé S, est de la forme
Fk/Fk+1 où les Fk sont des polynômes. Notons Vk l’ensemble {0, . . . , k} et Fk+1 la série
alternée des empilements de cycles sur Vk (cette série est en fait un polynôme). L’ensemble
Vk \ {0} est égal à {1, . . . , k}, en bijection avec {0, . . . , k − 1}. La série F[Vk\{0}] est donc
égale à Fk.

On s’intéresse également à la série Ek,i comptant les chemins commençant à la hauteur 0,
finissant à la hauteur i, et ne visitant que des sommets de hauteur entre 0 et k inclus.
La formule (2.3) montre que cette série est aussi rationnelle, de dénominateur Fk+1. Son
numérateur est en revanche plus complexe.

2.1.3 Permutations partielles

Nous allons maintenant faire le lien entre les formules (2.2) et (2.3). Pour cela, nous
utilisons la notion de permutation partielle.
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Définition 2.5. Une permutation partielle d’ordre k est un couple π = (S, σ), où S est
un sous-ensemble de {0, . . . , k − 1} et σ est une permutation de l’ensemble S.

L’ensemble S est appelé le support de π et noté supp(π) ; les cycles de π sont les cycles
de σ. On note leur nombre cyc(π). Enfin, la signature de π, notée ε(π), est égale à la
signature de σ.

On note Pk l’ensemble des permutations partielles d’ordre k. La signature d’une permu-
tation partielle vérifie la formule classique :

ε(π) = (−1)|supp(π)|+cyc(π).

Soit maintenant G le graphe complet de sommets V = {0, . . . , k−1} et π une permutation
partielle d’ordre k. On peut représenter π sous forme de diagramme, en traçant un arc
i → π(i) pour tous les sommets s de supp(π). Chaque cycle de π devient alors un cycle
élémentaire du graphe G ; ces cycles sont à supports disjoints, donc non concurrents.
Cette remarque fournit une bijection entre les permutations partielles et les empilements
triviaux de cycles de G.

0 1 2 3 4

Figure 2.2 – Un empilement trivial de cycles. La permutation partielle correspon-
dante, d’ordre 5, s’écrit π = (S, σ), avec S = {0, 1, 2, 4} et σ = (4 1 0)(2). Elle vérifie
cyc(π) = 2.

On calcule à présent la série det(1− A) en développant le déterminant :

det(1− A) =
∑
σ∈Sk

ε(σ)
k−1∏
i=0

(1− A)i,σ(i),

où Sk est le groupe des permuatations d’indice k. En développant le produit, on trouve :

det(1− A) =
∑
σ∈Sk

ε(σ)
∑

S⊆{0,...,k−1}

∏
i∈S
−Ai,σ(i)

∏
i 6∈S

δi,σ(i)

.
Les seules contributions non nulles de la deuxième somme sont celles telles que σ(i) = i
pour tout i hors de S. Notons σ̃ la restriction de σ à S et π la permutation partielle (S, σ̃).
Les permutations σ et σ̃ ayant même signature, on trouve :

det(1− A) =
∑
π∈Pk

ε(π)
∏

i∈supp(π)
(−Ai,π(i)).

On en tire :
det(1− A) =

∑
π∈Pk

(−1)cyc(π) ∏
i∈supp(π)

Ai,π(i).
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En utilisant le lien de la figure 2.2, cette dernière série s’interprète comme la série alternée
des empilements triviaux de cycles. Ainsi, la série F définie plus haut est égale à det(1−A).
En notant π le produit des Ai,σ(i) pour i dans supp(π), cela s’écrit :

F =
∑
π∈Pk

(−1)cyc(π)π. (2.5)

On a bien montré que les dénominateurs des expressions (2.2) et (2.3) sont les mêmes.
Les numérateurs peuvent être traités de même.

2.1.4 Graphes avec une symétrie

On considère maintenant le cas où le graphe G possède une symétrie, c’est-à-dire une
involution φ agissant sur les sommets de V laissant invariant le graphe, y compris le
poids des arcs. Comme φ est une involution, on peut toujours trouver une partition V =
V0 ∪ V1 ∪ V2 de l’ensemble des sommets telle que :
– V0 est l’ensemble des points fixes de φ ;
– l’image par φ de V1 est V2.
On note V ′ le quotient de V1 ∪ V2 par l’involution φ, c’est-à-dire l’ensemble des paires
{v, φ(v)} pour v dans V1. Par abus, si v est dans V1 ∪ V2, on notera encore v sa classe
d’équivalence.

Définition 2.6. On note G+ le graphe dont les sommets sont V + = V0 ∪ V ′, muni d’un
arc s→ t pour chaque arc s→ t de G tel que s est dans V0 ∪ V1.

On note G− le graphe dont les sommets sont V − = V ′, muni :
– d’un arc s→ t, de poids a, pour chaque arc a : s→ t de G tel que s et t sont dans V1 ;
– d’un arc s→ t, de poids −a, pour chaque arc a : s→ t de G tel que s est dans V1 et t
dans V2.

Les graphes G+ et G− sont appelés les graphes réduits de G correspondant à la partition
V0 ∪ V1 ∪ V2. Un exemple de construction de ces graphes est donné figure 2.3.

Le résultat qui suit montre que si le graphe G possède une symétrie, les séries génératrices
F et Wst, définies précédemment, sont calculables à partir de séries analogues dans les
graphes réduits. On note F+ et F− les séries comptant les configurations de cycles de
G+ et G−, respectivement. De même, on note W+

st et W−
st les séries comptant les chemins

joignant la classe d’équivalence de s à celle de t.

Lemme 2.7. La série F des empilements triviaux de cycles vaut :

F = F+F−.

De plus, soient s et t des sommets de V . La série Wst des chemins de s à t dans le graphe
G est donnée par :
– si t est dans V0, alors

Wst = W+
st ;

– si s est dans V0 et t n’est pas dans V0, alors

Wst = W+
st

2 ;
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01, 2
u
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u

t
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t
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1, 2t

−v

t
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Figure 2.3 – En haut, le graphe G, où on a indiqué le poids des arcs. Ce graphe
admet une symétrie laissant l’état 0 fixe et envoyant 1 sur 2. En bas à gauche, le
graphe G+ correspondant à cette symétrie ; les deux arcs de poids u joignant 0 à 1
et de 0 à 2 deviennent deux arcs de 0 à {1, 2}. En bas à droite, le graphe G− ; l’arc
de poids v joignant 1 à 2 devient un arc de poids −v joignant {1, 2} dans lui-même.

– si s et t sont dans V1 ou s et t sont dans V2, alors

Wst = W+
st +W−

st

2 ;

– si s est dans V1 et t dans V2 ou vice versa, alors

Wst = W+
st −W−

st

2 .

Preuve. Soit A la matrice d’adjacence du graphe G. Le fait que G est invariant par
l’involution φ implique que la matriceA est de la forme suivante, où les blocs correspondent
aux ensembles V0, V1 et V2 :

A =


A00 A01 A01

A10 A11 A12

A10 A12 A11

 .

Soit P la matrice de changement de base suivante :

P =


1 0 0
0 1 1
0 1 −1

 ,



2.1. Chemins dans un graphe orienté 47

où 1 désigne le bloc identité. La matrice inverse vaut

P−1 =


1 0 0
0 1/2 1/2
0 1/2 −1/2

 .
Dans cette nouvelle base, la matrice A s’écrit :

P−1AP =


A00 2A01 0
A10 A11 + A12 0
0 0 A11 − A12

 .

On note A+ et A− les deux blocs de cette matrice :

A+ =

 A00 2A01

A10 A11 + A12

 , A− =
(
A11 − A12

)
.

Ceci permet d’exprimer le déterminant F de la matrice 1− A :

F = det(1− A) = det(1− A+) det(1− A−).

On reconnaît dans A+ et A− les matrices d’adjacence des graphes G+ et G−, respective-
ment. Ainsi, on a bien l’égalité F = F+F−.

Soit maintenant W , W+ et W− les pseudo-inverses (1−A)−1, (1−A+)−1 et (1−A−)−1,
respectivement. On commence par écrire les décompositions en blocs de W+ et W− :

W+ =

 W+
00 W+

01

W+
10 W+

11

 , W− =
(
W−

11

)
.

La décomposition en blocs de la matrice A permet d’écrire

P−1WP =


W+

00 W+
01 0

W+
10 W+

11 0
0 0 W−

11

 .
On en déduit l’expression suivante de la matrice W , par changement de base inverse :

W =



W+
00

W+
01

2
W+

01
2

W+
10

W+
11 +W−

11
2

W+
11 −W−

11
2

W+
10

W+
11 −W−

11
2

W+
11 +W−

11
2


.

Le coefficient (i, j) des matrices W , W+ et W− étant égal à la série des chemins joignant
i à j dans les graphes G, G+ et G−, on lit bien dans cette matrice les expressions de Wst

du lemme.
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Pour finir, nous déduisons du lemme 2.7 le résultat plus simple suivant.
Lemme 2.8. Soit s un sommet quelconque de V . On a l’égalité∑

t∈V
Wst =

∑
t∈V +

W+
st .

Preuve. Supposons tout d’abord que s est dans V0. En utilisant le lemme 2.7, on trouve∑
t∈V

Wst =
∑
t∈V0

W+
st +

∑
t∈V1

W+
st

2 +
∑
t∈V2

W+
st

2 .

On rappelle que φ(V2) = V1 et que W+
sφ(t) = W+

st pour tout t dans V1. En regroupant la
deuxième et la troisième, on trouve∑

t∈V
Wst =

∑
t∈V0

W+
st +

∑
t∈V1

W+
st .

Ceci permet de conclure.
Supposons maintenant que s est dans V1. Dans ce cas, on a∑

t∈V
Wst =

∑
t∈V0

W+
st +

∑
t∈V1

W+
st +W−

st

2 +
∑
t∈V2

W+
st −W−

st

2 .

On procède de même que précédemment. Les termes en W−
st s’annulant, on trouve à

nouveau ∑
t∈V

Wst =
∑
t∈V0

W+
st +

∑
t∈V1

W+
st .

Le cas où s est dans V2 étant identique, ceci prouve le lemme.

Remarque. Dans cette thèse, nous ne considérons que le cas où l’automorphisme φ est
une involution. Cependant, on peut considérer le cas plus général où le graphe G possède
un groupe Γ d’automorphismes. Montrons que dans ce cas également, la série F des
empilements triviaux se factorise.
Considérons l’espace EV des combinaisons linéaires formelles de sommets de V . Via la
matrice d’adjacence, on peut considérer l’ensemble A des arcs comme un endomorphisme
de EV . Soit γ une permutation de V . Le fait que γ est un automorphisme de G est
équivalent au fait que les endomorphismes A et γ commutent.
Soit p l’application linéaire définie par

p = 1
|Γ|

∑
γ∈Γ

γ.

Le fait que Γ est un groupe implique que p est un projecteur (p ◦ p = p). Par conséquent,
les sous-espaces Im p et Ker p sont supplémentaires dans EV . De plus, l’endomorphisme
A commutant avec tous les γ, il commute avec p, donc les sous-espaces Im p et Ker p sont
stables par A. On a donc

F = det(1− A) = det
(
1− A Im p

)
det

(
1− A Ker p

)
= F+F−.

Pour calculer les déterminants F+ et F−, il faut décrire une base de EV compatible avec
la décomposition EV = Im p ⊕ Ker p et écrire la matrice A sur cette base. On obtient
une matrice formée de deux blocs diagonaux A+ et A−, que l’on voit comme matrices
d’adjacence de deux graphes G+ et G−. Les séries F+ et F− sont les séries alternées des
empilements triviaux de cycles sur ces graphes. Ainsi, si s et t sont des sommets, on peut
exprimer la série Wst en fonction de séries de chemins dans les graphes réduits G+ et G−.
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2.2 Chemins de Łukasiewicz

Définition 2.9. Un chemin de Łukasiewicz est une excursion discrète à pas dans un
ensemble S tel que S ⊆ {1} ∪Z−. Les pas de valeur 1 sont appelés pas montants ; les pas
de Z− sont des pas descendants.

Cette définition est légèrement différente de la notion habituelle de chemins de Łukasie-
wicz. Les pas contraints à être de hauteur 1 sont les pas montants, non les descendants ;
les excursions joignent les sommets 0 et 0, non 0 et −1. Nous utilisons néanmoins la dé-
finition ci-dessus, en particulier parce qu’elle est plus commode pour traiter les chemins
culminants.

2.2.1 Chemins généraux et empilements de segments

Soit S ensemble de pas inclus dans {1} ∪Z−. Quitte à attribuer le poids 0 à certains pas,
nous supposerons que l’ensemble des pas autorisés est S = {1} ∪ Z−. Nous notons m le
poids du pas montant 1 et ds le poids du pas descendant −s. Soit D(z) la série génératrice
des poids des pas descendants :

D(z) =
∑
s>0

dsz
s.

Les cycles élémentaires des chemins de pas dans S ont une forme particulière, due au fait
que le seul pas montant est de hauteur 1. Un cycle élémentaire est toujours composé d’un
unique pas descendant −s et de s pas montants. Un tel cycle a pour poids −msds et il
occupe s+ 1 sommets consécutifs. Par conséquent, un cycle contenant un pas descendant
de valeur −s peut être vu comme un segment de longueur s (voir section 1.5.1). Cette
correspondance est illustrée figure 2.4.

=

Figure 2.4 – Un cycle visitant 4 sommets et contenant un pas descendant de
hauteur 3 est un segment de longueur 3.

Notons que la série ∑
s>0

msdsz
s

vaut D(mz). Le résultat suivant, qui donne la série F (z) définie par (2.1), est donc une
application directe du lemme 1.31.

Théorème 2.10. La série F (z) associée à l’ensemble S est donnée par

F (z) = 1
1− z + zD(mz) .

Le théorème ci-dessus permet de calculer les polynômes Fk, donc la série Ek des excursions
de hauteur au plus k, qui vaut Fk/Fk+1. Notons que la série F (z) est rationnelle dès que
la série D(z) l’est.

La série E, comptant les excursions sans contrainte de hauteur, est donnée par le résultat
suivant.
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Proposition 2.11. La série E des excursions vérifie l’équation suivante :

E = 1 + ED(mE).

Preuve. Soit α une excursion non vide. On considère le dernier pas de α. Ce pas est
nécessairement descendant ; notons le −s. On obtient la factorisation suivante :

α = α′ (−s).

On effectue à présent une décomposition de Catalan du chemin α′ : on considère le dernier
pas montant qui finit à hauteur i, pour tout i = 1, . . . , s. On obtient la décomposition
suivante, illustrée figure 2.5 :

α = α0 1α1 1 · · · αs (−s).

Par construction, les chemins αi sont tous des excursions. On obtient donc l’équation
suivante sur la série E :

E = 1 +
∑
s>0

msEs+1ds.

La proposition s’ensuit.

Figure 2.5 – Décomposition d’une excursion de dernier pas −3. Cette décomposi-
tion implique 3 pas montants et 4 excursions.

On note à présent Ek,i la série des chemins joignant 0 à i et ne visitant que des sommets
entre 0 et k inclus.

Proposition 2.12. La série Ek,i vaut

Ek,i = miFk−i
Fk+1

.

Appelons pseudo-culminants les chemins de hauteur k joignant 0 à k. D’après la proposi-
tion ci-dessus, la série Ck = Ek,k des chemins pseudo-culminants de hauteur k vaut

Ck = mk

Fk+1
.

Preuve. On utilise la formule (2.3). Le seul chemin auto-évitant qui joint 0 à i est celui
composé de i pas montants ; son poids est mi et il visite les sommets {0, . . . , i}. On a donc

Ek,i = miF[{i+1,...,k}]

Fk+1
.

L’ensemble {i+ 1, . . . , k} comptant k − i sommets, la série F[{i+1,...,k}] vaut Fk−i.
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2.2.2 Chemins stricts

Dans cette section, nous cherchons à énumérer les chemins stricts, définis ci-dessous, qui
nous seront utiles dans le cadre de l’énumération de chemins auto-évitants et d’animaux.

Définition 2.13. Un chemin de Łukasiewicz est dit strict s’il ne contient pas deux pas
descendants consécutifs.

Nous noterons E∗ la série comptant les excursions strictes.

Proposition 2.14. La série E∗ vérifie

E∗ = 1 +D(mE∗).

Preuve. La preuve suit celle de la proposition 2.11. Soit α une excursion stricte non vide
et −s son dernier pas. L’excursion α étant stricte, ce pas ne peut être précédé d’un pas
descendant. On trouve donc la décomposition suivante :

α = α0 1α1 1 · · · αs−1 1 (−s).

Les chemins αi, pour i = 0, . . . , s− 1, sont tous des excursions strictes. On a donc

E∗ =
∑
s>0

ms(E∗)sds,

ce qui termine la preuve.

Notons maintenant E∗k,i la série des chemins stricts de hauteur au plus k joignant 0 à i.
Le résultat suivant est l’analogue du théorème 2.10 et de la proposition 2.12 permettant
de calculer les séries E∗k,i.

Théorème 2.15. La série E∗k,i est donnée par

E∗k,i = miF ∗k−i−1
F ∗k

,

où les séries F ∗k sont définies par

F ∗(z) =
∑
k>0

F ∗k z
k = 1

1− z +D(mz) . (2.6)

En particulier, on trouve la série C∗k = E∗k,k des chemins stricts pseudo-culminants :

C∗k = mk

F ∗k
.

Pour prouver ce résultat, nous utiliserons encore la bijection décrite dans la définition 2.2,
qui transforme un chemin α en un couple (β,H), où β est un chemin auto-évitant et H
est un empilement de segments.

Nous aurons besoin de comprendre plus finement la structure de l’empilement H. En
particulier, nous nous intéressons aux arcs terminaux du chemin α. Un arc i → i + s
dans le graphe Gk sera dit montant (resp. descendant) si s est un pas montant (resp.
descendant).
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Lemme 2.16. Soit α un chemin joignant 0 à i dans le graphe Gk. Les arcs terminaux de
α sont exactement les arcs descendants de α.

Preuve. Considérons la procédure décrite dans la définition 2.2. À chaque étape, nous
avons un chemin auto-évitant βi−1, qui joint 0 à un sommet j de Gk. L’unique chemin
ayant cette propriété est composé de j pas montants et visite donc tous les sommets entre
0 et j.

On en déduit que si ai est un arc montant, alors βi−1ai est encore auto-évitant, de sorte
que ai n’est pas terminal ; à l’inverse, si ai est un arc descendant, le chemin βi−1ai n’est
jamais auto-évitant. L’arc ai est donc terminal.

Lemme 2.17. Soit α un chemin de Łukasiewicz et (β,H) son image par f . Le chemin
α est strict si et seulement si H n’a pas d’adjacence à droite.

La définition d’adjacence à droite peut être trouvée dans la section 1.5.2.

Preuve. Soit a et b deux arcs descendants de α tels que les arcs a et b de Gk sont consé-
cutifs. Les lemmes 2.16 et 2.4 singifient que les arcs a et b sont consécutifs si et seulement
si les cycles correspondants γa et γb sont tels que γa couvre γb dans l’empilement H.

On utilise maintenant la correspondance décrite figure 2.4, qui permet de voir les cycles
γa et γb comme des segments. Le fait que les arcs descendants a et b sont consécutifs dans
Gk signifie que les segments γb et γa sont adjacents à droite (figure 2.6). Ainsi, le chemin
α possède deux arcs descendants consécutifs si et seulement si l’empilement H possède
deux cycles γa et γb adjacents à droite tels que γa couvre γb.

0
1
2
3
4

f

0 1 2 3 4

Figure 2.6 – À gauche, un chemin de Łukasiewicz. À droite, l’empilement de seg-
ments associé via la bijection f . Les segments correspondant aux deux pas descen-
dants consécutifs sont adjacents à droite.

Preuve du théorème 2.15. Soit α un chemin strict joignant 0 à i dans le graphe Gk et soit
(β,H) l’image de α par f (voir définition 2.2). Le seul chemin auto-évitant de 0 à i est
composé de i pas montants, et visite les sommets 0, . . . , i.

Le lemme 2.17 montre que l’empilement de segments H est sans adjacence à droite ; de
plus, ses segments minimaux sont concurrents à β. On remarque ensuite que l’ensemble des
segments concurrents à β forment un segment initial pour l’ordre < (si γa est concurrent
à β et γb < γa, alors γb est concurrent à β). Le lemme 1.33 montre donc que l’on peut
appliquer le théorème 1.16. Soit F ∗k la série des empilements quasi-triviaux de segments
inclus dans Vk et F ∗[X] la série des empilements quasi-triviaux de segments inclus dans un
ensemble de sommets X. On a

E∗k,i =
miF ∗[{i+1,...,k}]

F ∗[0,...,k]
,
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soit

E∗k,i = miF ∗k−i−1
F ∗k

.

La valeur de F ∗k est ensuite donnée par le lemme 1.34.

2.2.3 Chemins de Dyck et empilements de dimères

Les chemins de Łukasiewicz les plus simples sont ceux dont les pas sont dans S = {−1, 1}
et tels que chaque pas a pour poids t. De tels chemins sont appelés chemins de Dyck
(figure 2.7). Les cycles élémentaires des chemins de Dyck sont tous composés d’un pas
montant et d’un pas descendant, et leur poids est t2. De tels cycles peuvent se voir
comme des dimères (voir section 1.5.3). Le poids d’un dimère étant t2 plutôt que t, les
polynômes comptant les empilements triviaux sont Fk(t2), où les Fk(t) sont les polynômes
de Fibonacci (voir définition 1.37).

Figure 2.7 – Un chemin de Dyck de hauteur 4.

La proposition 2.11, quant à elle, donne l’équation suivante pour la série des excursions :

E = 1 + t2E2.

De cette équation, on tire la valeur de E :

E = 1−
√

1− 4t2
2t2 .

Les coefficients de cette série sont les nombres de Catalan, dont nous avons parlé dans
l’introduction de la thèse.

La section 1.5.3 présente une manière alternative d’obtenir les polynômes de Fibonacci,
comme comptant des empilement quasi-triviaux de segments. Nous montrons ci-dessous
une vision des chemins de Dyck analogue de ces empilements.

Considérons l’ensemble de pas S = {1} ∪ Z<0, muni des poids qs = t|s|. Un chemin de
Dyck peut être vu comme un chemin strict prenant de tels pas (donc un chemin strict de
Łukasiewicz), en groupant tous les pas descendants consécutifs en un seul pas descendant.

Nous utilisons les résultats de la section précédente pour énumérer ces chemins. Dans ce
cadre, le poids m vaut toujours t, et la série D(z) vaut

D(z) =
∑
s>1

t|−s|zs = tz

1− tz .

proposition 2.14 montre que la série E∗ des chemins de Dyck vérifie

E∗ = 1 + t2E∗

1− t2E∗ .
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On calcule également la série F ∗(z) définie dans la section 2.2.2 :

F ∗(z) = 1
1− z + t2z

1−t2z
= 1− t2z

1− z + t2z2 .

Ceci permet de calculer la série E∗k,i des chemins de hauteur au plus k joignant 0 à i, en
utilisant le théorème 2.15 :

E∗k,i = miF ∗k−i−1
F ∗k

.

Ces deux méthodes sont bien sûr équivalentes : l’équation gouvernant la série E∗ définit
également la série des nombres de Catalan. De plus, les polynômes F ∗k sont définis par
F ∗0 = 1, F ∗1 = 1 − t2 et F ∗k = F ∗k−1 − t2F ∗k−2 pour k > 1. Ainsi, ils sont identiques aux
polynômes de Fibonacci Fk(t2).

2.3 Chemins prenant un nombre fini de pas

À présent, Nous nous intéressons aux chemins dont les pas montants peuvent être su-
périeurs à 1. Nous nous restreignons aux cas où l’ensemble des pas S autorisés est fini.
Comme indiqué ci-dessus, la série F (z) est dans ce cas rationnelle (F (z) = N(z)/D(z)).
Nous développons une approche combinatoire qui nous permet d’interpréter les poly-
nômes N(z) et D(z) et de déduire de nouveaux résultats dans le cas où l’ensemble S est
symétrique, qui viennent s’ajouter à ceux de [6].

Nous faisons à nouveau la distinction entre les pas montants et descendants, en définissant
les sous-ensembles

S+ = {s : s ∈ S et s > 0};
S− = {−s : s ∈ S et s < 0}.

Nous laissons de côté l’éventuel pas 0. De plus, suivant la notation de [6], nous notons a
l’élément maximal de S+ et b l’élément maximal de S−.

2.3.1 Diagrammes de permutations

Soit π un empilement trivial de cycles, identifié à une permutation partielle via la bijection
de la figure 2.2. Ainsi que le montre la figure 2.2, ces empilements ne sont pas aussi simples
que pour les chemins de Łukasiewicz. Nous séparons les arcs de l’empilement π en trois
catégories :
– des arcs fixes i→ i, si 0 ∈ S ;
– des arcs montants, de la forme i→ i+ s+ avec s+ ∈ S+ ;
– des arcs descendants, de la forme i← i+ s− avec s− ∈ S−.
Pour représenter l’empilement π, on placera les sommets sur une droite horizontale. Les
arcs montants seront tracés au-dessus de cette droite et les arcs descendants seront tracés
au-dessous, comme sur la figure 2.2. Le fait que π est un empilement trivial de cycles élé-
mentaires entraîne que chaque sommet i appartient à l’un des six types suivants, illustrés
figure 2.8 :
– i est un sommet libre : aucune arête n’est incidente à i ;
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– i est un point fixe : un arc fixe est incident à i ;
– i est une tête de cycle : un arc montant sort de i, un arc descendant entre en i ;
– i est un sommet transitoire haut : deux arcs montants sont incidents à i, l’un entrant,
l’autre sortant ;

– i est un sommet transitoire bas : deux arcs descendants sont incidents à i, l’un entrant,
l’autre sortant ;

– i est une queue de cycle : un arc montant entre en i et un arc descendant en sort.
Enfin, nous considérerons un autre paramètre d’un empilement trivial de cycles, le nombre
de croisements stricts. Un croisement strict est constitué de deux arcs qui se coupent sur
le diagramme : soit deux arcs montants i→ j et i′ → j′, soit deux arcs descendants i← j
et i′ ← j′. Dans les deux cas, ces arcs doivent vérifier i < i′ < j < j′.

Figure 2.8 – Les six types de sommets possibles, de gauche à droite : sommet libre,
point fixe, tête de cycle, sommet transitoire haut, sommet transitoire bas, queue de
cycle.

Remarquons que le diagramme de la permutation inverse π−1 est obtenu en prenant le
symétrique du diagramme de π par rapport à l’horizontale. Cette opération préserve les
points fixes, têtes de cycle et queues de cycle.

On note fixe(π) le nombre de points fixes de π, tête(π) le nombre de têtes de cycles de π
et crois(π) le nombre de croisements stricts de π. Le résultat suivant permet de calculer
le terme (−1)cyc(π) de la formule (2.5) en fonction de ces trois paramètres.

Lemme 2.18. Toute permutation partielle π vérifie

(−1)cyc(π) = (−1)fixe(π)+tête(π)+crois(π).

Remarque. Les paramètres que nous avons introduits sont reliés à d’autres paramètres plus
classiques. Suivant les définitions de [16], nous notons exc(π) le nombre d’excédances faibles
de π (têtes de cycles, sommets transitoires hauts et points fixes dans notre terminologie)
et croi(π) son nombre de croisements (croisements stricts et sommets transitoires hauts).
Il découle des définitions que ces paramètres sont reliés par

croi(π) + tête(π) + fixe(π) = crois(π) + exc(π).

Le lemme ci-dessus se réécrit donc en

(−1)cyc(π) = (−1)exc(π)+croi(π).

Preuve. Établissons le résultat par récurrence sur crois(π). Supposons tout d’abord que
la permutation π ne possède pas de croisement strict. Les cycles de π sont alors soit des
points fixes, soit contiennent une tête de cycle, une queue de cycle, et un certain nombre
de sommets transitoires (figure 2.9). On a donc

cyc(π) = fixe(π) + tête(π),
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qui implique bien l’identité du lemme.

Supposons maintenant que π possède au moins un croisement strict. Supposons qu’il
s’agit d’un croisement haut, donc deux arcs montants a : i → j et a′ : i′ → j′ tels que
i < i′ < j < j′ (si ce n’est pas le cas, on répète le raisonnement sur la permutation
π−1). Supposons de plus que i′ est minimal, puis que i est maximal : ainsi, aucun arc
qui part à un point entre i et i′ ne croise a ou a′. Soit τ la transposition échangeant i
et i′ et considérons la permutation πτ : dans cette nouvelle permutation, les arcs a et a′
ne se croisent plus (figure 2.9). Les autres croisements sont inchangés, ce qui montre que
crois(πτ) = crois(π)− 1. De plus, multiplier par une transposition augmente ou diminue
le nombre de cycles de 1. On trouve donc bien le résultat par hypothèse de récurrence.

0 1 2 3 4

i i′ j j′ i i′ j j′

Figure 2.9 – En haut, une permutation sans croisement strict comportant deux
cycles : l’un est un point fixe, l’autre contient une seule tête de cycle. En bas,
l’opération de décroisement consistant à multiplier par la transposition (i, i′).

2.3.2 Cas général

Le résultat que nous allons montrer est le suivant, qui apparaît dans [6].

Théorème 2.19. Soit a = max(S+) et b = min(S−) et soit F (z) la série définie par (2.1).
Il existe deux polynômes D(z) et N(z), de degrés en z respectifs

(
a+b
a

)
et
(
a+b
a

)
− a− b,

tels que
F (z) = N(z)

D(z) .

Le terme dominant de D(z) est

±qa(
a+b−1

a )q−b(
a+b−1

b )z(a+b
b ).

Le terme dominant de N(z) est

±qa(
a+b−1

a )−bq−b(
a+b−1

b )−az(a+b
b )−a−b.

Comme indiqué précédemment, si E est la série comptant les excursions non bornées du
modèle S et si F (z) s’écrit comme dans le théorème, on a D(E) = 0. La série E est donc
algébrique de degré au plus

(
a+b
b

)
.
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Pour énumérer les empilements triviaux du graphe Gk−1, nous construisons un automate
fini qui construit successivement les arcs incidents à chaque sommet. Soit π un empilement
trivial de cycles et i un entier entre 0 et k. On note πi l’ensemble des arcs de π incidents
à au moins un élément de {0, . . . , i − 1} (figure 2.10). Ainsi, on a π0 = ∅ et πk = π. De
plus, notons πi le produit des poids des arcs de πi et fi(π) la quantité

fi(π) = (−1)fixe(πi)+tête(πi)+crois(πi)πi.

Le lemme 2.18 implique que
fk(π) = (−1)cyc(π)π,

ce qui, combiné avec la formule (2.5), donne

Fk =
∑
π∈Pk

fk(π). (2.7)

0 1 2 3 4 5 6 7

Figure 2.10 – Le diagramme π4 correspondant à un empilement trivial de cycles.
Il contient tous les arcs incidents à un sommet grisé. L’ensemble A4 est {4, 5} ;
l’ensemble B4 est {5, 7}.

En supposant construits le diagramme πi et la quantité fi, nous allons montrer comment
construire les éléments suivants πi+1 et fi+1. Nous notons Ai (resp. Bi) l’ensemble des
sommets supérieurs ou égaux à i qui sont points d’arrivée (resp. de départ) des arcs de πi
(figure 2.10). En particulier, aux points i = 0 et i = k, on a Ai = Bi = ∅.

Pour construire les arcs incidents au sommet i, il nous faut décider à quel type ce sommet
appartient (voir figure 2.8). Ce choix dépend des arcs de πi qui sont déjà incidents à i,
donc de si i appartient ou non à Ai et Bi. Le choix des arcs incidentes à i détermine
ensuite les ensembles Ai+1 et Bi+1. Les six cas à distinguer sont détaillés dans le tableau
de la figure 2.11.

Si le sommet i est une tête de cycle ou un sommet transitoire haut, un nouvel arc montant
de la forme i→ i+s est créé. Bien sûr, l’élément i+s ne doit pas être déjà dans l’ensemble
Ai, sans quoi π ne serait pas un empilement trivial. De même, si i est une tête de cycle ou
un sommet transitoire bas, un arc descendant de forme i← i+ s est créé, avec i+ s 6∈ Bi.

Cette remarque montre que si i est un sommet libre, fixe ou transitoire, le cardinal des en-
sembles Ai et Bi n’est pas affecté ; si i est une tête de cycle, ces deux cardinaux augmentent
d’un ; si i est une queue de cycle, les deux cardinaux diminuent d’un. Par récurrence, on
voit donc que le cardinal de Ai reste égal au cardinal de Bi. De plus, le fait que les pas
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type de i conditions Ai+1 Bi+1

libre i 6∈ Ai i 6∈ Bi Ai Bi

point fixe i 6∈ Ai i 6∈ Bi Ai Bi

tête de cycle i 6∈ Ai i 6∈ Bi Ai ∪ {i+ s+} Bi ∪ {i+ s−}
transitoire haut i ∈ Ai i 6∈ Bi Ai ∪ {i+ s} \ {i} Bi

transitoire bas i 6∈ Ai i ∈ Bi Ai Bi ∪ {i+ s} \ {i}
queue de cycle i ∈ Ai i ∈ Bi Ai \ {i} Bi \ {i}

Figure 2.11 – Un résumé des six types de sommets décrits figure 2.8. Connaissant
les ensembles Ai et Bi et le type du sommet i, on en déduit les ensembles Ai+1 et
Bi+1. Ce tableau gouverne les transitions du graphe A.

de S+ sont au plus a et les pas de S− sont au plus b implique que Ai ⊆ {i, . . . , i+ a− 1}
et Bi ⊆ {i, . . . , i+ b− 1}.

Supposons maintenant qu’un arc montant i→ i+s est créé. Un autre arc montant i′ → j′,
avec i′ < i, croise cet arc si i < j′ < i+s ; ceci implique que j′ ∈ Ai. Ajouter l’arc i→ i+s
ajoute donc un croisement pour chaque élément j de Ai tel que i < j < i+ s. De même,
ajouter un arc descendant i ← i + s ajoute un croisement pour chaque élément j de Bi

tel que i < j < i+ s.

Ainsi, il est possible de construire l’empilement trivial π et de calculer la quantité fk(π)
en ne gardant en mémoire que les ensembles Ai et Bi. On note Ãi et B̃i les ensembles
Ai − i et Bi − i, respectivement, de sorte que Ãi ⊆ {0, . . . , a− 1} et B̃i ⊆ {0, . . . , b− 1}.

Les remarques ci-dessus aboutissent à la construction d’un grapheA, dont les chemins sont
en bijection avec les empilements triviaux des graphes Gk−1. Pour éviter la confusion, nous
utilisons le langage des automates pour parler du graphe A, appelant états ses sommets
et transitions ses arcs.

Définition 2.20. On note A l’automate fini (Q, T ) défini comme suit.
– Les états de Q sont les couples (A,B), tels que A ⊆ {0, . . . , a− 1}, B ⊆ {0, . . . , b− 1}
et |A| = |B|.

– Les transitions de T appartiennent à six catégories :
– les sommets libres (A,B)→ (A− 1, B − 1), tels que 0 6∈ A et 0 6∈ B ;
– les points fixes (A,B)→ (A− 1, B − 1), tels que 0 6∈ A, 0 6∈ B et 0 ∈ S ;
– les têtes de cycle (A,B) → (A ∪ {s+} − 1, B ∪ {s−} − 1), telles que 0 6∈ A, 0 6∈ B,
s+ ∈ S+ \ A et s− ∈ S− \B ;

– les sommets transitoires hauts (A,B)→ (A ∪ {s+} \ {0} − 1, B − 1), tels que 0 ∈ A,
0 6∈ B et s+ ∈ S+ \ A ;

– les sommets transitoires bas (A,B) → (A − 1, B ∪ {s−} \ {0} − 1), tels que 0 6∈ A,
0 ∈ B et s− ∈ S− \B ;

– les queues de cycle (A,B)→ (A \ {0} − 1, B \ {0} − 1), avec 0 ∈ A et 0 ∈ B.
– Le poids d’une transition t = (A,B)→ (A′, B′) est εf0f

+f−, avec :
– ε vaut −1 si t est un point fixe ou une tête de cycle, 1 sinon ;
– si t est un point fixe, f0 vaut q0 (le poids du pas 0 de S) ; sinon, f0 vaut 1 ;
– si t est une tête de cycle ou un sommet transitoire haut, f+ vaut (−1)cqs+ où c est
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le nombre d’éléments de A différents de 0 et inférieurs à s+ ; sinon, f+ vaut 1 ;
– si t est une tête de cycle ou un sommet transitoire bas, f− vaut (−1)cqs− où c est le
nombre d’éléments de B différents de 0 et inférieurs à s− ; sinon, f− vaut 1.

On note également Q0 l’état (∅,∅) de Q.

Un exemple de la construction de l’automate A est donné figure 2.12. Le nombre d’états
de cet automate est

|Q| =
min(a,b)∑
j=0

(
a

j

)(
b

j

)
,

que nous réécrivons en

|Q| =
min(a,b)∑
j=0

(
a

j

)(
b

b− j

)
.

L’identité de Chu-Vandermonde (choisir j éléments parmi a puis b − j éléments parmi b
est équivalent à choisir b éléments parmi a+ b) donne donc

|Q| =
(
a+ b

b

)
. (2.8)

−t21

−u2

−u2

1

1

1

−tu

−tu

t

t

u

u

Figure 2.12 – L’automate A correspondant à l’ensemble S = {−2,−1, 1, 2}, muni
des poids q−1 = q1 = t et q−2 = q2 = u. Dans chaque état, la ligne du haut représente
l’ensemble A (les éléments de A sont représentés par un • et les éléments hors de A
par un ◦), tandis que la ligne du bas représente l’ensemble B. Les deux ensembles
sont inclus dans {0, 1}. En trait épais, l’unique empilement trivial de cycles passant
par tous les états de A (voir lemme 2.23). Son poids est u6.

En utilisant ce qui précède, on aboutit au résultat suivant.

Lemme 2.21. Les empilements triviaux de cycles du graphe Gk−1 sont en bijection avec
les chemins allant de Q0 à Q0 et de longueur k dans l’automate A. De plus, le poids du
chemin correspondant à l’empilement π est la quantité fk(π).

Ce lemme permet d’utiliser les résultats de la section 2.1 pour prouver le théorème 2.19.
Pour cela, nous définissons trois suites d’états de l’automate A. Nous supposerons que
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b 6 a. Posons

Pj =
(
{0, . . . , j − 1}, {0, . . . , j − 1}

)
, 0 6 j 6 b;

Qj =
(
{a− j, . . . , a− 1}, {b− j, . . . , b− 1}

)
, 0 6 j 6 b;

Rj =
(
{j, . . . , j + b− 1}, {0, . . . , b− 1}

)
, 0 6 j 6 a− b.

Les égalités P0 = Q0, Qb = Ra−b et R0 = Pb montrent que ces trois suites couvrent en
tout a+ b états (figure 2.13).

Lemme 2.22. Soit Π un empilement trivial de cycles élémentaires de l’automate A qui
ne visite pas le sommet Q0. L’empilement Π ne visite aucun des états Qj, ni aucun des
Rj, ni aucun des Pj.

Preuve. Soit (A,B) un état tel que 0 ∈ A et 0 ∈ B. Par définition, toute transition sortant
de (A,B) est une queue de cycle et mène à (A−1, B−1). En particulier, la seule transition
sortant de l’état Pj, pour j > 0, mène à Pj−1. Ceci prouve que tout cycle contenant l’un
des Pj contient P0, qui est Q0.

Soit maintenant (A,B) un état tel que a− 1 ∈ A et b− 1 ∈ B ; soit t : (A′, B′)→ (A,B)
une transition qui mène vers cet état. L’ensemble A′ est inclus dans {0, . . . , a− 1}, donc
a− 1 n’est pas dans A′− 1 ; de même, b− 1 n’est pas dans B′− 1. La seule possibilité est
donc que t est une tête de cycle, avec A′ = A \ {a − 1} + 1 et B′ = B \ {b − 1} + 1. En
particulier, la seule transition arrivant à Qj, pour j > 0, est une tête de cycle venant de
Qj−1. Ceci prouve que tout cycle contenant l’un des Qj contient Q0.

Enfin, soit (A,B) un état tel que B = {0, . . . , b− 1} mais 0 6∈ A. Toute transition partant
de (A,B) doit être un état transitoire bas. Tous les points de {1, . . . , b − 1} étant déjà
dans b, seul le pas s− = b est possible. L’état d’arrivée de cette transition est (A− 1, B).
En particulier, la seule transition partant de Rj, pour j > 0, arrive en Rj−1. Ceci prouve
que tout cycle contenant l’un des Rj contient R0, c’est-à-dire Pb ; on a déjà établi qu’un
tel cycle contient Q0.

Lemme 2.23. Il existe un unique empilement trivial de cycles Π de l’automate A visitant
tous les états. Son poids est, au signe près,

Π = ±qa(
a+b−1

a )q−b(
a+b−1

b ).

De plus, les états Pj, Qj et Rj définis ci-dessus sont les états d’un cycle élémentaire Γ0
de Π. Ce cycle est de poids

Γ0 = ±qabq−ba.

Preuve. Soit Π un empilement trivial de cycles visitant chaque état, que l’on peut donc
voir comme une permutation de l’ensemble des états. Soit M le nombre d’arcs montants
de longueur a contenus dans les transitions de Π (c’est-à-dire le nombre de têtes de cycle
et sommets transitoires hauts avec s+ = a). Soit (A,B) un état tel que a− 1 ∈ A. Toute
transition qui arrive dans un tel état doit contenir un arc montant de longueur a. Le
nombre d’états (A,B) tels que a− 1 ∈ A est

∑
j>1

(
a− 1
j − 1

)(
b

j

)
.
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−tu

−tu
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1

1

P0 = Q0

Q1 Q2 = R2

R1

R0 = P2P1

Figure 2.13 – Les états Pj , Qj et Rj pour a = 4, b = 2, q4 = t et q−2 = u. Ces
états forment un cycle élémentaire de l’automate A, de poids t2u4. De plus, tout
cycle élémentaire qui contient un quelconque de ces états contient aussi l’état Q0.

On a donc, puisque Π visite chaque état,

M >
∑
j>1

(
a− 1
j − 1

)(
b

j

)
=
∑
j>1

(
a− 1
a− j

)(
b

j

)
=
(
a+ b− 1

a

)
.

De plus, si une transition contenant un arc montant part d’un état (A,B), on doit avoir
0 6∈ B. On a donc, de la même manière

M 6
∑
j>0

(
a

j

)(
b− 1
j

)
=
∑
j>0

(
a

a− j

)(
b− 1
j

)
=
(
a+ b− 1

a

)
.

Les inégalités ci-dessus sont donc des égalités, ce qui signifie que toutes les transitions de
Π partant d’un état (A,B) tel que 0 6∈ B contiennent un arc montant de longueur a.

On répète le même raisonnement sur les arcs descendants de longueur b. Leur nombre est(
a+ b− 1

b

)
.

Les remarques précédentes déterminent entièrement les transitions partant de n’importe
quel état (A,B) :
– si 0 ∈ A et 0 ∈ B, la transition partant de (A,B) est une queue de cycle ;
– si 0 ∈ A et 0 6∈ B, la transition partant de (A,B) est un sommet transitoire haut dont
l’arc est de longueur a ;

– si 0 6∈ A et 0 ∈ B, la transition partant de (A,B) est un sommet transitoire bas dont
l’arc est de longueur b ;

– si 0 6∈ A et 0 6∈ B, la transition partant de (A,B) est une tête de cycle dont les arcs
sont de longueurs a et b.

Le nombre d’états (A,B) tels que 0 6∈ A étant
(
a+b−1
a

)
et le nombre d’états (A,B) tels

que 0 6∈ B étant
(
a+b−1
b

)
, le poids des transitions de Π est bien celui annoncé.
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Pour vérifier que le Π ainsi construit est bien un empilement trivial, on examine un état
(A,B) et on montre qu’il existe une unique transition de Π arrivant en (A,B). Pour cela,
on utilise le fait que tous les arcs montants des transitions de Π sont de longueur a, tandis
que tous les arcs descendants sont de longueur b. Ainsi, une transition arrivant en (A,B)
contient un arc montant si et seulement si a− 1 est dans A ; la même transition contient
un arc descendant si et seulement si b − 1 est dans B. Ceci détermine bien de manière
unique la transition et montre que Π est un empilement trivial.

Enfin, on vérifie aisément que le cycle

Q0 → · · · → Qb = Ra−b → · · · → R0 = Pb → · · · → P0 = Q0

est un cycle de Π ayant le poids qabq−ba. Un exemple de la permutation Π est donné
figure 2.12.

Preuve du théorème 2.19. Le lemme 2.21 montre que F (z) peut se voir comme la série
génératrice des chemins joignant Q0 à Q0 dans l’automate A. Nous calculons cette série à
l’aide de la formule (2.4). Pour tenir compte de la longueur des chemins dans l’automate
A, nous ajoutons un poids z à toutes les transitions. Soit D(z) le polynôme comptant
les empilements triviaux de cycles de A et N(z) le polynôme comptant les empilements
triviaux ne visitant pas l’état Q0.

Le lemme 2.23 montre que le degré de D(z) est égal au nombre d’états de A, soit
(
a+b
b

)
;

il fournit également le terme dominant du polynôme D(z). D’après le lemme 2.22, la série
N(z) compte des empilements triviaux de cycles de l’automate A privé de a+ b états. Le
lemme 2.23 fournit ainsi le degré et le terme dominant du polynôme N(z).

2.3.3 Ensembles de pas symétriques

Définition 2.24. Un ensemble de pas S est symétrique si −S = S et si, pour tout s de
S, les pas s et −s ont même poids.

Le résultat que nous allons montrer est le suivant.

Théorème 2.25. Supposons que l’ensemble S est symétrique et soit D(z) et N(z) les
polynômes du théorème 2.19. Ces deux polynômes ont un facteur commun :

D(z) = D+(z)X(z) ;
N(z) = N+(z)X(z),

de sorte que la série F (z) s’écrit

F (z) = N+(z)
D+(z) .

De plus, les degrés des polynômes D+(z) et N+(z) sont respectivement d et d− 2a, avec

d = 1
2

[(
2a
a

)
+ 2a

]
.
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Rappelons que, si F (z) est une fraction rationnelle, son dénominateur est un polynôme
annulateur de la série des excursions E. Bousquet-Mélou s’est également intéressée aux
ensembles de pas finis symétriques dans [6]. Son principal résultat sur le sujet est le
suivant.

Théorème 2.26. Il existe un polynôme annulateur de la série E de degré 2a.

Soit D̃(z) le polynôme annulateur de Bousquet-Mélou. On observe expérimentalement
que ce polynôme est un diviseur du polynôme D+(z) :

D+(z) = D̃(z)Y (z).

Le facteur Y (z) et le facteur X(z) du théorème 2.25 sont tous deux de degré d − 2a.
Toujours expérimentalement, on a en fait l’égalité X(z) = Y (z). Je n’ai pas trouvé d’ex-
plication à ce fait remarquable. En revanche, la fraction rationnelle N+(z)/D+(z) semble
irréductible en général : le facteur Y (z) ne divise pas N+(z).

Preuve du théorème 2.25. Pour prouver le théorème, nous considérons l’automate A in-
troduit précédemment. Soit φ l’involution sur les états de A définie par φ(A,B) = (B,A).
Puisque S est symétrique, l’automate A est, par construction, invariant sous l’action de
φ.

Soit A+ et A− les automates réduits introduits dans la définition 2.6 ; appelons D+(z) et
D−(z) les polynômes comptant les empilements triviaux de cycles dans ces graphes. Le
lemme 2.7 affirme que

D(z) = D+(z)D−(z).

De plus, l’état Q0 = (∅,∅) est invariant sous l’action de φ. Soit N+(z) la série des
empilements triviaux de cycles de A+ ne visitant pas l’état Q0. La formule (2.4) montre
que la série des chemins de Q0 à Q0 dans l’automate A+ est

N+(z)
D+(z) .

Le lemme 2.7 affirme que cette série est F (z), ce qui permet de conclure.

Le théorème 2.25 exploite le fait que si S est symétrique, l’automate A l’est aussi. Nous
présentons ci-dessous un autre résultat, exploitant cette fois le fait que le graphe Gk est
symétrique. Ce résultat part du fait suivant, constaté par Bousquet-Mélou : considérons
les polynômes de Fibonacci Fk(t2), associés à l’ensemble de pas S = {−1, 1} des chemins
de Dyck. Ces polynômes admettent, pour tout k, une factorisation :

Fk(t2) = F+
k (t)F−k (t).

De plus, soit Sk(t) la série des chemins de hauteur au plus k et finissant à une hauteur
quelconque. On peut écrire

Sk(t) =
k∑
i=0

Ek,i(t),

où Ek,i(t) est la série des chemins finissant à hauteur i. Les résultats de la section 2.1
montrent que la série Sk(t) est rationnelle, de dénominateur Fk+1(t2). En réalité, on
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constate une simplification : le dénominateur se réduit au facteur F+
k+1(t). Nous nous

proposons d’expliquer ce fait.

Montrons tout d’abord les raisons de la factorisation du polynôme Fk+1. Soit φ l’involution
agissant sur les sommets du graphe Gk définie par φ(i) = k−i. Le fait que S est symétrique
implique que Gk est invariant sous l’action de φ. Posons V = {0, . . . , k} l’ensemble des
sommets de Gk. On définit la partition suivante de V , selon la parité de k :
– si k = 2`− 1, on pose V0 = ∅, V1 = {0, . . . , `− 1} et V2 = {`, . . . , 2`− 1} ;
– si k = 2`, on pose V0 = `, V1 = {0, . . . , `− 1} et V2 = {`+ 1, . . . , 2`}.
Dans les deux cas, l’ensemble des points fixes de φ est V0 et φ(V1) = V2. Ceci permet de
définir les graphes réduits G+

k et G−k (définition 2.6). Ces graphes sont illustrés figure 2.14.
Rappelons que la série des empilements triviaux de cycles de Gk est Fk+1 ; notons F+

k+1 et
F−k+1 les séries analogues sur les graphes réduits. Le lemme 2.7 montre bien la factorisation
Fk+1 = F+

k+1F
−
k+1.

0 1 2 3 4
t

t

t

t

t

t

t

t

u

u

u

u

u

u

2 1, 3 0, 4
t

t

t

t

t

u

u

2u 1, 3 0, 4
t

t

−u

0 1 2 3 4 5
t

t

t

t

t

t

t

t

t

t

u

u

u

u

u

u

u

u

2, 3 1, 4 0, 5
t

t

t

t
t

u

uu

u

2, 3 1, 4 0, 5
t

t

t

t
−t

u

u−u

−u

Figure 2.14 – En haut, les graphes G4, G+
4 et G−4 du modèle S = {−2,−1, 1, 2}

de la figure 2.12. Le graphe réduit G+
4 est identique à G2 auquel on a ajouté deux

arcs (en trait épais). Le graphe réduit G−4 est identique à G1 auquel on a ajouté un
arc (en trait épais). En bas, les graphes G5, G+

5 et G−5 du même modèle. Les deux
graphes réduits sont identiques au graphe G2 auquel on a ajouté trois arcs.
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Nous pouvons dès à présent expliquer le fait que, pour les chemins de pas dans {−1, 1},
le dénominateur de la série Sk(t) est F+

k+1(t) : notons E+
k,i la série des chemins joignant

les sommets {0, k} à {i, k − i} dans le graphe G+. Le lemme 2.8 montre que

Sk(t) =
k/2∑
i=0

E+
k,i.

On conclut en remarquant que toutes les séries E+
k,i ont pour dénominateur F+

k+1(t) d’après
la formule (2.3).

Nous énonçons maintenant un résultat valable pour tous les ensembles de pas symétriques.
Rappelons que Ek et Ck désignent respectivement la série génératrice des excursions et
des chemins pseudo-culminants dans le graphe Gk.

Théorème 2.27. Les séries Ek et Ck valent

Ek = 1
2

 F+
k

F+
k+1

+ F−k
F−k+1

 ;

Ck = 1
2

 F+
k

F+
k+1
− F−k
F−k+1

.
De plus, les quatre séries génératrices

F+
p (z) =

∑
`>0

F+
2`z

`,

F−p (z) =
∑
`>0

F−2`z
`,

F+
i (z) =

∑
`>0

F+
2`−1z

`,

F+
i (z) =

∑
`>0

F−2`−1z
`

sont rationnelles de dénominateur D+(z).

Pour prouver le théorème, nous commençons par établir le lemme suivant.

Lemme 2.28. Soit H un graphe dont l’ensemble des sommets est {0, . . . , j − 1}. Pour
k > j, soit Gk−1 + H le graphe de sommets {0, . . . , k − 1} et dont les arcs sont ceux de
Gk−1 et ceux de H (si k < j, on ne garde que les arcs joignant des sommets de Gk−1).

Soit FH
k la série des empilements triviaux de cycles de Gk−1 + H, avec la convention

FH
0 = 1. Soit FH(z) la série

FH(z) =
∑
k>0

FH
k z

k.

La série FH(z) est rationnelle de dénominateur D+(z).

Preuve. La contribution de la série FH
k pour k < j étant un polynôme, on peut se res-

treindre à étudier les graphes Gk−1 + H pour k > j. Dans ce cas, soit π un empilement
trivial de cycles de Gk−1 +H. On rappelle qu’on note πj l’ensemble des arcs de π incidents
à au moins un sommet de {0, . . . , j − 1}.



66 Chapitre 2. Excursions discrètes

Fixons ψ un ensemble d’arcs tel qu’il existe un empilement trivial π avec πj = ψ. Soit
Qψ = (Ãj, B̃j) l’état de l’automate A correspondant au diagramme ψ. L’ensemble des
empilements triviaux π de Gk tels que πj = ψ est en bijection avec les chemins de longueur
k − j joignant l’état Qψ vers Q0 dans l’automate A.

Le nombre d’arcs incidents aux sommets 0, . . . , j− 1 étant fini, le nombre de diagrammes
possibles ψ est fini. Notons Wψ(z) la série des chemins joignant les états Qψ et Q0 dans
l’automate A. On a∑

k>j

FH
k (z)zk =

∑
ψ

(−1)fixe(ψ)+tête(ψ)+crois(ψ)|ψ|zjWψ(z).

Le lemme 2.7 permet d’exprimer la série Wψ(z) en fonction de la série W+
ψ (z) comptant

des chemins dans l’automate réduit A+ :∑
k>j

FH
k (z)zk =

∑
ψ

(−1)fixe(ψ)+tête(ψ)+crois(ψ)|ψ|zjW+
ψ (z).

D’après la formule (2.3), la sérieW+
ψ est rationnelle de dénominateurD+(z), ce qui termine

la preuve.

Preuve du théorème 2.27. Tout d’abord, notons que les graphes G+
k et G−k privés du som-

met {0, k} sont G+
k−1 et G−k−1, respectivement. Les séries des empilements triviaux de

cycles de G+
k et G−k étant respectivement F+

k+1 et F−k+1, la formule (2.4) donne

W+
00 = F+

k

F+
k+1

;

W−
00 = F−k

F−k+1
.

Le sommet 0 étant dans V1 et le sommet k dans V2, le lemme 2.7 donne les expressions
de Ek et Ck.

L’ensemble S étant fini, le nombre d’arcs de Gk joignant V1 à V2 est indépendant de k si
k est assez grand. Il existe donc quatre graphes H+

p , H−p , H+
i et H−i tels que, en utilisant

la notation du lemme 2.28 :

G+
2` = G` +H+

p ;
G−2` = G`−1 +H−p ;

G+
2`−1 = G`−1 +H+

i ;
G−2`−1 = G`−1 +H−i .

Ces graphes sont illustrés figure 2.14. Le lemme 2.28 permet de conclure.



Chapitre 3

Chemins faiblement dirigés

Le but de ce chapitre est l’étude de familles de chemins auto-évitants du réseau carré,
appelées chemins faiblement dirigés. Avec une constante de croissance d’environ 2,54, ces
chemins sont plus nombreux que les chemins prudents, jusqu’alors la sous-famille naturelle
la plus nombreuse que l’on sache énumérer [19, 7] avec une constante d’environ 2,48.

Parmi les familles de chemins auto-évitants les plus simples, on compte les chemins diri-
gés et partiellement dirigés, qui seront en quelque sorte les briques de base des chemins
faiblement dirigés. Un chemin auto-évitant est dirigé s’il ne contient que deux types de
pas, par exemple Nord et Est ; il est partiellement dirigé s’il ne contient que trois types
de pas (figure 3.1). Ces chemins sont très faciles à énumérer car ils sont automatiquement
auto-évitants dès qu’ils ne font pas de demi-tour direct. Il est facile de voir que la série
génératrice T (t) des chemins ne partiellement dirigés ne contenant que trois types donnés
de pas est

T (t) = 1 + t

1− 2t− t2 . (3.1)

Une autre notion classique que nous utilisons est celle de pont. Appelons hauteur du
sommet v, et notons h(v), son ordonnée. Un pont est un chemin joignant les sommets
v0 et vf tel que tout sommet v 6= vf vérifie h(v0) 6 h(v) < h(vf ). Un pont non vide est
irréductible s’il ne peut pas s’écrire αβ où α et β sont des ponts non vides. Un pont est
montré figure 3.1.

Figure 3.1 – À gauche, un chemin partiellement dirigé ne contenant que des pas
Nord, Est et Ouest. À droite, un pont factorisé en deux ponts irréductibles.

Par construction, si α et β sont deux ponts, le chemin αβ est encore un pont ; inversement,
tout pont admet une unique décomposition en ponts irréductibles [42, section 4.2]. Nous
donnons une généralisation de cette factorisation aux chemins généraux et l’utilisons pour
caractériser les chemins faiblement dirigés.



68 Chapitre 3. Chemins faiblement dirigés

Le chapitre est organisé comme suit. La section 3.1 définit les chemins faiblement dirigés
et en donne une caractérisation en termes de facteurs irréductibles. Nous définissons éga-
lement une variante diagonale du modèle. Nous énumérons les chemins faiblement dirigés
dans la section 3.2. La section 3.3 donne la nature des séries génératrices et le compor-
tement asymptotique du nombre de chemins faiblement dirigés, ainsi qu’un algorithme
de génération aléatoire uniforme de ponts faiblement dirigés. Enfin, nous proposons une
nouvelle famille encore plus nombreuse de chemins dans la section 3.4.

3.1 Définitions

Dans tout le chapitre, nous considérerons les chemins comme des mots sur l’alphabet
{N, S,E,O}. De plus, nous appellerons, par exemple, chemin NSE un chemin auto-évitant
composé uniquement de pas N, S et E. Nous faisons de même pour tous les sous-ensembles
de {N, S,E,O}.

3.1.1 Chemins faiblement dirigés

Le point de départ de la définition des chemins faiblement dirigés est le suivant : les
chemins NEO et SEO sont caractérisés par le fait que le facteur entre deux points quel-
conques de même hauteur n’est composé que d’un seul type de pas (E ou O). Les chemins
faiblement dirigés sont, de ce point de vue, une généralisation naturelle des chemins par-
tiellement dirigés.

Définition 3.1. Un chemin est dit faiblement dirigé si le facteur situé entre deux points
quelconques de même hauteur est partiellement dirigé.

En réalité, un chemin joignant deux points à la même hauteur doit contenir autant de
pas Nord que de pas Sud. En conséquence, le facteur situé entre deux points de même
hauteur d’un chemin faiblement dirigé est soit un chemin NSE, soit un chemin NSO.

3.1.2 Décomposition en facteurs irréductibles

La définition ci-dessus, bien que très simple et naturelle, n’est pas commode du point de
vue de l’énumération, pour laquelle on préfère une présentation sous forme de décompo-
sition en parties plus simples. Nous donnons maintenant une caractérisation des chemins
faiblement dirigés faisant intervenir les ponts irréductibles définis plus haut. Un chemin
faiblement dirigé n’étant pas nécessairement un pont, il nous faut tout d’abord définir
une factorisation des chemins généraux en facteurs irréductibles.

Définition 3.2. Soit un chemin joignant les sommets v0 et vf . Ce chemin est dit positif
si tous ses sommets v vérifient h(v) > h(v0). Il est dit copositif si tous ses sommets v 6= vf
vérifient h(v) < h(vf ).

Dans la suite, si α est un chemin, on note α̃ le chemin réciproque de α. Ce chemin est
obtenu en lisant α à l’envers et en remplaçant les pas N par des S, les E par des O et
vice-versa. Géométriquement, prendre le chemin réciproque est équivalent à parcourir le
chemin à l’envers.
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Définition 3.3. Soit α un chemin non vide. Le chemin α est dit réductible s’il peut s’écrire
sous la forme βγ, où β est copositif non vide et γ est positif non vide. Il est dit coréductible
si α̃ est réductible. Enfin, il est dit irréductible s’il n’est ni réductible ni coréductible.

Lemme 3.4. Soit α un chemin. Une et une seule des conditions suivantes est vérifiée :
1. α est vide ;
2. α est irréductible ;
3. α possède une unique factorisation de la forme βδ1 · · · δnγ, où β est un chemin

copositif irréductible, γ est un chemin positif irréductible, et les δi sont des ponts
irréductibles ;

4. α̃ possède une unique factorisation de la même forme que celle de la condition 3.

Pour prouver ce lemme, nous donnons une caractérisation plus simple des chemins réduc-
tibles. On appelle séparateur d’un chemin un pas N partant de la hauteur j et qui est
seul dans sa ligne (c’est-à-dire qu’il est le seul à croiser la droite de hauteur j + 1/2). Un
séparateur est terminal s’il est le dernier pas du chemin.

Lemme 3.5. Un chemin est réductible si et seulement si il contient un séparateur non
terminal.

Preuve. Soit α un chemin. Si α s’écrit βγ où β est copositif non vide et γ positif non vide,
alors le dernier pas de β est un séparateur non terminal. Réciproquement, si α possède
un séparateur non terminal, alors on construit la factorisation βγ en coupant après ce
séparateur.

Preuve du lemme 3.4. Supposons que le chemin α est non vide et joint les sommets v0 et
vf . On remarque tout d’abord que si α est réductible, on a h(v0) < h(vf ) ; de même, si α
est coréductible, on a h(v0) > h(vf ). Le chemin α ne peut donc être à la fois réductible
et coréductible.

Supposons maintenant que α est réductible. On forme la factorisation α = βδ1 · · · δnγ
en coupant après chaque séparateur. Aucun des facteurs ne contenant de séparateur non
terminal, chaque facteur est irréductible ; inversement, toute factorisation de ce type qui
ne coupe pas après un séparateur contient un facteur réductible, ce qui prouve l’unicité.

Si α est coréductible, on répète le même raisonnement sur le chemin α̃.

Le chemin α s’il est irréductible, et les chemins β, γ, et δi sinon sont appelés les facteurs
irréductibles du chemin α.

Proposition 3.6. Un chemin est faiblement dirigé si et seulement si tous ses facteurs
irréductibles sont partiellement dirigés.

La proposition est illustrée figure 3.2.

Preuve. Puisque les facteurs irréductibles d’un chemin vivent dans des bandes horizontales
disjointes, le facteur situé entre deux points de même hauteur est inclus dans un seul
facteur irréductible. Il est donc partiellement dirigé dès que tous les facteurs irréductibles
le sont.
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Figure 3.2 – Les deux caractérisations des chemins faiblement dirigés. À gauche, le
facteur situé entre deux visites à la même hauteur est soit un chemin NSE, soit un
chemin NSO. À droite, les quatre facteurs irréductibles sont soit des chemins NSE,
soit des chemins NSO.

Réciproquement, considérons un chemin faiblement dirigé irréductible α. Nous montrons
par l’absurde que ce chemin est soit un chemin NSE, soit un chemin NSO. Supposons qu’il
contienne à la fois un pas E et un pas O. Dans ce cas, il contient un pas E et un pas O
séparés uniquement par des pas N et S ; le chemin étant auto-évitant, ces pas sont en fait
soit tous N, soit tous S. Par symétrie, supposons que le chemin α s’écrit

α = βENjOγ.

Soit B l’intervalle des hauteurs visitées par le chemin β et C l’intervalle des hauteurs
visitées par γ. Si B et C sont disjoints, le chemin α est réductible, car l’un des pas N de la
factorisation ci-dessus est séparateur. S’ils visitent chacun un point à une même hauteur
h, le facteur situé entre ces deux points contient des pas E, O et N, et donc aussi des pas
S, donc n’est pas partiellement dirigé. C’est une contradiction.

3.1.3 Modèle diagonal

Nous introduisons également des chemins faiblement dirigés dans un modèle diagonal.
Ce modèle repose sur une définition différente de hauteur : la hauteur d’un sommet est
maintenant la somme de ses coordonnées. La définition des chemins faiblement dirigés est
ensuite identique au modèle horizontal : un chemin est faiblement dirigé si le facteur situé
entre deux points de même hauteur est partiellement dirigé. Pour éviter l’ambiguïté, nous
appellerons modèle horizontal le modèle décrit ci-dessus où la hauteur d’un sommet est
son ordonnée.

La nouvelle notion de hauteur permet également de définir des ponts. Le lemme 3.4 reste
vrai, avec une preuve identique (les pas N et E pouvant tenir lieu de séparateur). De la
même manière, tout chemin dont les facteurs irréductibles sont partiellement dirigés est
faiblement dirigé. La réciproque, en revanche, n’est pas vraie, comme le montre le chemin
de la figure 3.3.
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Figure 3.3 – Un chemin faiblement dirigé du modèle diagonal, découpé en cinq
facteurs irréductibles. À noter que le troisième facteur n’est pas partiellement dirigé.

3.2 Énumération

3.2.1 Ponts partiellement dirigés

La proposition 3.6 montre que les chemins faiblement dirigés sont essentiellement des
suites de facteurs partiellement dirigés irréductibles ; de plus, tous ces facteurs sauf le
premier et le dernier sont des ponts. En conséquence, pour énumérer ces chemins, nous
commençons par énumérer les ponts partiellement dirigés. Il est en fait plus agréable
d’étudier les pseudo-ponts, ou chemins joignant v0 à vf tels que tout sommet v vérifie
h(v0) 6 h(v) 6 h(vf ) (figure 3.4).

Figure 3.4 – À gauche, un pseudo-pont NSE du modèle horizontal. Au milieu, un
pseudo-pont NSO du modèle diagonal. À droite, un pseudo-pont NSE du modèle
diagonal.

Prenons l’exemple des ponts NSE dans le modèle horizontal. Attribuons la hauteur 1 au
pas N, la hauteur −1 au pas S et la hauteur 0 au pas E. Un pseudo-pont NSE est alors,
dans la terminologie du chapitre 2, un chemin pseudo-culminant. Cependant, la famille
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des chemins NSE ne rentre pas directement dans le cadre de ce chapitre à cause de la
condition d’auto-évitance, qui interdit les motifs NS et SN.

Pour contourner cette difficulté, nous donnons une autre manière de voir les chemins NSE.
Nous dirons qu’un chemin NSE est propre s’il ne commence ni ne finit par un pas S. Cette
restriction n’a pas d’importance, car tous les pseudo-ponts sont des chemins propres. Si
α est un chemin NSE (donc auto-évitant) propre, nous appelons facteur descendant tout
facteur situé strictement entre deux pas N consécutifs. On obtient ainsi une factorisation
du chemin α en pas N et en facteurs descendants. Le chemin α étant auto-évitant et
propre, tous les facteurs descendants sont des chemins SE propres. Le langage D des
facteurs descendants possibles est reconnu par l’expression régulière non ambiguë

D = 1 + E + E(E + S)∗E. (3.2)

De plus, par construction, la factorisation ne contient pas deux facteurs descendants
consécutifs.

Nous pouvons maintenant compter les ponts partiellement dirigés du modèle horizontal.
Nous avons montré que les facteurs irréductibles d’un chemin faiblement dirigé sont né-
cessairement des chemins NSE ou des chemins NSO. Par symétrie, nous nous contentons
donc d’étudier les chemins NSE.

Proposition 3.7. Soit k > 0. La série génératrice des pseudo-ponts NSE de hauteur k
dans le modèle horizontal est

B̂k(t) = tk

Gk(t)
,

où les Gk(t) sont les polynômes définis par

G0(t) = 1− t, G1(t) = 1− 2t+ t2 − t4,
Gk(t) = (1− t+ t2 + t3)Gk−1(t)− t2Gk−2(t) pour k > 2.

La série génératrice des ponts NSE vaut, quant à elle,

B(t) = 1 + t
∑
k>0

B̂k(t).

Preuve. Comme indiqué précédemment, nous factorisons les pseudo-ponts en isolant les
pas N. Le facteur N a pour hauteur 1 dans le modèle horizontal, tandis qu’un facteur des-
cendant β a pour hauteur −|β|S, où |β|S est le nombre de pas S dans le chemin β. Ceci fait
de l’ensemble de pas {N}∪D un modèle de chemins de Łukasiewicz ; deux facteurs descen-
dants ne pouvant être consécutifs, les pseudo-ponts sont les chemins pseudo-culminants
stricts de ce modèle.

Soit D(t, z) la série génératrice des facteurs descendants, où t compte le nombre de pas
et z la hauteur. L’expression régulière non ambiguë (3.2) se traduit en

D(t, z) = t+ t2

1− t− tz .

Le théorème 2.15 donne donc
B̂k(t) = tk

Gk(t)
,
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où les polynômes Gk sont définis par

∑
k>0

Gk(t)zk = 1
1− z +D(t, tz) = 1− t− t2z

1− (1− t+ t2 + t3)z + t2z2 .

On en déduit la formule de récurrence des polynômes Gk(t). Enfin, un pont NSE est soit
vide, soit un pseudo-pont NSE suivi d’un pas N. On en déduit la formule donnant B(t).

Nous étudions maintenant le modèle diagonal. Dans ce modèle, il nous faut étudier quatre
types de ponts : les ponts NSO, les ponts NSE, les ponts NEO (équivalents, via la symétrie
par rapport à l’axe NE, aux ponts NSE) et les ponts SEO (équivalents aux ponts NSO.

Proposition 3.8. Soit k > 0. La série génératrice des pseudo-ponts NSO de hauteur k
dans le modèle diagonal est

B̂1
k = tk

Gk(t)
,

où les polynômes Gk(t) sont définis par

G0(t) = 1, G1(t) = 1− t2,
Gk(t) = (1 + t2)Gk−1(t)− t2(2− t2)Gk−2(t) pour k > 2.

La série des ponts NSO vaut

B1(t) = 1 + t
∑
k>0

B̂1
k(t).

Preuve. Le cas des pseudo-ponts NSO est traité de la même manière que pour le modèle
horizontal : les facteurs descendants sont les facteurs situés entre deux pas N consécutifs.
La différence est que les pas O ont pour hauteur −1 dans le modèle diagonal, ce qui signifie
qu’un facteur descendant β a pour hauteur −|β|. On obtient donc la série génératrice
D(t, z) des facteurs descendants

D(t, z) = tz + t2z2

1− 2tz .

Les polynômes Gk(t) sont cette fois définis par

∑
k>0

Gk(t)zk = 1− 2t2z
1− (1 + t2)z + t2(2− t2)z2 ,

ce qui donne bien la formule de récurrence de la proposition. De plus, un pont NSO est
soit vide, soit un pseudo-pont suivi d’un pas N.

Proposition 3.9. Soit k > 0. La série génératrice des pseudo-ponts NSE de hauteur k
dans le modèle diagonal vaut

B̂2
k = (2− t2)kB̂1

k(t),

où la série B̂1
k(t) est donnée par la proposition 3.8. De plus, la série des ponts NSE vaut

B2(t) = 1 + 2t
∑
k>0

B̂2
k(t).
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Le cas des chemins NSE est plus compliqué, car le pas E a pour hauteur 1 dans le modèle
diagonal. Les facteurs de D n’ont donc plus nécessairement une hauteur négative, ce qui
nous fait sortir du cadre des chemins de Łukasiewicz. Nous utilisons donc une méthode
différente pour nous ramener au cas des chemins NSO.

Nous notons E2
k(t) la série des excursions NSE de hauteur au plus k (une excursion est un

chemin positif terminant à hauteur 0). Nous notons également E∗k(t) la série des excursions
NSO de hauteur au plus k ne finissant pas par S.

Lemme 3.10. Les séries E2
k(t) et E∗k(t) sont liées par

1 + E2
k(t) = (2− t2)E∗k(t).

Preuve. Soit α une excursion NSO de hauteur au plus k qui finit par NO ; écrivons α =
βNO. Le chemin β est alors une excursion qui ne termine pas par S, ce qui montre que
l’excursion α est comptée par t2E∗k(t).

On remarque ensuite que la série E2
k(t) compte également les excursions NSO : en effet, les

excursions NSE sont exactement les chemins réciproques des excursions NSO. Le passage
au chemin réciproque ne change ni la longueur, ni la hauteur.

Soit donc α une excursion NSO quelconque de hauteur au plus k. On distingue deux cas :
– soit α ne finit pas par S : de telles excursions sont comptées par E∗k(t) ;
– soit α s’écrit βS ; le chemin β ne finit donc pas par N. Soit α′ = βO : le chemin α′ est
une excursion finissant par O mais pas par NO. La remarque précédente montre que
ces excursions sont comptées par E∗k(t)− 1− t2E∗k(t).

Ajouter ces deux contributions permet d’établir le lemme.

Preuve de la proposition 3.9. Soit k > 1 et soit α un pseudo-pont NSO de hauteur k. On
coupe α au dernier passage à hauteur 0. On trouve α = βNγ, où γ est un pseudo-pont de
hauteur k − 1 et β est une excursion de hauteur au plus k qui ne termine pas par S. On
a donc

B1
k(t) = tE∗k(t)B1

k−1(t).

Soit maintenant α un pseudo-pont NSE de hauteur k. On coupe α un pas après le dernier
passage à la hauteur 0, ce qui donne α = βγ, où γ est un pseudo-pont de hauteur k − 1
et β est soit N, soit une excursion de hauteur au plus k suivie d’un pas E (figure 3.5). On
en déduit

B2
k(t) =

(
t+ tE2

k(t)
)
B2
k−1(t).

Le lemme 3.10 permet de conclure.

Pour finir, un pont NSE est soit vide, soit un pseudo-pont suivi d’un pas N ou E. On en
déduit la formule donnant B2(t).

Pour finir, nous énumérons également les ponts NO pour résoudre certaines ambiguïtés.

Proposition 3.11. Soit k > 0. La série génératrice des pseudo-ponts NO de hauteur k
dans le modèle diagonal est

B̂0
k = tk

Fk(t2) ,
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Figure 3.5 – À gauche, la factorisation des pseudo-ponts NSO. Au milieu et à
droite, la factorisation des pseudo-ponts NSE : le premier facteur est soit un pas N
(milieu), soit une excursion suivie d’un pas E (droite).

où les Fk(t2) sont les polynômes de Fibonacci évalués en t2 (voir définition 1.37). De plus,
la série des ponts NO est

B0(t) = 1 + t
∑
k>0

B̂0
k(t).

Preuve. Le pas N ayant pour hauteur 1 et le pas O pour hauteur −1, les pseudo-ponts NO
sont identiques à des chemins de Dyck pseudo-culminants. La proposition découle donc
des résultats de la section 2.2.3. Le résultat apparaît par ailleurs tel quel dans [9].

3.2.2 Ponts faiblement dirigés

Grâce aux ponts partiellement dirigés énumérés dans la section précédente, nous pouvons
maintenant énumérer les ponts faiblement dirigés du modèle horizontal. Pour le modèle
diagonal, nous nous contentons d’énumérer les ponts composés de ponts irréductibles
partiellement dirigés ; nous avons vu que tous ces ponts sont faiblement dirigés.

Proposition 3.12. Dans le modèle horizontal, la série des ponts faiblement dirigés est
donnée par

W (t) = 1
1 + t− 2

(
1−B(t)−1

) ,
où B(t) est la série des ponts NSE donnée par la proposition 3.7.

Preuve. On utilise le fait que tout pont s’écrit de manière unique comme suite de ponts
irréductibles. Si I(t) est la série des ponts NSE irréductibles, on a

B(t) = 1
1− I(t) .

Un pont faiblement dirigé irréductible est, d’après la proposition 3.6, un pont irréductible
NSE ou NSO. Le seul pont irréductible qui soit à la fois NSE et NSO est N. On a donc

W (t) = 1
1−

(
2I(t)− t

) .
On en déduit la formule annoncée.
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Proposition 3.13. Dans le modèle diagonal, la série des ponts composés de ponts irré-
ductibles partiellement dirigés est donnée par

W d(t) = 1
1 + 2t+ 2

(
1−B0(t)−1

)
− 2

(
1−B1(t)−1

)
− 2

(
1−B2(t)−1

) ,
où les séries B0(t), B1(t) et B2(t) sont données par les propositions 3.11, 3.8 et 3.9
respectivement.

Preuve. Soit I0(t) et I1(t) et I2(t) les séries des ponts irréductibles NO, NSO et NSE
respectivement. Un pont s’écrivant de manière unique comme une suite de ponts irréduc-
tibles, on a, pour n ∈ {0, 1, 2},

Bn(t) = 1
1− In(t) .

Notons INSO l’ensemble des ponts irréductibles NSO ; on utilise une notation similaire pour
les autres ensembles de pas. Soit aussi I l’ensemble des ponts irréductibles partiellement
dirigés ; on a

I = INSO ∪ INSE ∪ ISEO ∪ INEO.

De plus, on a

INSO ∩ INSE = {N}, INSO ∩ ISEO = ∅, INSO ∩ INEO = INO,

INSE ∩ ISEO = ISE, INSE ∩ INEO = {N,E}, ISEO ∩ INEO = {E}.

Les ensembles INO et ISE sont comptés par I0(t), les ensembles INSO et ISEO sont comptés
par I1(t), et les ensembles INSE et INEO sont comptés par I2(t). Un argument d’inclusion-
exclusion élémentaire donne donc la série Id(t) des ponts partiellement dirigés

Id(t) = 2I1(t) + 2I2(t)− 2I0(t)− 2t.

On en déduit la formule pour W d(t).

3.2.3 Chemins faiblement dirigés généraux

Nous énumérons maintenant les chemins faiblement dirigés qui ne sont pas nécessairement
des ponts. Par souci de simplicité, nous nous limitons au modèle horizontal.

Lemme 3.14. Soit P (t) la série des chemins NSE positifs et Q(t) celle des chemins NSE
copositifs. Ces deux séries sont données par

P (t) = 1
2t2

√ 1− t4
1− 2t− t2 − 1− t

 ;

Q(t) = 1 + tP (t).

Preuve. Pour prouver ce résultat, nous utilisons une factorisation standard des chemins
positifs. Nous appelons excursion NSE un chemin NSE qui commence et finit à hauteur 0
et dont tous les points ont une hauteur positive. Soit α un chemin NSE positif. Si α n’est
pas une excursion, nous coupons α après son dernier passage à hauteur 0. Nous obtenons
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α = βNγ, où γ est un chemin positif et β est une excursion ne terminant pas par S,
autrement dit, une excursion propre dans notre terminologie. Notons E(t) la série des
excursions NSE propres et E(t) la série des excursions générales. On trouve

P (t) = E(t) + tE(t)P (t).

Pour calculer la série E(t), nous voyons les excursions NSE propres comme des chemins
stricts de Łukasiewicz en utilisant la factorisation évoquéee précédemment. Nous utilisons
la proposition 2.14, qui donne l’équation

E(t) = 1 +D
(
t, tE(t)

)
,

où D(t, z) est la série génératrice des facteurs descendants, qui vaut

D(t, z) = t+ t2

1− t− tz .

On en déduit

E(t) =
1− t+ t2 + t3 −

√
(1− t4)(1− 2t− t2)

2t2 .

Pour calculer E(t), on remarque qu’une excursion propre non vide est une excursion suivie
d’un pas E, ce qui donne E(t) = 1 + tE(t). On en déduit la valeur de P (t). Pour calculer
Q(t), on remarque qu’un chemin copositif non vide est obtenu comme l’image miroir en
tant que mot d’un chemin positif suivie d’un pas N final.

Théorème 3.15. La série des chemins faiblement dirigés du modèle horizontal vaut

W (t) = 1 +
(
2IT (t)− 2t

)
+ 2

(
2IQ(t)− t

)
W (t)

(
2IP (t)− t),

où les séries IT (t), IP (t) et IQ(t) comptent les chemins NSE irréductibles généraux, positifs
et copositifs, respectivement, et sont données par

IT (t) = T (t)− 1− 2IQ(t)B(t)IP (t), IP (t) = P (t)− 1
B(t) , IQ(t) = Q(t)− 1

B(t) ,

où la série T (t) est donnée par (3.1), la série B(t) par la proposition 3.7 et les séries P (t)
et Q(t) par le lemme 3.14.

Preuve. Notons IT (t), IP (t) et IQ(t) les séries génératrices des chemins NSE irréductibles
généraux, positifs et copositifs respectivement. En décomposant les chemins NSE en fac-
teurs irréductibles selon les quatre cas du lemme 3.4 et en remarquant qu’une suite de
ponts irréductibles est un pont, on trouve

T (t) = 1 + IT (t) + IQ(t)B(t)IP (t) + IQ(t)B(t)IP (t).

De plus, un chemin non vide est positif si et seulement si son premier facteur l’est ; un
chemin est copositif si et seulement si son dernier facteur l’est. On en déduit

P (t) = 1 +B(t)IP (t);
Q(t) = 1 + IQ(t)B(t).

Ceci donne les valeurs des séries IT (t), IP (t) et IQ(t).
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Pour énumérer les chemins faiblement dirigés, on utilise le fait qu’un chemin est faible-
ment dirigé si et seulement si ses facteurs irréductibles sont des chemins NSE ou NSO
(proposition 3.6). Les chemins NSO irréductibles sont comptés par les mêmes séries que
les chemins NSE, par symétrie ; on remarque de plus que les seuls chemins irréductibles
qui soient à la fois NSE et NSO sont N et S ; de plus, N est positif et copositif. Les séries
des chemins irréductibles partiellement dirigés généraux, positifs et copositifs sont donc
respectivement 2IT (t) − 2t, 2IP (t) − t et 2IQ(t) − t. On en déduit la forme de la série
W (t).

3.3 Applications

3.3.1 Asymptotique

Dans cette section et la suivante, nous étudions des propriétés analytiques des séries calcu-
lées précédemment. Nous utilisons pour cela des résultats classiques d’analyse complexe.
Nous commençons par remarquer que la série T (t), comptant les chemins partiellement
dirigés et donnée par (3.1), a pour rayon de convergence

√
2− 1. En d’autres termes, cette

série est convergente dans le disque

D =
{
z ∈ C : |z| <

√
2− 1

}
.

A fortiori, toutes les séries génératrices comptant des chemins partiellement dirigés sont
également convergentes dans le disque D.

Théorème 3.16. Soit Wn le nombre de ponts faiblement dirigés de longueur n du modèle
horizontal. On a, quand n tend vers l’infini,

Wn ∼ κµn,

avec µ ' 2,5447.

Soit Fn le nombre de facteurs irréductibles d’un pont faiblement dirigé. L’espérance et la
variance de Fn vérifient

E(Fn) ∼ mn, V(Fn) ∼ s2n,

où m ' 0,318 et s2 ' 0,7. La variable aléatoire Fn−mn
s
√
n

converge en probabilité vers une loi
normale.

Ces résultats restent vrais pour les chemins faiblement dirigés généraux.

De ce résultat, on déduit que la distance moyenne entre les extrémités d’un chemin fai-
blement dirigé de longueur n croît linéairement, car cette distance est minorée par E(Fn).

Preuve. La proposition 3.12 donne la série W (t) en fonction de la série B(t) des ponts
NSE. Cette série comptant des chemins partiellement dirigés, elle est convergente dans le
disque D défini ci-dessus, et W (t) est méromorphe dans D.

Soit I(t) la série 2(1 − B(t)−1) − t des ponts partiellement dirigés irréductibles. Dans le
disque D, la sérieW (t) possède un pôle à chaque valeur de t telle que I(t) = 1. Supposons
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qu’un tel pôle existe. La série I(t) étant apériodique et à coefficients positifs, il existe
un unique pôle dominant, qui est de plus réel positif et simple. Pour prouver l’existence
de ce pôle, nous utilisons des bornes supérieures et inférieures de la série I(t). Soit In et
Tn le nombre de ponts partiellement dirigés irréductibles et de chemins NSE généraux,
respectivement. On a 0 6 In 6 2Tn, ce qui montre que∑

m6n

Imt
m = I−(t) 6 I(t) 6 I+(t) =

∑
m6n

Imt
m +

∑
m>n

2Tmtm.

Notant I6n(t) et T6n(t) les sommes partielles jusqu’à l’ordre n des séries I(t) et T (t), on
peut calculer les séries I−(t) et I+(t) de la façon suivante :

I−(t) = I6n(t), I+(t) = T (t)−
(
2T6n(t)− I6n(t)

)
.

En utilisant ces bornes, nous montrons l’existence d’un pôle dominant, que nous notons
ρ. Prendre n = 300 fournit 5 décimales exactes. Ceci prouve que ρ <

√
2 − 1 ; comme

le rayon de convergence de la série I(t) est au moins
√

2 − 1, ceci montre que les ponts
faiblement dirigés forment une séquence surcritique [27, section V.2].
On en déduit le comportement asymptotique annoncé de Wn, avec µ = 1/ρ. De plus,
soit W (t, u) la série des ponts faiblement dirigés où u compte le nombre de facteurs
irréductibles :

W (t, u) = 1
1− uI(t) . (3.3)

Le comportement de Fn est donné par [27, proposition IX.7]. Les nombres m et s vérifient

m = 1
ρI ′(ρ) , s2 = I ′′(ρ) + I ′(ρ)− I ′(ρ)2

ρI ′(ρ)3 .

Nous calculons les valeurs approchées de m et s2 à partir de celle de ρ.
Intéressons-nous maintenant à la série W (t) des chemins faiblement dirigés généraux,
donnée par le théorème 3.15. Les séries IP (t), IQ(t) et IT (t) comptent toutes des chemins
NSE, donc sont convergentes dans D. De plus, les séries 2IQ(t) − t et 2IP (t) − t sont
strictement positives pour t > 0. La série W (t) a donc, comme W (t), un unique pôle
dominant dans D, qui est ρ.
De plus, la série donnant les chemins faiblement dirigés généraux prenant en compte le
nombre de facteurs irréductibles est

W (t, u) = 1 + u
(
2IT (t)− 2t

)
+ 2u2

(
2IQ(t)− t

)
W (t, u)

(
2IP (t)− t

)
,

où W (t, u) est donné par (3.3). Les résultats s’ensuivent.
Théorème 3.17. Soit W d

n le nombre de ponts du modèle diagonal de longueur n composés
de ponts irréductibles partiellement dirigés. On a, quand n tend vers l’infini,

W d
n ∼ κµn,

avec µ ' 2,5378.
Soit F d

n le nombre moyen de facteurs irréductibles d’un tel pont. L’espérance et la variance
de F d

n vérifient

E(F d
n) ∼ mn, V(F d

n) ∼ s2n,

où m ' 0,395 et s2 = 1± 2.10−3. La variable aléatoire F d
n−mn
s
√
n

converge en probabilité vers
une loi normale.
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Preuve. Les arguments sont identiques à ceux de la preuve du théorème 3.16. Là encore,
la série W d(t, u) s’écrit

W d(t, u) = 1
1− uId(t) ,

où Id(t) compte les chemins partiellement dirigés irréductibles du modèle diagonal. La
seule modification est la borne supérieure sur la série Id(t) que nous utilisons, qui est
Id(t) 6 4T (t) au lieu de I(t) 6 2T (t).

Remarque. Les théorèmes 3.16 et 3.17 montrent que la constante de croissance est légè-
rement supérieure dans le modèle horizontal. Il ne semble pas que ceci soit prévisible.
Écrivons les séries W (t) et W d(t) sous la forme

W (t) = 1
1− I(t) , W d(t) = 1

1− Id(t) ,

où I(t) et Id(t) comptent les ponts partiellement dirigés irréductibles. La série Id(t) =
2t + O(t2) domine la série I(t) = t + O(t2) au voisinage de 0, mais les graphes des deux
séries se croisent avant que l’une ou l’autre n’atteignent 1 (figure 3.6). Ainsi, la série I(t)
atteint 1 avant la série Id(t).
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Figure 3.6 – Les graphes des séries I(t) et Id(t) pour 0,35 < t < 0,4. La série Id(t)
domine d’abord, puis les graphes se croisent avant que les séries n’atteignent 1.

3.3.2 Nature des séries

Nous nous intéressons maintenant à la nature des séries que nous avons calculées. Par
souci de simplicité, nous ne traitons que le modèle horizontal, mais les ponts formés de
ponts irréductibles partiellement dirigés dans le modèle diagonal peuvent être traités par
des arguments similaires. Nous utilisons ici des résultats classiques d’analyse complexe.
Le lecteur pourra se référer à [45] sur ce sujet.

Théorème 3.18. La série B(t) des ponts NSE donnée dans la proposition 3.7 converge
au voisinage de 0 et admet un prolongement méromorphe dans C\E, où E consiste en les
deux intervalles réels [−

√
2− 1,−1] et [

√
2− 1, 1] et en la courbe

E0 =
{
x+ iy : x > 0 et y2 = 1− x2 − 2x3

1 + 2x

}
.
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Cette courbe, montrée figure 3.7, est une frontière naturelle de la série B(t) : tous ses
points sont des singularités de B(t). Les mêmes résultats restent vrais pour la série W (t)
des ponts faiblement dirigés. En particulier, B(t) et W (t) ne sont pas D-finies.
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Figure 3.7 – La courbe E0 et les pôles de la série B̂20(t).

Lemme 3.19. Soit f et g deux fonctions holomorphes sur un domaine ouvert connexe
U ⊆ C telles que g(z) n’est jamais nul, f ′ est non identiquement nulle, et pour tout entier
k, fk n’est pas identiquement égale à g. Soit S l’ensemble

S = {z ∈ U : ∃k ∈ N, f(z)k = g(z)}.

L’ensemble des points d’accumulation de S dans U est égal à l’ensemble des z de U tels
que |f(z)| = 1.

Preuve. Soit z un point d’accumulation de S. Il existe donc une suite (zn) de complexes
tendant vers z, et une suite d’entiers (kn) tels que

f(zn)kn = g(zn).

Les fonctions z 7→ f(z)k − g(z) étant holomorphes non identiquement nulles, leurs zéros
sont isolés ; on peut donc supposer que kn tend vers l’infini. Par continuité, les nombres
f(zn) et g(zn) tendent vers f(z) et g(z), respectivement. Comme g(z) n’est pas nul, la
valeur f(zn)kn ne peut ni tendre vers 0, ni diverger, ce qui montre que f(z) est de module 1.

Soit maintenant S ′ l’ensemble des points z tels que |f(z)| = 1. Les zéros de f ′ étant isolés,
l’ensemble des z tels que f ′(z) 6= 0 est dense dans S ′. Soit de plus w dans S ′. La fonction f
étant holomorphe non constante donc ouverte, il exsite un z arbitrairement proche de w
tel que f(z) est une racine quelconque de l’unité. L’ensemble des z tels que f(z) est une
racine de l’unité est donc dense dans S ′. L’ensemble des points d’accumulation de S étant
fermé, il suffit donc de montrer que tous les z tels que f ′(z) 6= 0 et f(z) est une racine de
l’unité sont des points d’accumulation de S.

Si g est identiquement égale à 1, l’ensemble S est égal à l’ensemble des points z tels que
f(z) est une racine de l’unité ; l’ensemble des points d’accumulation de S est bien S ′.
Sinon, supposons, encore par densité, que g(z) 6= 1 ; supposons également que f(z) est
une racine `-ième de l’unité. Soit k un multiple de ` ; on a donc f(z)k = 1. Nous allons
montrer l’existence d’un point zk, proche de z, tel que f(zk)k = g(zk). Réécrivons cette
équation en (

f(zk)
f(z)

)k
= g(zk).
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Une condition suffisante pour cela est

1
k

=
log
(
f(zk)/f(z)

)
log g(zk)

.

Sachant que g(z) 6∈ {0, 1}, un développement limité au point z donne

1
k

= f ′(z)
f(z) log g(z)(zk − z) + O

(
(zk − z)2

)
.

Sachant que f ′(z) 6= 0, cette équation admet, pour k assez grand, une solution vérifiant

zk − z = f(z) log g(z)
f ′(z)

1
k

+ O
(

1
k2

)
.

Les nombres zk ainsi définis tendent donc vers z et sont différents de z pour k assez grand.
Le point z est donc un point d’accumulation de S.

Lemme 3.20. Pour z 6= 0, l’équation z(u+u−1) = 1−z+z2 +z3 a deux racines comptées
avec multiplicité. Le produit de ces racines est 1. Leur module est 1 si et seulement si z
est dans l’ensemble E défini ci-dessus.

Soit

u(z) =
1− z + z2 + z3 −

√
(1− z4)(1− 2z − z2)
2z

la série donnant la racine définie en z = 0. Cette série a pour rayon de convergence√
2− 1 et pour singularités ±

√
2− 1, ±1 et ±i. Elle admet un prolongement analytique

dans
U0 = C \

([
−
√

2− 1,−1
]
∪
[√

2− 1, 1
]
∪
]
−i∞,−i

]
∪
[
i, i∞

[)
.

Preuve. L’existence de deux racines de produit 1 est claire. Supposons maintenant qu’elles
ont pour module 1, i.e. u est de la forme eiθ. La quantité h(z) = 1−z+z2+z3

2z = cos θ est donc
dans l’intervalle réel [−1, 1]. En écrivant z = x + iy et en exprimant la partie imaginaire
de h(z) en fonction de x et y, on trouve que h(z) est réel si et seulement si y = 0 (donc
z ∈ R) ou

y2(1 + 2x) = 1− x2 − 2x3. (3.4)

Comme y2 > 0, ceci n’est possible que si x ∈ [−1/2, xc] où xc vérifie 1 − x2
c − 2x3

c = 0.
Observons que la courbe ainsi définie contient E0.

Pour les valeurs réelles de z, une étude élémentaire de h montre que h(z) ∈ [−1, 1] si et
seulement si z ∈ [−

√
2− 1,−1] ∪ [

√
2− 1, 1] (figure 3.8, gauche). Si z = x + iy n’est pas

réel et si (3.4) est vérifiée, on a h(z) = −1+4x2+4x3

1+2x . Sachant que xc ∈ [−1/2, xc], ceci est
vrai si et seulement si x > 0 (figure 3.8, milieu). Nous avons ainsi prouvé que |u(z)| = 1
si et seulement si z ∈ E .

Les propriétés de la série u s’obtiennent par des résultats classiques d’analyse complexe
(en fait, u admet un prolongement analytique sur C coupé selon n’importe quelles courbes
joignant les 6 singularités). La figure 3.8, à droite, montre un tracé du module de u(z)
prolongée comme ci-dessus.
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Figure 3.8 – Les fonctions t 7→ h(t) = 1−t+t2+t3
2t et x 7→ −1+4x2+4x3

1+2x , et le tracé du
module de u(z) montrant les deux coupures sur l’axe réel.

Preuve du théorème 3.18. Considérons la série B̂k(t) définie dans la proposition 3.7. Cette
série vaut

B̂k(t) = u(t)− u(t)−1(
(1− t)u(t)− t

)
u(t)k −

(
(1− t)u(t)−1 − t

)
u(t)−k

,

Cette fonction est méromorphe dans C ; un complexe z en est un pôle si

u(z)2k = (1− z)u(z)−1 − t
(1− z)u(z)− z . (3.5)

Posons

f(z) = u(z)2, g(z) = (1− z)u(z)−1 − z
(1− z)u(z)− z .

D’après le lemme 3.20, la fonction f est holomorphe dans U0 et la fonction g méromorphe ;
de plus, f n’est pas constante et on vérifie facilement que le numérateur comme le déno-
minateur de g ne s’annulent qu’en 0. Posons donc U = U0 \ {0}. Les lemmes 3.19 et 3.20
montrent que les points d’accumulation des pôles des B̂k(t) sont les points de E .

Les pôles de B(t) n’ont donc pas de point d’accumulation hors de E , ce qui montre que
B(t) admet un prolongement méromorphe dans C \ E . Montrons maintenant que E0 est
une frontière naturelle de B(t). Pour cela, nous montrons que si z est non réel, il est un
pôle d’au plus une série B̂k(t), donc un pôle de B(t) ; par conséquent, les points de E0
sont des points d’accumulation de pôles de B(t), donc des singularités de B(t). Supposons
donc que z est un pôle de B̂k(t) et B̂`(t). L’identité (3.5) montre que u(z)2k = u(z)2`,
donc |u(z)| = 1. Réécrivons (3.5) en

z

1− z = u(z)k+1 − u(z)−(k+1)

u(z)k − u(z)−k .

Ainsi, z/(1 − z), donc z, est réel car quotient de deux imaginaires purs. Ceci termine la
preuve.

Le lien entre les sériesW (t) et B(t) implique queW (t) possède également un prolongement
méromorphe sur C \ E et la même frontière naturelle.
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3.3.3 Génération aléatoire

Nous présentons maintenant un algorithme pour la génération aléatoire des ponts faible-
ment dirigés dans le modèle horizontal. Ce générateur est un générateur de Boltzmann
[24], ce qui signifie que la probabilité de tirer un chemin donné α est

P(α) = x|α|

C(x) ,

où C(x) est la série génératrice des chemins à engendrer et x est un paramètre inférieur
au rayon de convergence de C. La longueur moyenne d’un chemin ainsi engendré est

E(|α|) = xC ′(x)
C(x) .

Le paramètre x est ainsi choisi en fonction de la longueur désirée de la sortie.

Soit A et B deux classes de chemins et ΓA et ΓB des générateurs de Boltzmann pour
ces classes. Si A ∩ B = ∅, on peut obtenir un générateur pour A ∪ B en appelant ΓA
avec probabilité A(x)

A(x)+B(x) et ΓB avec probabilité B(x)
A(x)+B(x) . On peut également obtenir un

générateur pour A× B en prenant (ΓA,ΓB).

De plus, si B ⊆ A, on peut obtenir un générateur pour B grâce à un algorithme de rejet :
on engendre des éléments de A jusqu’à en trouver un dans B. Enfin, si A = B × C, on
peut trouver un générateur pour B en engendrant un couple (b, c) et en oubliant c.

Pour engendrer les ponts faiblement dirigés, nous considérons les classes de chemins sui-
vantes :
– la classe E des excursions NSE propres ;
– la classe PN des chemins positifs terminant par un pas N ;
– la classe I des ponts NSE irréductibles ;
– la classe W des ponts faiblement dirigés.
Nous construisons successivement des générateurs de Boltzmann pour toutes ces classes,
de la manière suivante.
– Pour engendrer les éléments de E , nous utilisons la construction de la preuve de la
proposition 2.14. Soit D la classe des facteurs descendants (ou chemins SE propres non
vides) et soit Dn la sous-classe des chemins de hauteur n. On a

E = 1 +
⋃
n>0

(EN)nDn.

Le langage D est de plus donné par l’expression régulière non ambiguë

D = E + E(S + E)∗E.

Considérons la famille
E ′ = 1 + E + E(ENS + E)∗E.

À un réordonnement des facteurs près, les classes E et E ′ sont identiques. On peut donc
tirer de cette identité un générateur de Boltzmann pour E .

– Soit α est un chemin de PN. Le chemin α finit par un N, donc n’est pas une excursion.
Il s’écrit donc βNγ, où β est une excursion propre et γ est soit vide soit un chemin de
PN. On obtient

PN = EN(1 + PN).
On en déduit un générateur de Boltzmann pour PN.
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– Pour engendrer les éléments de I, on engendre un chemin de PN et on le décompose en
facteurs irréductibles. Soit R la classe des chemins de PN irréductibles qui ne sont pas
des ponts. En isolant le premier facteur irréductible des chemins de PN, on trouve

PN = R+ I(1 + PN).
En utilisant un algorithme de rejet pour éliminer les éléments de R, puis en ne gardant
que le premier facteur irréductible, on obtient un générateur de Boltzmann pour I.

– Enfin, un pont faiblement dirigé est une suite de ponts partiellement dirigés irréduc-
tibles. Soit IO l’ensemble des ponts NSO irréductibles différents de N. On a

W = 1 + IW + IOW .

Un générateur de Boltzmann pour IO est obtenu de la même manière que celui pour I,
avec un rejet final pour éliminer le chemin N. On en déduit un générateur de Boltzmann
pour W .

Proposition 3.21. Soit ε > 0 fixé. Le générateur aléatoire décrit ci-dessus, avec le pa-
ramètre x choisi de sorte que xW ′(x)/W (x) = n, renvoie un pont faiblement dirigé avec
une longueur comprise entre (1− ε)n et (1 + ε)n en temps moyen O(n).

Preuve. Soit x un réel positif inférieur au rayon de convergence ρ de W donné par le
théorème 3.16. Nous commençons par prouver que si l’algorithme renvoie un chemin de
longueurm, il a, en moyenne, tourné en temps O(m), et ce indépendamment du paramètre
x.
Soit PN(t) la série génératrice de la classe PN. Cette série a pour rayon de convergence√

2− 1, qui est supérieur à ρ. La longueur moyenne d’un chemin de PN produit par notre
algorithme est donc inférieure à ρP ′N(ρ)/PN(ρ) [24, proposition 2.1], qui est indépendant
de x. En particulier, engendrer un élément de PN selon le paramètre x prend un temps
moyen constant et la longueur moyenne de la sortie est bornée.
Tester si un chemin est dans R ou non est effectué en temps linéaire. La probabilité de
tirer un chemin hors de R est

I(x)
(
1 + PN(x)

)
PN(x) > x

1 + PN(x)
PN(x) = x

1− x+ x2 + x3 +
√

(1− x4)(1− 2x− x2)
2

>
√

2− 1.
Le nombre moyen d’essais nécessaires pour engendrer un élément de I est donc borné par
une constante indépendante de x, ce qui assure qu’engendrer un élément de I prend un
temps constant en moyenne. Enfin, le chemin N est engendré si le chemin de PN engendré
est dans N(1 + PN). La probabilité que cela arrive est inférieure à x(1 + PN(x))/PN(x),
qui est borné au voisinage de ρ. Tirer un élément de IO prend donc également un temps
constant en moyenne, si le paramètre x est assez grand.
Enfin, le nombre de facteurs irréductibles d’un chemin de longueur m est inférieur à m,
ce qui montre qu’un pont faiblement dirigé de longueur m est engendré en temps O(m).
Fixons maintenant n et ε, et choisissons le paramètre x comme spécifié ci-dessus (ceci
est possible car xW ′(x)/W (x) tend vers l’infini quand x tend vers ρ). Nous appelons
notre générateur jusqu’à obtenir un pont de longueur dans l’intervalle désiré. Le théo-
rème 6.3 de [24] montre que, en moyenne, le nombre d’essais nécessaires est borné. En
effet, la série W (t) est analytique dans un ∆-domaine, avec un exposant critique −1 (voir
théorème 3.16).
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La figure 3.9 montre un pont engendré selon cet algorithme.

Figure 3.9 – À gauche, un pont faiblement dirigé aléatoire de longueur 1008. À
droite, un zoom sur une partie du chemin.

3.4 Une nouvelle classe de chemins

3.4.1 Définition

Nous définissons maintenant une nouvelle classe de chemins qui généralise les chemins
faiblement dirigés du modèle horizontal. Ces chemins sont, comme les chemins faiblement
dirigés, caractérisés par leurs facteurs irréductibles ; ces facteurs appartiennent à une classe
qui elle-même généralise les chemins partiellement dirigés. Nous commençons par définir
cette classe.

Si α est un chemin, nous notons r(α) le chemin α tourné d’un quart de tour dans le sens
des aiguilles d’une montre.

Proposition 3.22. Il existe une unique classe A de chemins vérifiant l’identité suivante :

A =
(
N + E r(B)

)∗
, (3.6)

où B est l’ensemble des chemins de A qui sont des ponts. De plus, tous les chemins de A
sont auto-évitants.

Un chemin de A est montré figure 3.10.
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α β γ δ

Figure 3.10 – De gauche à droite : un chemin α de la classe A, factorisé en pas N
et en facteurs de E r(β), où β est un pont de A ; le premier chemin β intervenant
dans la factorisation de α, lui-même factorisé de façon analogue ; le premier facteur
γ intervenant dans la factorisation de β ; le premier facteur δ intervenant dans la
factorisation de γ. Le chemin δ est un chemin NSE propre, donc dans A (voir ci-
dessous). En particulier, tous les chemins de A sont inscrits dans la bande verticale
déterminée par leurs extrémités.

Preuve. Commençons par montrer l’existence de la classe A. Posons A0 = ∅ et, pour
n > 1,

An =
(
N + E r(Bn−1

)∗
,

où Bn−1 est l’ensemble des chemins de An−1 qui sont des ponts. Posons A l’union des
classes An pour n > 0 et B l’ensemble des chemins de A qui sont des ponts.

Montrons que la classe A ainsi construite vérifie l’équation (3.6). La classe Bn−1 étant
incluse dans B par construction, on a

An =
(
N + E r(Bn−1

)∗
⊆
(
N + E r(Bn−1

)∗
.

La classe A étant l’union des An, elle est également incluse dans (N + E r(B))∗. Récipro-
quement, soit α dans (N + E r(B))∗ ; montrons que α est dans A. Le nombre de facteurs
de E r(B) apparaissant dans α étant fini, ils sont tous dans Bn pour un certain n. On en
déduit

α ∈
(
N + E r(Bn)

)∗
= An+1 ⊆ A.

Prouvons maintenant l’unicité de la classe A. Supposons qu’il existe deux classes A et A′
vérifiant toutes deux l’équation (3.6), avec A 6= A′. Soit α un chemin de taille minimale
dans la différence symétrique (disons, α ∈ Amais α 6∈ A′). Comme α est dans (N+E r(B))∗
mais pas dans (N+E r(B′))∗, il existe un chemin β dans r(B) mais pas dans r(B′). Comme
Eβ est un facteur de α, β est de longueur inférieure à α, ce qui contredit la minimalité de
α.

Prouvons enfin que les chemins de A sont auto-évitants. Procédons par récurrence sur
la longueur des chemins. Il est clair que le chemin vide est auto-évitant ; supposons donc
que tous les chemins de A de longueur k < n sont auto-évitants et soit α un chemin de
A de longueur n. Le chemin α admet donc une décomposition en pas N et en facteurs de
type E r(β), où β est un pont de A. Les chemins β étant plus courts que α, l’hypothèse
de récurrence montre qu’ils sont auto-évitants. De plus, les chemins β étant des ponts,
chaque facteur vit dans une bande verticale propre (figure 3.10). Le chemin α est donc
auto-évitant.

Examinons les classes An, définies dans la preuve ci-dessus, pour les premières valeurs de
n. La classe A0 est vide par définition. La classe A1 est donc égale à N∗. La classe A2 est
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donc égale à (N + E)∗, donc contient tous les chemins NE. Un chemin NE étant un pont
si et seulement si il est vide ou il finit par N, la classe A3 vaut

A3 =
(
N + E + E(E + S)∗E

)∗
.

On reconnaît dans le terme E + E(E + S)∗E l’expression régulière donnant les chemins SE
propres (3.2). On en déduit que A3 est la classe des chemins NSE propres.

La classe A est donc une généralisation des chemins NSE propres, ce qui implique que la
classe définie ci-dessous est une généralisation des ponts faiblement dirigés. Si α est un
chemin, on note s(α) l’image de α par la symétrie par rapport à l’axe vertical.

Définition 3.23. On noteW la classe des ponts dont les facteurs irréductibles sont dans
A ou dans s(A).

Les ponts de A et s(A) étant auto-évitants, les ponts deW sont également auto-évitants.
Remarque. Les chemins NSE vérfient la propriété que, entre deux visites à la même abs-
cisse, le chemin est dans N∗ ou dans S∗. Une caractérisation similaire des chemins de
A existe, mais elle est plus difficile à énoncer et à démontrer. Elle apparaîtra dans une
version ultérieure de la thèse.

3.4.2 Énumération

Nous cherchons maintenant à énumérer les éléments deW . Ces chemins étant des suites de
ponts irréductibles de A et s(A), nous énumérons tout d’abord les ponts de A, c’est-à-dire
la famille B.

Comme montré sur la figure 3.10, les chemins de A vivent dans la bande verticale dé-
terminée par leurs extrémités. Par conséquents, les chemins de B, qui sont des ponts,
sont inscrits dans le rectangle déterminé par leurs extrémités. Soit α un chemin de B ; la
largeur de α, notée `(α), et la hauteur de α, notée h(α), sont la largeur et la hauteur de
ce rectangle. Nous notons B(t, u, v), ou simplement B(u, v), la série génératrice

B(u, v) =
∑
α∈B

t|α|u`(α)vh(α).

Nous noterons également Bk(u) le coefficient en vk de B(u, v), c’est-à-dire la série géné-
ratrice des ponts de B de hauteur k.

Théorème 3.24. La série B(u, v) est l’unique série formelle en les variables t, u, v solu-
tion de l’équation

B(u, v)�v
(

1 + v

1− v + tuB(tv, u)

)
= 1

1− tv ,

où �v note le produit de Hadamard selon la variable v.

Lemme 3.25. Tout chemin de A admet une unique factorisation compatible avec (3.6)
ne comprenant pas deux facteurs descendants consécutifs.
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Preuve. Soit β et γ deux chemins de B. Le chemin βNγ est encore un pont, et il est encore
dans A par définition ; il est donc dans B. Par conséquent, le chemin E r(β) E r(γ) est dans
E r(B). Si α est un chemin de A, on construit la factorisation voulue en regroupant tous
les facteurs descendants consécutifs. Cette construction est bien unique.

Preuve. Le lemme 3.25 montre que les chemins de B peuvent être vus comme des chemins
stricts de Łukasiewicz, dont les pas montants sont des pas N et les pas descendants sont
les facteurs de E r(B). De plus, l’image par r d’un chemin de longueur ` et de hauteur
h est un chemin de longueur h et de hauteur −`. La série D(u, v) comptant les facteurs
descendants est donc

D(u, v) = tuB(v, u).
Soit Bj(u) le coefficient en vj de la série B(u, v), c’est-à-dire la série génératrice des ponts
de hauteur j. Un pont de hauteur j > 1 étant un pseudo-pont de hauteur j− 1 suivi d’un
pas N, le théorème 2.15 montre que

Bj(u) = tj

Gj−1(u) , (3.7)

où les Gj(u) sont définis par

G(u, v) =
∑
j>0

Gj(u)vj = 1
1− v +D(u, tv) = 1

1− v + tuB(tv, u) . (3.8)

Les équations Bj(u)Gj−1(u) = tj (et B0(u) = 1) peuvent se réécrire sous la forme

B(u, v)�v
(
1 + vG(u, v)

)
= 1

1− tv .

On en déduit que la série B(u, v) vérifie l’équation annoncée.

Pour montrer que la solution est unique, écrivons B(u, v) sous la forme

B(u, v) =
∑
i,j

Bi,ju
ivj.

Nous montrons, par récurrence sur i+ j, que le coefficient Bi,j est uniquement déterminé
par l’équation du théorème. Le coefficient B0,0 est nécessairement 1 ; l’équation (3.7)
montre que le coefficient Bi,j est déterminé par les coefficients jusqu’à ui de la série
Gj−1(u). La définition (3.8) de la série G(u, v) montre que ceci demande la connaissance
des coefficients de B(tv, u) jusqu’à ui−1 et vj−1 ; il suffit donc de connaître les Bk,` pour
k + ` < i+ j. Ceci termine la preuve.

Malheureusement, l’équation gouvernant la série B(u, v) est très difficile à résoudre. La
preuve du théorème donne une manière algorithmique de calculer la série (calculer les
coefficients en uivj pour des valeurs croissantes de i + j), mais je n’ai pas pu donner
d’expression donnant B(u, v).

En utilisant les factorisations des chemins de A et de W , on obtient les deux formules

A(t) = 1
1− t− tB(1, 1);

W (t) = 1
1 + t− 2

(
1−B(1, 1)−1

) ,
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le terme 1−B(1, 1)−1 comptant les ponts irréductibles de A. Des arguments similaires à
ceux du théorème 3.16 montrent que le rayon de convergence de W (t) est environ 0,392,
ce qui donne une constante de croissance d’environ 2,549.



Chapitre 4

Animaux dirigés

Ce chapitre a pour but d’étudier les animaux dirigés sur les réseaux carré et triangulaire,
et en particulier de trois paramètres de ces animaux. Nous renvoyons à l’introduction de
la thèse pour une présentation générale des animaux dirigés ; nous donnons également la
définition de ces animaux sur un graphe orienté quelconque.

Définition 4.1. Soit G un graphe orienté et S un ensemble fini de sommets de G. Un
animal dirigé (ou simplement animal, s’il n’y a pas d’ambiguïté) de G de source S est un
ensemble fini A de sommets de G contenant S, tel que pour tout v ∈ A il existe un s ∈ S
et un chemin orienté de s à v ne passant que par des sites de A.

Un sommet de A sera appelé un site ; le nombre de sites de A est appelé l’aire de A, et
noté |A|.

Les trois paramètres qui nous intéressent sont illustrés sur la figure 4.1 : le nombre de
paires de sites adjacents, le nombre de boucles, et le nombre de voisins (également appelé
périmètre de site ou simplement périmètre) d’un animal dirigé. Les définitions formelles
se trouvent dans la section 4.3.

sites adjacents

boucle

voisin

Figure 4.1 – Un animal dirigé marqué de deux sites adjacents, d’une boucle, et
d’un voisin.

Notant, par exemple, p(A) le périmètre de l’animal A, on peut définir la série génératrice
suivante, comptant les animaux dirigés selon l’aire et le périmètre :

Ap(t, u) =
∑
A

t|A|up(A).

Cette série génératrice intervient dans certains problèmes de percolation en probabili-
tés [51], mais n’est malheureusement pas connue et est supposée non D-finie [34]. Nous



92 Chapitre 4. Animaux dirigés

considérons à la place la série génératrice donnant le périmètre total des animaux d’aire
fixée :

∂Ap

∂u
(t, 1) =

∑
A

p(A)t|A|.

En divisant le périmètre total des animaux dirigés d’aire n par le nombre de ces animaux,
on trouve le périmètre de site moyen des animaux d’aire donnée. La série ci-dessus peut
également être interprétée comme la série génératrice des animaux marqués d’un voisin.

Cette série génératrice, et les séries analogues comptant le nombre total de sites adjacents
et de boucles des animaux d’aire fixée, sont plus faciles à calculer. Le nombre total de
boucles a été calculé par Bousquet-Mélou sur le réseau carré [5]. Le périmètre total sur
ce même réseau fait l’objet d’une conjecture de Conway [15] ; une autre conjecture a été
énoncée par Le Borgne sur les réseaux de largeur bornée [39].

Nous prouvons toutes ces conjectures dans la section 4.3 et calculons aussi la série analogue
donnant le nombre de sites adjacents. Nos résultats sont en fait plus généraux : ils sont
valables sur différents types de réseaux, définis dans la section 4.1, et pour les animaux de
source S quelconque. Nous tirons également de ces résultats des corollaires asymptotiques.

Le chapitre est organisé comme suit. La section 4.1 définit les réseaux que nous considé-
rons et explicite la bijection avec les empilements de dominos. La section 4.2 énonce des
résultats classiques sur l’énumération des animaux dirigés selon l’aire seule. La section 4.3
contient les résultats généraux concernant les trois paramètres ci-dessus. La section 4.4
donne quelques applications de ces résultats.

4.1 Définitions

4.1.1 Réseaux carrés et triangulaires

Définition 4.2. Soit B un ensemble soit inclus dans Z, soit de la forme Z/kZ avec k
pair. Le réseau carré biaisé (s’il n’y a pas d’ambiguïté, le réseau carré) de base B est le
graphe dont les sommets sont les points (i, j) de B × Z tels que i + j est pair, muni des
arcs de forme (i, j)→ (i− 1, j+ 1) et (i, j)→ (i+ 1, j+ 1). Le réseau triangulaire de base
B possède de plus les arcs (i, j)→ (i, j + 2).

Nous considérons dans ce chapitre quatre types de réseaux :
– le réseau complet, de base B = Z ;
– le demi-réseau, de base B = N ;
– le réseau cylindrique de largeur k, de base B = Z/kZ (pour k pair) ;
– le réseau rectangulaire de largeur k, de base B = {0, . . . , k − 1}.
Le réseau complet et le demi-réseau sont collectivement appelés les réseaux non bornés,
et les réseaux cylindriques et rectangulaires sont appelés réseaux bornés (figure 4.2). Les
réseaux cylindriques sont nécessairement de largeur paire, pour que la condition « i + j
est pair » ait un sens.

Bien sûr, le réseau carré complet peut être plus simplement réalisé en prenant pour som-
mets l’ensemble Z2. La définition ci-dessus est motivée par le fait que le réseau carré biaisé
a une direction privilégiée vers le haut (tous les arcs pointent vers le haut) ; la direction
des arcs est importante pour les animaux dirigés.
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Figure 4.2 – À gauche, un animal dirigé du réseau carré cylindrique de largeur 6.
À droite, un animal dirigé du réseau triangulaire rectangulaire de largeur 5.

Une source S du réseau carré ou triangulaire de base B sera dite linéaire si tous les
éléments de S sont de la forme (i, 0) (ce qui implique que i est pair). Dans ce cas, nous
confondrons l’ensemble S avec l’ensemble des abscisses de ses points. Une source linéaire
peut donc être vue comme un ensemble d’éléments pairs de B.

4.1.2 Empilements de dominos

Nous définissons maintenant l’outil principal d’énumération des animaux que nous uti-
liserons dans ce chapitre et le suivant. Cet outil est une application qui transforme les
animaux en certains empilements de pièces, les empilements de dominos.

Définition 4.3. Soit B une partie ou un quotient de Z. On appelle modèle d’empilements
de dominos de base B le modèle d’empilements dont les pièces sont les éléments de B et
tel que les pièces i et i′ sont concurrentes si et seulement si |i− i′| 6 1.

Dans le cas où B = Z, ce modèle est équivalent aux empilements de dimères définis dans
la section 1.5.3 : le domino d’indice i correspond au domino dont l’unique arête est i.

Définition 4.4. Soit A un ensemble fini de sommets du réseau triangulaire de base B et
soit s = (i, j) un site de A. La projection du site s, notée π(s), est le domino d’indice i ;
la hauteur du site s est l’entier j. La projection de A, notée π(A), est l’empilement de
dominos obtenu en empilant les projections π(s) de tous les sites de A par ordre croissant
de hauteur.

Pour justifier cette définition, on remarque que deux sites distincts s = (i, j) et s′ = (i′, j)
à la même hauteur vérifient nécessairement |i− i′| > 2 à cause du fait que i+j et i′+j sont
pairs. Les deux dominos π(s) et π(s′) ne sont donc pas concurrents. La projection π(A)
ne dépend donc pas de l’ordre dans lesquels sont empilés les dominos de même hauteur.
Un animal du réseau carré étant, en particulier, un animal du réseau triangulaire, on peut
également définir sa projection π(A).

Comme le montrent les résultats suivants, la projection fournit des bijections entre ani-
maux dirigés et empilements de dominos. Ces bijections sont illustrées figure 4.3.

Lemme 4.5. Soit B une base et S une source linéaire. Il y a bijection entre les animaux
dirigés de source S et d’aire n du réseau triangulaire de base B et les empilements de
dominos dont les pièces minimales ont pour positions S et comptant n pièces.

Dans le cas où S est une source ponctuelle, les animaux dirigés sont ainsi en bijection avec
les pyramides (ou empilements ayant une unique pièce minimale). Pour prouver ce lemme,
nous définissons, pour chaque domino d’un empilement, une hauteur à valeur dans N.
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Figure 4.3 – À gauche, un animal dirigé à deux sources sur le réseau carré et
l’empilement correspondant. À droite, un animal à une source sur le réseau trian-
gulaire et l’empilement correspondant. Dans les deux cas, l’empilement est obtenu
en remplaçant chaque site par un domino 2×1.

Définition 4.6. Soit H un empilement de dominos et x un domino de H à position i.
On définit inductivement la hauteur de x, notée h(x), de la manière suivante.
– Si x est minimal dans H, h(x) = 0.
– Si x couvre un domino y à position i, soit j = h(y). On a alors h(x) = j + 2.
– Sinon, soit j la hauteur maximale d’un domino y tel que x couvre y. On a alors h(x) =
j + 1.

La figure 4.3 montre des empilements dont chaque domino x est dessiné à la hauteur h(x).

Preuve du lemme 4.5. Soit H un empilement de dominos dont les pièces minimales sont
à position dans S. Pour construire l’animal correspondant à H, on calcule la hauteur
des dominos de H selon la définition 4.6. On fait correspondre à chaque domino de po-
sition i et de hauteur j le site (i, j), et on définit l’animal A comme l’ensemble des sites
correspondants aux dominos de H.

L’animal A ainsi construit est bien un animal dirigé de source S : chaque site x non
minimal est relié dans le réseau triangulaire à un site y tel que x couvre y. De proche en
proche, chaque site est donc relié à un site minimal.

Réciproquement, si A est un animal dirigé de source S, la construction précédente appli-
quée à la projection π(A) redonne bien l’animal A, ce qui montre que la construction est
bijective.

Le lemme suivant, qui sera utile par la suite, se démontre facilement par récurrence grâce
au fait que les positions de S sont paires.

Lemme 4.7. Soit S une source linéaire du réseau de base B. Soit H un empilement de
dominos dont les pièces minimales sont à positions dans S. Soit x un domino de H de
position i et de hauteur j. La somme i+ j est paire.

Le lemme suivant permet de traiter également les animaux du réseau carré.

Lemme 4.8. Soit A un animal dirigé de source S du réseau triangulaire de base B.
L’animal A est un animal dirigé du réseau carré de base B si et seulement si la projection
π(A) est un empilement strict.

Preuve. Pour prouver ce lemme, on remarque que l’ensemble de sommets A est un animal
dirigé de source S du réseau carré si et seulement si pour tout site v de A hors de S, il
existe un site w dans A tel que w → v est un arc du réseau carré. Ceci est équivalent à
dire que, pour tout site v hors de S, le domino π(v) ne couvre pas de domino à la même
position, donc que π(A) est un empilement strict.
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4.2 Énumération

Ici, nous considérons l’un quelconque des quatre types de réseaux décrits ci-dessus et
une source linéaire S. Nous notons A�S(t) et AMS(t) les séries génératrices des animaux de
source S des réseaux carré et triangulaire, respectivement. Pour les énoncés valables sur
les deux réseaux, nous utiliserons la notation commune AS(t). Nous noterons également
A[S](t) la série génératrice des animaux dirigés de source incluse dans l’ensemble S.
Via la bijection du lemme 4.5, les animaux de source incluse dans S correspondent aux
empilements dont les pièces minimales sont à positions incluses dans S. Les liens (1.1) et
(1.2) se traduisent donc en

A[S](t) =
∑
T⊆S

AT (t); (4.1)

AS(t) =
∑
T⊆S

(−1)|S|−|T |A[T ](t). (4.2)

De plus, d’après le lemme 4.8, les animaux du réseau carré correspondent à des empile-
ments stricts. Les identités (1.7) et (1.8) se traduisent donc en

AM[S](t) = A�[S]

(
t

1− t

)
; (4.3)

A�[S](t) = AM[S]

(
t

1 + t

)
. (4.4)

Les sections suivantes montrent comment calculer les séries ci-dessus dans les quatre types
de réseaux.
Nous utilisons des notations particulières pour les séries AS(t) où S = {0}, comptant
des animaux dirigés de source ponctuelle. Ces animaux correspondent à des pyramides
de dominos, ou empilements n’ayant qu’une seule pièce minimale, à la position 0. Nous
notons :
– A(t) la série des animaux dirigés de source {0} sur le réseau complet ;
– D(t) la série des animaux dirigés de source {0} sur le demi-réseau ;
– Ak(t) la série des animaux dirigés de source {0} sur le réseau cylindrique de largeur k ;
– Dk(t) la série des animaux dirigés de source {0} sur le réseau rectangulaire de largeur k.
Les animaux comptés par les séries D(t) et Dk(t) seront également appelés des demi-
animaux de source ponctuelle.

4.2.1 Réseaux bornés

Nous commençons par les réseaux bornés, c’est-à-dire ceux dont la base B est finie. Le
modèle d’empilements correspondant est donc également fini, ce qui permet d’utiliser le
théorème d’inversion (théorème 1.11) pour calculer la série A[S](t). On obtient le résultat
suivant.
Proposition 4.9. La série des animaux dirigés de source incluse dans S sur le réseau
triangulaire de base finie B est

AM[S](t) = T[B\S](t)
T[B](t)

,

où T[S](t) est la série alternée des empilements triviaux dont les positions sont dans S.
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L’identité (4.2) permet de déduire de cette formule la série AMS(t) ; l’identité (4.4) permet
ensuite d’en déduire les séries correspondantes sur le réseau carré.

Nous sommes donc ramenés à calculer les séries alternées comptant les empilements tri-
viaux. Ce calcul est fait grâce aux deux résultats suivants, qui expriment les séries T[S](t)
en fonction des polynômes de Fibonacci Fk(t), définis dans la définition 1.37. Nous défi-
nissons également, pour k > 2, des polynômes notés F̂k(t) par

F̂k(t) = Fk(t)− tFk−2(t). (4.5)

Lemme 4.10. Si B = {0, . . . , k − 1}, la série alternée T[B](t) des empilements triviaux
est égale à Fk+1(t). Si B = Z/kZ, la série alternée T[B](t) des empilements triviaux est
égale à F̂k(t).

Preuve. Si B = {0, . . . , k − 1}, il est déjà montré dans la section 1.5.3 que la série des
empilements triviaux est Fk+1(t). Soit donc T un empilement trivial inclus dans Z/kZ.
Nous distinguons deux cas.

1. Soit 0 n’est pas dans T . L’empilement trivial T est donc inclus dans {1, . . . , k− 1}.
2. Soit 0 est dans T ; on écrit dans ce cas T = (0)T ′. Les dominos 1 et k − 1 étant

concurrents à 0, ils ne sont pas dans T ′. L’empilement trivial T ′ est donc inclus dans
{2, . . . , k − 2}.

Les empilements dans le cas 1 sont comptés par Fk(t) ; le domino 0 ayant pour poids −t
dans les séries alternées, ceux dans le cas 2 sont comptés par −tFk−2(t).

Lemme 4.11. Soit S un ensemble fini de positions. Écrivons la décomposition S = S1 ∪
· · ·∪S` en intervalles maximaux de S. La série génératrice des empilements triviaux inclus
dans S est

T[S](t) = F|S1|+1(t) · · ·F|S`|+1(t).

Preuve. Soit Si et Sj deux intervalles maximaux de S avec i 6= j. Un élément de Si et
un élément de Sj ne peuvent pas être concurrents, sans quoi on pourrait fusionner les
intervalles Si et Sj. On en déduit que la donnée d’un empilement trivial inclus dans S est
identique à la donnée d’empilements triviaux inclus respectivement dans S1, . . . , S`. En
termes de séries génératrices, on a donc

T[S](t) = T[S1](t) · · ·T[S`](t).

Le lemme 4.10 permet de conclure.

À titre d’exemple, les résultats ci-dessus permettent de calculer les séries Ak(t) et Dk(t)
définies plus haut. On trouve

AMk (t) = Fk(t)
F̂k(t)

− 1; (4.6)

DMk (t) = Fk(t)
Fk+1(t) − 1. (4.7)
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4.2.2 Réseaux non bornés

Nous faisons maintenant le même travail sur les réseaux non bornés. Les deux résultats
qui suivent ont déjà été prouvés [20, 3], nous les citons donc sans preuve.

Proposition 4.12. Les séries A(t) et D(t) sont données par

AM(t) = 1
2

(
1√

1− 4t
− 1

)
;

DM(t) = 1−
√

1− 4t
2t − 1 ;

A�(t) = 1
2

√ 1 + t

1− 3t − 1
 ;

D�(t) =
1− t−

√
(1 + t)(1− 3t)

2t .

Traitons maintenant le cas des sources non ponctuelles. Nous dirons qu’une source C dans
le réseau complet est compacte si elle est constituée de ` sites consécutifs, de la forme

C = {i, i+ 2, . . . , i+ 2`− 2}.

Dans le demi-réseau, nous imposons de plus que 0 soit dans C.

Proposition 4.13. Soit C une source compacte comportant ` sites. La série génératrice
des animaux de source C sur le réseau complet est

AC(t) = D(t)`−1A(t).

Sur le demi-réseau, cette série vaut

AC(t) = D(t)`.

Nous pouvons enfin calculer la série AS(t) pour une source S quelconque. Rappelons que,
si S est un ensemble de positions, le voisinage de S, noté v(S), est égal à l’ensemble des
positions concurrentes à une position de S.

Proposition 4.14. Soit S une source linéaire du réseau complet ou du demi-réseau et soit
C la plus petite source compacte contenant S. La série génératrice des animaux dirigés de
source S est, pour le réseau triangulaire

AMS(t) = t|S|−|C|T[v(C)\v(S)](t)AMC(t).

Preuve. Nous utilisons dans cette preuve plusieurs résultats de théorie des empilements
du chapitre 1. Nous commençons par utiliser l’identité (1.9), qui permet de calculer les
séries AS(t) et AC(t) :

AS(t) = t|S|A[v(S)];
AC(t) = t|C|A[v(C)].



98 Chapitre 4. Animaux dirigés

Nous utilisons ensuite le corollaire 1.12 pour trouver un lien entre les séries A[v(S)(t) et
A[v(C)](t). Puisque S est inclus dans C, on a v(S) ⊆ v(C) ; puisque C est la plus petite
source compacte contenant S, les positions du bord de v(C) (celles qui sont concurrentes
à une position hors de v(C)) sont dans v(S). On trouve donc

A[v(S)](t) = T[v(C)\v(S)]A[v(C)](t).

La proposition s’ensuit.

4.2.3 Asymptotique

Nous utilisons maintenant les résultats d’énumération ci-dessus pour en déduire des équi-
valents asymptotiques. Pour commencer, nous étudions les racines des polynômes de Fi-
bonacci.

Lemme 4.15. Pour tout k > 1, les polynômes Fk(t) et F̂k(t) sont scindés et à racines
simples dans R. Soit ρk et ρ̂k, respectivement, la plus petite racine de ces polynômes. On
a

1
ρk

= 4 cos2
(

π

k + 1

)
;

1
ρ̂k

= 4 cos2
(
π

2k

)
.

Preuve. On vérifie par récurrence sur k que les degrés des polynômes Fk(t) et F̂k(t) sont
bk/2c. Nous utilisons ensuite les identités suivantes que vérifient les polynômes de Fibo-
nacci, d’une manière proche de ceux de Tchebycheff :

Fk

(
1

4 cos2(θ)

)
= sin[(k + 1)θ]

(2 cos θ)k sin θ ;

F̂k

(
1

4 cos2(θ)

)
= 2 cos(kθ)

(2 cos θ)k .

Ces identités sont facilement vérifiées par récurrence sur k. En choisissant les valeurs
appropriées de θ dans l’intervalle

]
0, π/2

[
, ces identités permettent de trouver toutes les

racines. On en déduit les valeurs des plus petites racines.

Nous sommes maintenant en mesure de calculer l’asymptotique du nombre d’animaux
dirigés sur tous les réseaux.

Proposition 4.16. Soit S une source linéaire d’un réseau et aS(n) le nombre d’animaux
dirigés de source S et d’aire n. Quand n tend vers l’infini, on a un équivalent de la forme

aS(n) ∼ λSµ
nnγ.

Dans le réseau triangulaire, les constantes µ et γ sont données par :
– dans le réseau complet, µM = 4 et γM = −1/2 ;
– dans le demi-réseau, µM = 4 et γM = −3/2 ;
– dans le réseau cylindrique de largeur k, µM = 1/ρ̂k et γM = 0 ;
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– dans le réseau rectangulaire de largeur k, µM = 1/ρk+1 et γM = 0.
Dans le réseau carré, les constantes µ et γ sont données par

µ� = µM − 1 ; γ� = γM.

Preuve. Des formules de la proposition 4.12, nous déduisons les développements limités
suivants, quand t tend vers 1/4 :

DM(t) = 1− 2(1− 4t)1/2 + O
(
(1− 4t)3/2

)
;

AM(t) = 1
2(1− 4t)−1/2 + O(1).

Les propositions 4.13 et 4.14 permettent d’obtenir des développements similaires pour les
séries AMS(t) sur le demi-réseau et le réseau complet, sachant que les polynômes Fk(t) ont
leurs racines supérieures à 1/4. Les équivalents asymptotiques sont ensuite obtenus par
analyse de singularité. Le résultat que nous utilisons, qui est un cas particulier de [27,
théorème VI.4], affirme que si une série S(t) est analytique dans un ∆-domaine autour
du point 1/µ et vérifie, au voisinage de t = 1/µ,

S(t) ∼ λ(1− µt)−α,

alors le coefficient de tn vérifie, quand n tend vers l’infini,

[tn]S(t) ∼ λ

Γ(α)µ
nnα−1.

Ce résultat permet d’obtenir les valeurs de µ et de γ pour les réseaux non bornés : en effet,
les séries DM(t) et AM(t) admettent un prolongement analytique dans le plan complexe
privé de la demi-droite [1/4,+∞[, qui contient un ∆-domaine ; les polynômes Fk(t) sont
quant à eux analytiques dans un disque de rayon supérieur à 1/4.
Dans les réseaux bornés, la série AS(t) est rationnelle, donc l’asymptotique est déterminée
par les racines du dénominateur Fk+1(t) ou F̂k(t). Le lemme 4.15 permet de conclure.
Enfin, pour le réseau carré, nous utilisons le lien (1.8). La série S(t) ci-dessus, évaluée en
t

1+t , vérifie

S

(
t

1 + t

)
∼ λ(1 + t)α

(
1− (µ− 1)t

)−α
.

Cet équivalent est valable quand t
1+t tend vers µ, donc quand t tend vers 1

µ−1 . On en
déduit l’équivalent

[tn]S
(

t

1 + t

)
∼ λ

Γ(α)

(
µ

µ− 1

)α
(µ− 1)nnα−1.

On en déduit la forme des coefficients de la série A�S(t).

4.3 Sites adjacents, boucles et périmètre de site

4.3.1 Définitions

Nous nous intéressons maintenant aux paramètres des animaux dirigés illustrés figure 4.1.
Toutes les définitions de cette section sont valables à la fois dans les réseaux carrés et
triangulaires.
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Définition 4.17. Soit A un animal dirigé du graphe G de source incluse dans S. Deux
sites de A sont dits adjacents s’ils sont de la forme (i, j) et (i + 2, j). Un site de A de la
forme (i+ 1, j + 1) est une boucle si les sommets (i, j) et (i+ 2, j) sont des sites de A.

Un S-voisin de A est un sommet v de G qui n’est pas dans A mais tel que A ∪ {v} est
un animal dirigé de source incluse dans S.

Supposons que le graphe G est un sous-graphe du graphe G′. Un S-voisin interne de A
est un S-voisin de A vu comme animal dirigé du graphe G ; un S-voisin externe de A est
un S-voisin de A vu comme animal dirigé du graphe G′. Enfin, un sommet v de G est dit
sur le bord du graphe s’il existe un arc de G′ reliant v à un sommet hors de G.

Pour les besoins de cette définition, le demi-réseau et les réseaux rectangulaires seront
vus comme sous-graphe du réseau complet. Les réseaux complets et cylindriques sont
vus comme sous-graphe d’eux-mêmes ; pour eux, il n’y a pas de différence entre voisins
internes et externes.

Nous noterons j(A) et `(A) le nombre de paires de sites adjacents et le nombre de boucles
de A, respectivement. Le nombre de S-voisins internes (resp. externes) de l’animal A sera
appelé le S-périmètre interne (resp. externe) de A. Nous noterons ces périmètres piS(A)
et peS(A). De plus, nous notons e(A) le nombre de sites de A sur le bord du réseau.

Nous définissons maintenant les quatre séries génératrices correspondant aux paramètres
ci-dessus :

J[S](t) =
∑
A

j(A)t|A|;

L[S](t) =
∑
A

`(A)t|A|;

P e
[S](t) =

∑
A

peS(A)t|A|;

P i
[S](t) =

∑
A

piS(A)t|A|

(comme d’habitude, l’indice [S] signifie que les animaux comptés sont de source incluse
dans S).

Dans la suite, nous calculons toutes ces séries dans le réseau carré, et les séries J[S](t) et
L[S](t) dans le résaeu triangulaire. Pour cela, nous utilisons la correspondance de la sec-
tion 4.1 avec les empilements de dominos. Deux dominos d’un empilement sont adjacents
s’ils sont à des positions i et i+2 et à la même hauteur (voir définition 4.6 pour le sens de
la hauteur d’un domino). Un domino est une boucle s’il couvre deux dominos adjacents.
Une position i est sur le bord du modèle B si soit i − 1 soit i + 1 n’est pas dans B. Ces
paramètres sont bien les mêmes que ceux décrits ci-dessus sur les animaux.

On se donne maintenant une source linéaire S, que l’on peut voir comme un ensemble
de positions. Les animaux à source incluse dans S correspondent aux empilements de
dominos dont les pièces minimales sont à positions dans S. Une pièce minimale d’un
empilement est dite illégale si elle n’est pas dans S. En l’absence d’indication explicite,
un empilement sera supposé sans pièce minimale illégale.

Nous définissons les séries génératrices suivantes :
– M[S](t) la série génératrice des empilements marqués d’une pièce à position i telle que
i+ 2 est dans B ;
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– si i est dans S, W (i)
[S](t) la série génératrice des empilements ayant une pièce minimale

à position i et une pièce minimale illégale à position i+ 2 :
– W[S](t) la somme des W (i)

[S](t) pour toutes les positions i dans S telles que i + 2 n’est
pas dans S ;

– E[S](t) la série génératrice des empilements marqués d’une pièce sur le bord du modèle.
Nous notons égalementMS(t) et ES(t) les séries similaires comptant les empilements dont
l’ensemble des positions des pièces minimales est S. De plus, si i est dans S mais pas i+2,
nous notons W (i)

S (t) la série AS∪{i+2}(t) et WS(t) la somme des séries W (i)
S (t).

Montrons que ces séries sont toutes facilement calculables. La série W[S](t), tout d’abord,
est donnée par

W[S](t) =
∑
i∈S
i+26∈S

∑
T⊆S
i∈T

AT∪{i+2}(t). (4.8)

Elle se calcule en utilisant les résultats de la section 4.2. Ensuite, les séries M[S](t) et
E[S](t) valent, par définition,

M[S](t) = tA′[S](t)−
∑

i+26∈B
M

(i)
[S](t); (4.9)

E[S](t) =
∑

i−16∈B ou i+16∈B
M

(i)
[S](t), (4.10)

où M (i)
[S](t) désigne la série génératrice des empilements marqués d’une pièce à position i.

Ces séries sont calculables grâce au lemme 1.29.

4.3.2 Réseau carré

Nous traitons maintenant le réseau carré, ce qui signifie que tous les empilements consi-
dérés dans cette section sont stricts.

Théorème 4.18. Les séries génératrices donnant le nombre total de sites adjacents,
boucles et voisins des animaux dirigés du réseau carré de source incluse dans S sont
données par

J�[S](t) =
tM�

[S](t)−W �
[S](t)

1 + t
; (4.11)

L�[S](t) = t(1 + t)J�[S](t) ; (4.12)
P e�

[S](t) = |S|A�[S](t) + tA′�[S](t)− J�[S](t) ; (4.13)
P i�

[S](t) = P e�
[S](t)− E�[S](t). (4.14)

Les mêmes séries traitant des animaux de source S sont

J�S(t) = tM�
S(t) + j(S)A�S(t)−W �

S(t)
1 + t

; (4.15)

L�S(t) = t(1 + t)J�S(t) ; (4.16)
P e�
S (t) = |S|A�S(t) + tA′�S (t)− J�S(t) ; (4.17)
P i�
S (t) = P e�

S (t)− E�S(t). (4.18)
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Les séries M[S](t), W[S](t) et E[S](t) étant calculables grâce aux remarques ci-dessus, le
théorème permet bien de trouver des formules explicites pour les séries cherchées. Des
exemples de calculs sont donnés dans la section 4.4.
Pour prouver le théorème, nous aurons besoin de certains résultats intermédiaires. Le
premier d’entre eux concerne les périmètres externe et interne.
Lemme 4.19. Soit A un animal du réseau carré de source incluse dans S. Les périmètres
externe et interne de A sont donnés par

peS(A) = |S|+ |A| − j(A);
piS(A) = peS(A)− e(A).

En sommant ces identités pour tous les animaux de source incluse dans S ou de source S,
on prouve les équations (4.13), (4.14), (4.17) et (4.18).

Preuve. Traitons tout d’abord le cas du périmètre externe. Nous pouvons donc considérer
que A est un animal dirigé du réseau complet ou d’un réseau cylindrique. Soit Z le nombre
de couples (v, w), où v est un site de A et w est tel que v → w est un arc du réseau. Tous
les sommets du réseau ayant pour degré sortant 2, on a

Z = 2|A|.

L’ensemble A étant un animal dirigé, le sommet w est soit un site de A, soit un S-voisin
externe de A. Les seuls sites de A non comptés sont ceux de S ; de plus, deux sites pointent
vers le même sommet si et seulement s’ils sont adjacents. On a donc

Z = |A|+ peS(A) + j(A)− |S|,

qui donne la formule annoncée pour peS(A).
Les sites ayant un voisin non interne étant exactement les sites au bord du réseau, on a
de plus

peS(t) = piS(t) + e(A).

Pour prouver les équations restantes du théorème 4.18, nous commencerons par prouver
(4.11) et (4.12), puis nous passerons aux équations (4.15) et (4.16) en utilisant un ar-
gument d’inclusion-exclusion. Nous aurons pour cela besoin du lemme suivant (valable
également dans le réseau triangulaire).
Lemme 4.20. Les séries W[S](t) et WS(t) sont liées de la manière suivante :

W[S](t) =
∑
T⊆S

(
WT (t)− j(T )AT (t)

)
.

Preuve. Considérons la série ∑
T⊆S

WT (t).

Écrivons WT (t) comme la somme des W (i)
T (t) pour tous les i dans T tels que i + 2 n’est

pas dans T . Nous séparons la somme selon que i+ 2 est dans S ou non :

∑
T⊆S

WT (t) =
∑
T⊆S

 ∑
i∈T
i+26∈S

W
(i)
T (t)

+
∑
T⊆S

 ∑
i∈T
i+26∈T
i+2∈S

W
(i)
T (t)

.
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Nous reconnaissons la sérieW[S](t) dans le premier terme du côté droit de l’équation. Nous
réécrivons le deuxième terme en utilisant le fait que W (i)

T (t) = AT∪{i+2}(t) et en posant
T ′ = T ∪ {i+ 2} :

∑
T⊆S

WT (t) = W[S](t) +
∑
T ′⊆S

 ∑
i∈T ′
i+2∈T ′

AT ′(t)


= W[S](t) +
∑
T ′⊆S

j(T ′)AT ′(t).

Le lemme s’ensuit.

Pour prouver les équations restantes du théorème 4.18, nous introduisons de nouvelles sé-
ries génératrices. On rappelle qu’un empilement marqué presque strict est un empilement
dont aucune pièce non marquée n’est couverte par une pièce à la même position (défini-
tion 1.27). On rappelle également que deux dominos sont indépendants si aucun n’est au
dessus de l’autre. On définit les ensembles suivants, dont les éléments sont a priori des
empilements de dominos dont les pièces minimales sont à positions dans S :
– J ∗[S] l’ensemble des empilements presque stricts marqués de deux dominos adjacents ;
– L∗[S] l’ensemble des empilements presque stricts marqués d’une boucle ;
– M∗

[S] l’ensemble des empilements presque stricts marqués d’une pièce à une position i
telle que i+ 2 est dans B ;

– W∗[S] l’ensemble des empilements presque stricts marqués d’une pièce minimale à une
position i et possédant une pièce minimale illégale à la position i+ 2 :

– I2∗
[S] (resp. I3∗

[S]) l’ensemble des empilements presque stricts marqués de deux pièces
indépendantes à des positions de type i et i+ 2 (resp. i et i+ 3) ;

– X 2∗
[S] (resp. X 3∗

[S]) l’ensemble des empilements marqués d’une pièce x à une position i et
possédant une pièce minimale illégale à position i+ 2 (resp. i+ 3) indépendante de x.

L’astérisque est là pour indiquer que les empilements de ces ensembles sont presque stricts.
On remarque qu’on a les inclusions J ∗[S] ⊆ I2∗

[S] et W∗[S] ⊆ X 2∗
[S].

Soient J∗[S](t), L∗[S](t),M∗
[S](t),W ∗

[S](t), I2∗
[S](t), I3∗

[S](t),X2∗
[S](t) etX3∗

[S](t) les séries génératrices
des ensembles ci-dessus. Un empilement presque strict pouvant être obtenu à partir d’un
empilement strict en dupliquant éventuellement chaque pièce marquée, on a les liens

J∗[S](t) = (1 + t)2J�[S](t); (4.19)
L∗[S](t) = (1 + t)L�[S](t); (4.20)
M∗

[S](t) = (1 + t)M�
[S](t); (4.21)

W ∗
[S](t) = (1 + t)W �

[S](t). (4.22)

Les équations (4.11) et (4.12) sont donc équivalentes à des identités entre ces séries géné-
ratrices. Ces identités sont prouvées grâce aux quatre lemmes suivants, qui utilisent des
bijections entre les différents ensembles d’empilements presque stricts.

Lemme 4.21. La série L∗[S](t) vaut

L∗[S](t) = tJ∗[S](t).

Preuve. Nous prouvons ce résultat en utilisant une bijection qui agit en retirant une pièce,

φ0 : L∗[S] → J ∗[S].
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Pour définir φ0, nous utilisons le lemme 1.28. Ce lemme affirme l’existence de la bijection
F s
↓ , qui consiste à factoriser un empilement marqué presque strict en tirant les pièces

marquées vers le bas.
Soit (H, {x}) un empilement de L∗[S]. L’image F s

↓ (H, {x}) est une paire d’empilements
(H1, H2) tels que les pièces minimales de H1H2 sont incluses dans S et la boucle x est
l’unique pièce maximale de H1. Écrivons H1 = H ′1x et H ′ = H ′1H2 : l’empilement H ′1 a
donc deux pièces minimales, qui sont adjacentes (figure 4.4, gauche). Appelons les y et
z. De plus, comme les empilements H1 et H ′1 ont les mêmes pièces minimales et même
voisinage, le lemme 1.26 implique que les empilements H1H2 et H ′1H2 ont mêmes pièces
minimales. On pose donc

φ0
(
H, {x}

)
=
(
H ′, {y, z}

)
.

L’opération est facilement réversible en remettant en place la pièce x.

Lemme 4.22. L’identité suivante est vérifiée :

I2∗
[S](t)− J∗[S](t) = tI3∗

[S](t).

Preuve. Nous utilisons une deuxième bijection qui agit en retirant une pièce,

φ1 : I2∗
[S] \ J ∗[S] → I3∗

[S].

Soit (H, {x, y}) un empilement de I2∗
[S] \J ∗[S]. Posons (H1, H2) = F s

↓ (H, {x, y}) (on tire les
pièces x et y vers le bas).
Les pièces x et y n’étant pas adjacentes, l’une d’elles, disons x, est plus haute que l’autre.
Posons H1 = H ′1x et H ′ = H ′1H2. L’empilement H1 étant strict, H ′1 doit avoir une seconde
pièce maximale, z, à une position à distance 3 par rapport à celle de y (figure 4.4, milieu).
Les empilements H1 et H ′1 ayant mêmes pièces minimales et même voisinage, on pose

φ1
(
H, {x, y}

)
=
(
H ′, {y, z}

)
.

Cette opération est réversible : soit (H ′, {y, z}) un empilement de I3∗
[S] et soit (H ′1, H2)

son image par F s
↓ . Les positions des pièces y et z étant à distance 3, le lemme 4.7 interdit

qu’elles soient à la même hauteur ; disons que z est plus haute. On pose H1 = H ′1x, tel
que les pièces maximales de H1 sont x et y et leurs positions à distance 2, et H = H1H2.
On a alors φ1(H, {x, y}) = (H ′, {y, z}).

Lemme 4.23. L’identité suivante est vérifiée :

X2∗
[S](t)−W ∗

[S](t) = tX3∗
[S](t).

Preuve. Nous utilisons une troisième bijection qui agit en retirant une pièce,

φ2 : X 2∗
[S] \W∗[S] → X 3∗

[S].

Soit (H, {x}) un empilement de X 2∗
[S] \ W∗[S] tel que x est à position i et soit y la pièce

minimale illégale de H. On pose (H1, H2) = F s
↓ (H, {x, y}), tirant les pièces x et y vers le

bas. La pièce x n’étant pas minimale, elle couvre une pièce z à position i− 1 (figure 4.4,
droite). Écrivons H1 = H ′1x et H ′ = H ′1H2. À nouveau, retirer la pièce x n’affecte pas les
pièces minimales de H ′, ce qui permet de poser

φ2(H, {x}) = (H ′, {z}).

Cette opération est réversible en reposant la pièce x.
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H1
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L∗[S]
I2∗

[S] \ J
∗
[S] X 2∗

[S] \W
∗
[S]

J ∗[S] I3∗
[S]

X 3∗
[S]

Figure 4.4 – À gauche, la bijection φ0 : retirer la pièce x révèle deux pièces adja-
centes y et z. Au milieu, la bijection φ1 : retirer la pièce x révèle une pièce z, plus
haute que y et de position à distance 3. À droite, la bijection φ2 (la pièce minimale
illégale y est grisée). Retirer la pièce x révèle une pièce z à une position à distance 3
de y.

Lemme 4.24. L’identité suivante est vérifiée :

I2∗
[S](t) +X2∗

[S](t) = t
(
M∗

[S](t) + I3∗
[S](t) +X3∗

[S](t)
)
.

Preuve. Nous utilisons une quatrième et dernière bijection agissant en retirant une pièce,

φ3 : I2∗
[S] ∪ X 2∗

[S] →M∗
[S] ∪ I3∗

[S] ∪ X 3∗
[S].

Dans cette preuve, si x est une pièce, nous notons x+ la pièce la plus haute de la pile de
x et x− la pièce la plus basse de la pile (voir section 1.4.2).

Soit H un empilement de I2∗
[S] ou X 2∗

[S]. Dans le premier cas, on note x la pièce marquée de
gauche et y la pièce marquée de droite ; dans le deuxième, on note x la pièce marquée et
y la pièce minimale illégale (figure 4.5). Dans les deux cas, nous notons i la position de
x et (H1, H2) = F s

↑ (H, {x, y}), poussant cette fois les pièces x+ et y+ vers le haut. Soit
également H2 = y+H ′2 et H ′ = H1H

′
2. Nous distinguons trois cas, illustrés sur la figure 4.5.

1. La pièce x+ est la seule pièce minimale de H ′2 : l’empilement (H ′, {x}) est dans
M∗

[S].
2. L’empilement H ′2 possède une pièce minimale z à position i + 3, qui n’est pas une

pièce minimale illégale de H ′ : l’empilement (H ′, {x, z}) est dans I3∗
[S].

3. L’empilement H ′2 possède une pièce minimale z à position i + 3, qui est une pièce
minimale illégale de H ′ : l’empilement (H ′, {x}) est dans X 3∗

[S].
Cette opération est réversible en remettant en place la pièce y+ et en séparant les cas
selon si y+ est une pièce minimale illégale de H ou non. Si H ′ est dansM∗

[S], replacer la
pièce y+ est possible car la position i+ 2 est dans B.

Nous sommes maintenant en mesure de prouver le théorème.
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x+ y+

H2

I2∗
[S]

x+ y+

H2

X 2∗
[S]

x+

H ′2

M∗[S]

x+
z

H ′2

I3∗
[S]

x+
z

H ′2

X 3∗
[S]

Figure 4.5 – La bijection φ3 ; les pièces minimales illégales sont grisées. Après avoir
retiré la pièce y+, une pièce minimale z de H ′2 peut ou non être découverte. Si oui,
l’empilement H ′ est dans I3∗

[S] ou X
3∗
[S] selon si z est une pièce minimale illégale de

H ′ ou non. Si non, l’empilement H ′ est dansM∗[S].

Preuve du théorème 4.18. Nous commençons par prouver les équations (4.11) et (4.12).
En combinant les lemmes 4.21, 4.22, 4.23 et 4.24, on trouve les identités

L∗[S](t) = J∗[S](t);
J∗[S](t) = M∗

[S](t)−W ∗
[S](t).

Les identités (4.19), (4.20), (4.21) et (4.22) permettent de conclure. Pour en déduire (4.15)
et (4.16), on utilise un argument d’inclusion-exclusion, qui permet d’écrire

J�S(t) =
∑
T⊆S

(−1)|S|−|T |J�[T ](t);

L�S(t) =
∑
T⊆S

(−1)|S|−|T |L�[T ](t);

M�
S(t) =

∑
T⊆S

(−1)|S|−|T |M�
[T ](t).

Le lemme 4.20 implique également

W �
S(t)− j(S)A�S(t) =

∑
T⊆S

(−1)|S|−|T |W �
[T ](t).

Les équations (4.15) et (4.16) découlent donc de (4.11) et (4.12). Enfin, les équations
(4.13), (4.14), (4.17) et (4.18) sont des conséquences directes du lemme 4.19.

4.3.3 Réseau triangulaire

Nous obtenons également des résultats valables sur le réseau triangulaire traitant du
nombre de sites adjacents et de boucles. Notons que Bousquet-Mélou [5] étudie également
le nombre de boucles des animaux sur le réseau triangulaire, mais utilise une définition
différente des boucles, qui donne une série plus difficile à calculer. Nos méthodes ne per-
mettent en revanche pas d’obtenir de résultat sur le périmètre ; on pense par ailleurs que
la série donnant le périmètre total des animaux d’aire fixée est transcendante [15], ce qui
laisse penser qu’une telle approche ne peut fonctionner.
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Théorème 4.25. Les séries donnant le nombre total de sites adjacents et de boucles des
animaux de source incluse dans S et d’aire fixée sont

JM[S](t) =
tMM

[S](t)−WM
[S](t)

1 + t
; (4.23)

LM[S](t) = tJM[S](t). (4.24)

Les mêmes séries comptant des animaux de source S sont

JMS (t) = tMM
S (t) + j(S)AMS(t)−WM

S (t)
1 + t

; (4.25)

LMS(t) = tJMS (t). (4.26)

Nous n’avons cette fois besoin que de deux lemmes, un certain nombre de résultats sur le
réseau carré se traduisant directement sur le réseau triangulaire.

Lemme 4.26. L’identité suivante est vérifiée :

LM[S](t) = tJM[S](t).

Preuve. La preuve de ce lemme est identique à celle du lemme 4.20, à ceci près que
nous utilisons la bijection F↓ plutôt que F s

↓ , à cause du fait que nous travaillons sur des
empilements généraux plutôt que presque stricts.

Comme pour le réseau carré, nous définissons les ensembles suivants, dont les éléments
sont des empilements généraux dont les pièces minimales sont à positions dans S :
– J M[S] l’ensemble des empilements marqués de deux pièces adjacentes ;
– I2M

[S] (resp. I3M
[S]) l’ensemble des empilements marqués de deux pièces indépendantes de

positions i et i+ 2 (resp. i et i+ 3).
Nous notons I2M

[S](t) et I3M
[S](t) les séries génératrices des ensembles I2M

[S] et I3M
[S] .

Lemme 4.27. L’identité suivante est vérifiée :

I2M
[S](t)− JM[S](t) = t

1− t

(
2JM[S](t) + I3M

[S](t)
)
.

Preuve. Nous utilisons une nouvelle bijection,

φM1 : I2M
[S] \ J M[S] →

(
J M[S] + J M[S]

)
∪ I3∗

[S],

où + désigne l’union disjointe. Cette bijection est similaire à φ1 (voir lemme 4.22) et
illustrée figure 4.6. Soit (H, {x, y}) un élément de I2M

[S] \ J M[S]. Soit (H1, H2) son image par
F↓, obtenue en tirant les pièces x et y vers le bas. Les pièces x et y ne sont pas adjacentes,
donc pas à la même hauteur ; supposons que x est la plus haute. Soit H ′1 l’empilement
obtenu en retirant de H1 toutes les pièces de la pile de x qui sont strictement plus hautes
que y (figure 4.6) et H ′ = H ′1H2.

L’empilement H ′1 a nécessairement une deuxième pièce maximale, que nous appelons z.
On pose φM1 (H, {x, y}) = (H ′, {y, z}). Deux cas sont possibles :

1. les pièces y et z sont adjacentes : l’empilement marqué (H ′, {y, z}) est dans J M[S] ;
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2. les pièces y et z sont de positions à distance 3 : l’empilement marqué (H ′, {y, z})
est dans I3M

[S] .
La bijection inverse est obtenue en replaçant la pile de la pièce x sur la pièce z. Dans le
cas 2, les pièces y et z ne peuvent être à la même hauteur par le lemme 4.7. La pièce z est
donc déterminée sans ambiguïté comme la plus haute des deux pièces maximales de H ′1.
En revanche, dans le cas 1, la pièce z peut être indifféremment celle de gauche ou celle de
droite, menant au facteur 2 devant la série J M[S].

x

y

H1

z
y

H ′1

y

x

H1

y
z

H ′1

z y

H ′1

y z

H ′1

I2M
[S](t)− J

M
[S](t)

I3M
[S](t)

JM[S](t) JM[S](t)

Figure 4.6 – La bijection φM1 : nous retirons toutes les pièces de la pile de x qui
sont strictement plus hautes que y. Ceci découvre une pièce maximale z de H ′1, qui
est soit adjacente à y, soit plus haute que y et à une position à distance 3.

Preuve du théorème 4.25. Nous commençons par l’équation (4.23). Soit (H, {x} un em-
pilement compté par MM

[S](t). Nous utilisons la bijection F↓ pour tirer la pièce marquée
vers le bas. Nous remarquons ensuite qu’une paire (H1, H2) d’empilements peut être ob-
tenue en remplaçant chaque domino d’une paire d’empilements stricts par une pile de
dominos ; les paires d’empilements stricts sont en bijection avec les empilements presque
stricts (lemme 1.28). On a donc

MM
[S](t) = M∗

[S]

(
t

1− t

)
.

Les séries I2
[S](t) et I3

[S](t) vérifient des liens similaires. Enfin, la série WM
[S](t) vérifie

WM
[S](t) = W �

[S]

(
t

1− t

)
= (1− t)W ∗

[S]

(
t

1− t

)
,

à cause du lien (4.22). En combinant les identités des lemmes 4.23 et 4.24 et en faisant la
substitution t

1−t , on trouve donc

I2M
[S](t) +WM

[S](t) = t

1− t

(
MM

[S](t) + I3M
[S](t)

)
.
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Le lemme 4.27 permet ensuite d’obtenir (4.23). Le lemme 4.26, quant à lui, prouve (4.24).
Les deux identités manquantes sont prouvées par le même argument d’inclusion-exclusion
que pour le théorème 4.18, notant que le lemme 4.20 est également valable sur le réseau
triangulaire.

4.3.4 Asymptotique

Nous tirons maintenant des théorèmes 4.18 et 4.25 des résultats asymptotiques. Soit n > 0
et S une source linéaire. Nous notons jS(n), `S(n), peS(n) et piS(n) les valeurs moyennes
du nombre de sites adjacents, nombre de boucles, périmètre externe et périmètre interne
des animaux dirigés de source S et d’aire n.

Corollaire 4.28. Plaçons nous dans le réseau complet, dans le demi-réseau, ou dans un
réseau cylindrique. Dans le réseau carré, on a les équivalents suivants quand n tend vers
l’infini :

j�S(n) ∼ n

µ� + 1;

`�S(n) ∼ n

(µ�)2 ;

pi�S (n) ∼ pe�S (n) ∼ µ�n

µ� + 1 .

Sur le réseau triangulaire, on a, de plus :

jMS (n) ∼ n

µM + 1;

`MS(n) ∼ n

µM(µM + 1) .

Les constantes µ� et µM sont données par la proposition 4.16. Dans les réseaux non bornés,
ces constantes valent µ� = 3 et µM = 4. On a donc

j�S(n) ∼ n

4 ; `�S(n) ∼ n

9 ; pi�S (n) ∼ pe�S (n) ∼ 3n
4 .

Sur le réseau triangulaire, on a

jMS (n) ∼ n

5 ; `MS(n) ∼ n

20 .

Preuve. Soit aS(n) le nombre d’animaux de source S. Nous commençons par utiliser les
équations (4.15) et (4.25) qui donnent la série JS(t) en fonction des séries MS(t), AS(t) et
WS(t). En utilisant l’identité (4.8) et la proposition 4.16, on remarque que le coefficient
d’ordre n de AS(t) et WS(t) est O(aS(n)).

De plus, dans les réseaux considérés, la position i + 2 est toujours dans l’ensemble B
dès que i est dans B. On en déduit que la série MS(t) compte les animaux de source
S marqués d’un domino quelconque. Le coefficient d’ordre n de MS(t) est donc naS(n),
ce qui montre que les contributions de AS(t) et WS(t) sont négligeables. Le terme t

1+t
tendant vers 1

µ+1 quand t tend vers 1/µ, on trouve donc

[tn]JS(t) ∼ naS(n)
µ+ 1 .
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Ce coefficient étant égal à aS(n)jS(n), on en déduit l’équivalent de jS(n). Les équivalents
de `S(n) et peS(n) sont calculés de la même manière. Pour prouver celui de piS(n), il suffit
de voir que la contribution de la série ES(t) est négligeable. Cette série est nulle dans les
réseaux complet et cylindriques. Dans le demi-réseau, le lemme 1.29 montre que

E�S(t) 6 E�[S](t) 6
A�[S](t)A�{0}(t)

1 + t
.

La série A�[S](t) a une singularité en (1− 3t)1/2 (voir proposition 4.16), tandis que la
série A�{0}(t) = D�(t) vaut 1 + O((1− 3t)1/2). Leur produit a donc aussi une singularité
en (1− 3t)1/2, et le coefficient d’ordre n est bien négligeable devant naS(n).

4.4 Exemples

Nous donnons maintenant quelques exemples d’utilisation des théorèmes 4.18 et 4.25
donnant le nombre total de sites adjacents, de boucles et de voisins des animaux dirigés
dans divers réseaux et pour diverses sources.

4.4.1 Animaux de source ponctuelle

Nous commençons par le cas le plus simple, celui des animaux de source ponctuelle sur le
réseau complet.

Corollaire 4.29. Les séries génératrices du nombre total de sites adjacents, boucles, et
voisins des animaux dirigés de source ponctuelle du réseau carré complet sont

J�(t) = 1
2t(1 + t)

(
1− 1− 4t+ t2 + 4t3√

1 + t(1− 3t)3/2

)
;

L�(t) = 1
2

(
1− 1− 4t+ t2 + 4t3√

1 + t(1− 3t)3/2

)
;

P �(t) = 1
2t(1 + t)

(
1− 3t+ 2t2 + t3 − 3t4√

1 + t(1− 3t)3/2 − 1 + t+ t2
)
.

Sur le réseau triangulaire, les séries du nombre total de sites adjacents et boucles sont

JM(t) = 1
2t(1 + t)

(
1− t− 1− 7t+ 12t2 − 2t3

(1− 4t)3/2

)
;

LM(t) = 1
2(1 + t)

(
1− t− 1− 7t+ 12t2 − 2t3

(1− 4t)3/2

)
.

Parmi ces valeurs, celle de P �(t) a été conjecturée par Conway [15] et celle de L�(t) a été
prouvée par Bousquet-Mélou [5], en utilisant des modèles de gaz.

Preuve. Pour calculer les séries J(t) ≡ J{0}(t), nous utilisons les deux identités (4.15) et
(4.25), qui donnent

J{0}(t) = tM{0}(t) + j({0})A{0}(t)−W{0}(t)
1 + t

.
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La série M{0}(t) est égale à tA′(t), la valeur j({0}) est nulle, et la série W{0}(t) est égale à
A{0,2}(t), elle-même égale à D(t)A(t) d’après la proposition 4.13. On en déduit les valeurs
des séries J�(t) et JM(t) grâce aux formules de la proposition 4.12. Les autres séries sont
ensuite calculées de la même manière.

4.4.2 Animaux de source compacte

Pour illustrer la méthode pour traiter les animaux de source non ponctuelle, nous consi-
dérons les animaux à source compacte. Rappelons que la source compacte de largeur `,
notée C`, est l’ensemble de positions

C` = {0, 2, . . . , 2`− 2}.

On note Ac(t) la série
Ac(t) =

∑
`>1

AC`
(t).

Rappelons également que le nombre d’animaux à source compacte d’aire n est 3n−1 sur
le réseau carré et 4n−1 sur le réseau triangulaire [29]. La série ci-dessus vaut donc

A�c(t) = t

1− 3t ; AMc (t) = t

1− 4t .

Par souci de simplicité, nous ne donnons pas ici les séries traitant le nombre de boucles et
le périmètre ; ces séries peuvent être facilement obtenues grâce aux formules des théorèmes
4.18 et 4.25.

Corollaire 4.30. Les séries donnant le nombre total de sites adjacents dans les animaux
à source compacte d’aire n sont

J�c (t) = 1
2

(
1− 2t√

1 + t(1− 3t)3/2 −
1− 3t− 2t2

(1 + t)(1− 3t)2

)
;

JMc (t) = 1
2(1 + t)

(
1− 3t

(1− 4t)3/2 −
1− 5t+ t2

(1− 4t)2

)
.

Preuve. Nous utilisons de même les équations (4.15) et (4.25). Plaçons nous dans le cas
de la source compacte C`. Dans ce cas, la série MC`

(t) vaut tA′C`
(t), la valeur j(C`) est

`−1, et la sérieWC`
(t) vaut AC`+1(t), donc D(t)AC`

(t). En sommant pour ` de 1 à l’infini,
on trouve donc

Jc(t) = 1
1 + t

(
t2A′c(t) +

∑
`>1

(`− 1)AC`
(t)−D(t)Ac(t)

)
.

La série AC`
(t) valant D(t)`−1A(t), on a donc

Jc(t) = 1
1 + t

(
t2A′c(t) + D(t)A(t)(

1−D(t)
)2 −D(t)Ac(t)

)
.

La proposition 4.12 permet de conclure.
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4.4.3 Demi-animaux dans les réseaux rectangulaires

Notre dernier exemple concerne les réseaux rectangulaires de largeur k. Nous étudierons
les périmètres externe et interne des animaux dirigés de source {0} sur le réseau carré.

Corollaire 4.31. Les séries donnant le nombre total de voisins externes et internes des
demi-animaux du réseau rectangulaire de largeur k valent

P e�
k (t) = D�k(t) + t

1 + t
D′�k (t)− 1

1 + t
D�k(t)2 ;

P i�
k (t) = t

1 + t
D�k(t) + t

1 + t
D′�k (t)− 1

1 + t
D�k

(
D�k(t)−D�k−2(t)

)
,

où la série D�k(t) est donnée par (4.7).

Le Borgne [39] a proposé une conjecture au sujet des séries comptant le périmètre externe
de ces animaux. Nos formules permettent de prouver cette conjecture.

Preuve. Plaçons nous dans le modèle B = {0, . . . , k − 1}. Par symétrie, nous étudions
les animaux de source {k − 1} à la place de {0}. Les deux séries P e�

k (t) ≡ P e�
{k−1}(t) et

P i�
k (t) ≡ P i�

{k−1}(t) sont calculées par (4.17) et (4.18), qui demandent de calculer la série
J�{k−1}(t). La valeur j({k− 1}) est nulle ; de plus, la position k+ 1 n’étant pas dans B, la
série W �

{k−1}(t) est nulle également. Il ne nous reste donc qu’à calculer les séries M�
{k−1}(t)

et E�{k−1}(t). Les identités (4.9) et (4.10) donnent

M�
{k−1}(t) = tD′�k (t)−M (k−1)�

{k−1} (t)−M (k−2)�
{k−1} (t);

E�{k−1}(t) = M
(0)�
{k−1}(t) +M

(k−1)�
{k−1} (t).

Enfin, nous calculons les séries de la forme M (i)�
{k−1}(t) en utilisant le lemme 1.29. Une

pyramide marquée ne pouvant être vide, cette série est égale à M (i)s
[{k−1}](t). On remarque

ensuite que :
– les séries Hs

{0}(t) et Hs
{0}(t) valent toutes deux D�k(t) par symétrie ;

– le seul empilement dont les pièces minimales sont à positions dans {k − 1} qui évite
k − 2 est l’empilement vide, de sorte que la série V (k−2)s

{k−1} (t) vaut 1 ;
– une pyramide stricte de pièce minimale k − 1 est soit réduite à une pièce, soit est
une pièce surmontée d’une pyramide stricte de pièce minimale k − 2, de sorte que
Hs
{k−2}(t) = D�k(t)

t
− 1 ;

– une pyramide de pièce minimale k− 1 qui évite 0 vit dans le modèle {2, . . . , k− 1}, de
sorte que V (0)s

{k−1} = 1 +D�k−2(t).
On en déduit enfin

M
(0)�
{k−1}(t) =

(
D�k(t)−D�k−2(t)

)
D�k(t)

1 + t
;

M
(k−2)�
{k−1} (t) =

D�k(t)
(
D�k(t)
t
− 1

)
1 + t

;

M
(k−1)�
{k−1} (t) =

(
1 +D�k(t)

)
D�k(t)

1 + t
.

Les formules annoncées sont déduites en injectant ces identités dans (4.15), (4.17) et
(4.18).



Chapitre 5

Animaux de Klarner

Ce chapitre présente un travail en vue de l’énumération des animaux de Klarner, présentés
dans l’introduction de la thèse. Nous suivons ici l’approche de Bousquet-Mélou et Rech-
nitzer qui utilise une bijection avec des empilements de dimères pour étudier les animaux
de Klarner (ou animaux multi-dirigés) sur les réseaux triangulaire et carré biaisé [10].
Nous étendons cette bijection au réseau carré droit en utilisant cette fois des empilements
de segments.

Nous présentons en réalité une légère variante des animaux de Klarner, qui n’affecte pas
leur énumération. Le travail présenté ici est encore largement en cours, ce qui explique
que les résultats ne sont pas aussi aboutis que ceux des autres chapitres.

Le chapitre est organisé comme suit. La section 5.1 donne une définition nouvelle des
animaux de Klarner utilisant des empilements de segments. La section 5.2 étudie le pro-
blème de l’énumération de ces animaux, et donne des résultats asymptotiques. Enfin, la
section 5.3 donne une bijection entre les animaux de Klarner et certains chemins de Dyck,
et en explore les conséquences possibles.

Note. Stricto sensu, les animaux de Klarner sont définis sur les réseaux carré droit et
triangulaire, alors que les animaux multi-dirigés de Bousquet-Mélou et Rechnitzer sont
définis sur les réseaux triangulaire et carré biaisé (les définitions coïncident sur le ré-
seau triangulaire). Nous utiliserons ici indifféremment les deux termes pour désigner les
animaux sur les trois réseaux.

5.1 Définitions

5.1.1 Animaux et empilements de segments

Comme annoncé précédemment, nous introduisons un troisième réseau sur lequel nous
étudierons les animaux, le réseau carré droit.

Définition 5.1. Le réseau carré droit est le graphe de sommets Z2, avec les arêtes (i, j)−
(i+ 1, j) et (i, j)− (i, j + 1) pour tous entiers i, j.

En apparence, le réseau carré droit est plus simple que le réseau carré biaisé ; en réalité,
la définition et l’énumération des animaux multi-dirigés sur ce réseau sont plus difficiles.
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L’étude des animaux dirigés du chapitre précédent repose sur la projection qui associe à
chaque animal du réseau triangulaire ou carré un empilement de dominos. Nous définissons
de même la projection d’un animal du réseau carré droit, qui sera un empilement de
segments plutôt que de dominos (le modèle des empilements de segments est défini dans
la section 1.5.1).
Définition 5.2. Soit A un sous-ensemble fini de Z2. On appelle segment de A un sous-
ensemble s de A de la forme {(i, j), . . . , (i+ `− 1, j)}, maximal pour l’inclusion (donc ni
(i− 1, j) ni (i+ `, j) ne sont dans A).
On appelle projection de s, et on note π(s), le segment dont les arêtes sont {i, . . . , i+`−1}
et hauteur de s l’entier j. La projection de A, encore notée π(A), est obtenue en empilant
les projections π(s) de tous les segments s de A par ordre croissant de hauteur.

À cause de la condition de maximalité d’un segment de A, deux segments à la même
hauteur ne sont jamais concurrents, ce qui implique que l’ordre dans lequel ils sont empilés
n’a pas d’importance. Ceci justifie la définition.
Un exemple de projection d’un animal est donné figure 5.1. Pour dessiner les segments,
nous adoptons une convention graphique similaire à celle du chapitre précédent : un
segment est représenté par un rectangle. Pour plus de clarté, ` points sont représentés
dans un segment de longueur `. En accord avec cette convention, nous parlerons de sites
d’un segment plutôt que d’arêtes.

π

=

Figure 5.1 – À gauche, un animal du réseau carré droit. À droite, le résultat de la
projection : chaque segment de l’animal comptant ` sites est remplacé par un seg-
ment de longueur `, représenté par un rectangle contenant ` points. Ici, l’empilement
qui résulte a deux adjacences à gauche.

Si A est un animal du réseau triangulaire ou carré biaisé, le fait que tous les sites (i, j)
sont tels que i+j est pair assure que tous les segments de A ne contiennent qu’un seul site.
La projection de A est donc un empilement de dominos. Ainsi, cette définition généralise
la projection définie sur les réseaux triangulaire et carré biaisé.
Comme sur les deux autres réseaux, la projection des animaux du réseau carré n’est pas
injective. Nous nous intéresserons à des sous-classes d’animaux, sur les trois réseaux, pour
lesquelles la projection est injective. Les animaux dirigés forment une telle sous-classe sur
les réseaux triangulaire et carré biaisé, dont l’image par la projection est l’ensemble des
pyramides. Les animaux multi-dirigés forment une classe plus grande.

5.1.2 Pyramides de Klarner

Les pyramides de Klarner sont l’équivalent sur le réseau carré droit des animaux dirigés.
Notre but est, en partant d’une pyramide de segments H, de construire un animal ψ(H)
tel que π ◦ ψ(H) = H.
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Sur le réseau triangulaire, un tel animal est obtenu en faisant correspondre à chaque
domino à position i un site (i, j), où j est la hauteur du domino. Nous faisons de même
pour les pyramides de segments : nous attribuons à l’unique segment minimal la hauteur 0
et à tout autre segment la hauteur j + 1, où j est la hauteur maximale d’un segment en
dessous de lui. Si x est un segment d’arêtes i, . . . , i + ` − 1 et de hauteur j, nous lui
faisons correspondre les sites (i, j), . . . , (i + ` − 1, j). Nous notons ψ(H) l’ensemble des
sites correspondant aux segments de H.
L’ensemble ψ(H) n’est pas nécessairement un animal du réseau carré droit. En effet, il
peut arriver que, bien qu’un segment y repose sur un autre segment x, les sites de ψ(H)
correspondant à x et y ne sont pas reliés. Ce phénomène se produit quand les sites de
x et de y sont consécutifs, i.e., les segments x et y sont adjacents (voir définition 1.32).
Ce phénomène peut être observé sur l’empilement de la figure 5.1. On a, en revanche, le
résultat suivant.
Lemme 5.3. Supposons que la pyramide H n’a d’adjacence ni à droite, ni à gauche.
L’ensemble ψ(H) est un animal du réseau carré.

Preuve. Soit y un segment non minimal de la pyramide H et x un segment sur lequel y
repose. Le segment y couvre donc x, ce qui signifie que y et x ne sont pas adjacents ; les
sites de ψ(H) qui correspondent à ces segments sont donc connectés dans le réseau carré.
De proche en proche, chaque site est donc connecté au segment minimal, ce qui prouve
que ψ(H) est connexe.

Les animaux ayant la forme ψ(H) où H est une pyramide de segments sans adjacence
seront appelés pyramides de Klarner. Comme pour les pyramides de dominos, nous ap-
pellerons demi-pyramide de Klarner une pyramide de Klarner dont le segment minimal
contient le site 0 et dont aucun segment ne contient de site négatif.
Comme le montre la figure 5.1, la réciproque du lemme 5.3 n’est pas vraie. Il existe ainsi
des pyramides de segments H telles que ψ(H) est un animal du réseau carré droit, mais
pas une pyramide de Klarner.

5.1.3 Empilements connexes et animaux de Klarner

Le chapitre 4 et la section précédente définissent trois familles d’animaux ; chacune en
bijection, via une application ψ, avec une famille d’empilements :
– les animaux dirigés de source ponctuelle sur le réseau triangulaire, en bijection avec les
pyramides de dominos ;

– les animaux dirigés de source ponctuelle sur le réseau carré biaisé, en bijection avec les
pyramides strictes de dominos ;

– les pyramides de Klarner, en bijection avec les pyramides de segments sans adjacence.
Nous définissons à présent les animaux multi-dirigés en étendant dans chaque cas l’ap-
plication ψ à une classe d’empilements plus large que les pyramides. Dans la suite, le
terme « empilement » désignera indifféremment un empilement de dominos, un empile-
ment strict de dominos ou un empilement de segments sans adjacence, selon le réseau
auquel on s’intéresse.
Définition 5.4. Un empilement non vide H est connexe si pour tous segments x et y
de H, il existe des segments x = x0, . . . , xn = y tels que les segments xi et xi+1 sont
concurrents pour tout i.
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Il est clair, en particulier, que toute pyramide est un empilement connexe. Alternative-
ment, un empilement est connexe si et seulement si les sites occupés par ses segments sont
consécutifs (figure 5.2a). Tout empilement se décompose en outre de manière unique en
composantes connexes.

Soit H un empilement connexe. Nous définissons inductivement un animal ψ(H), qui coïn-
cide avec la construction précédente si H est une pyramide et est défini à une translation
verticale près, de la manière suivante.

Définition 5.5. Soit H un empilement connexe et soit s un segment maximal de H ;
écrivons H = H ′s. Soient H1, . . . , Hn les composantes connexes de H ′ et A1, . . . , An leurs
images par ψ, construites inductivement.

Pour construire l’animal ψ(H), on commence par placer le segment s très haut ; ensuite,
on remonte chaque animal Ai assez haut pour qu’il soit en contact avec s.

Dans le cas où H ′ est lui-même connexe, la construction revient à déposer le segment s
sur l’animal ψ(H ′). En particulier, si H est une pyramide, l’empilement H ′ est encore une
pyramide, donc connexe. Ceci montre que l’application ψ est identique à celle donnant
les animaux dirigés et les pyramides de Klarner.

Cette définition est justifiée par le résultat suivant. Elle est illustrée figure 5.2.

Lemme 5.6. L’animal ψ(H) est, à une translation verticale près, le même quel que soit
le choix du segment maximal s.

Preuve. Soit H un empilement connexe et soient s1 et s2 deux segments maximaux de
H, pris de gauche à droite. Écrivons H = H ′s1s2 et soient H1, . . . , Hn les composantes
connexes de H ′, de gauche à droite ; soient A1, . . . , An leurs images par ψ.

Les segments s1 et s2 n’étant pas concurrents, une seule des composantes Hi peut être
concurrente à la fois à s1 et à s2. De plus, il doit exister une telle composante, sans quoi H
ne serait pas connexe. Appelons donc Hm l’unique composante connexe de H ′ concurrente
à s1 et s2.

On constate que, quel que soit l’ordre dans lequel les segments s1 et s2 sont ajoutés,
l’animal ψ(H) est construit en déposant les segments s1 et s2 sur l’animal Am, puis en
translatant l’animal très haut ; les animaux A1, . . . , Am−1 sont ensuite remontés assez
haut pour qu’ils touchent s1, puis les animaux Am+1, . . . , An sont remontés assez haut
pour qu’ils touchent s2. Ceci termine la preuve.

Nous appellerons multi-dirigés les animaux de la forme ψ(H), avec H un empilement
connexe. L’application ψ est bien une bijection à cause de l’identité π ◦ ψ(H) = H.

La classe des animaux multi-dirigés ainsi construite est légèrement différente de celles
décrites dans [35, 10] ; un avantage de cette définition est que la classe des animaux multi-
dirigés est, par construction, symétrique selon l’axe vertical. Bien sûr, ce changement de
définition n’a pas d’incidence sur l’énumération, puisque les animaux multi-dirigés restent
en bijection avec les empilements connexes.
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(a) (b) (c)

(d) (e)

Figure 5.2 – La construction de l’animal image par ψ d’un empilement de segments
connexe et sans adjacence (a). L’animal est construit segment par segment dans un
ordre compatible avec celui de l’empilement. Les premiers segments forment deux
composantes connexes (b). Le segment ajouté en (c) réunit ces deux composantes en
remontant celle de gauche. Les derniers segments sont ensuite ajoutés (d). L’animal
final est représenté en (e), et est indépendant de l’ordre dans lequel on empile les
segments ; sa projection est bien l’empilement de départ (a).

5.2 Énumération

Dans l’article définissant ses animaux, Klarner a donné une équation que vérifie leur série
génératrice, mais n’a pas pu résoudre cette équation [35]. Le lien entre les animaux de
Klarner et les empilements de dominos a ensuite permis à Bousquet-Mélou et Rechnitzer
[10] de donner une formule exacte pour l’énumération des animaux multi-dirigés dans les
réseaux triangulaire et carré biaisé. Cette formule a ensuite été prouvée plus combina-
toirement par Viennot [53]. Dans ce même article, Viennot montre également l’existence
d’un lien entre les empilements connexes de dominos et certains modèles de physique
statistique, par exemple étudiés dans [21].

Nous présentons ces travaux et montrons pourquoi la méthode de Bousquet-Mélou et
Rechnitzer ne fonctionne pas pour le réseau carré droit.

5.2.1 Empilements connexes et empilements généraux

Soit k > 1 un entier. Nous considérons les animaux de Klarner de largeur k, c’est-à-dire
occupant k colonnes consécutives. Nous attribuons le poids u aux sites situés dans la
première colonne et le poids t aux autres sites.

Ceci permet d’écrire la série génératrice, notée Ck(t, u), des animaux de Klarner de lar-
geur k. Notons C(t, u, z) la série génératrice

C(t, u, z) =
∑
k>1

Ck(t, u)zk.
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La spécialisation C(t, t, 1) donne ainsi la série génératrice des animaux de Klarner comptés
selon l’aire.

Nous notons également Hk(t, u) la série génératrice des empilements du modèle borné de
largeur k, où les sites de la première colonne portent le poids u et ceux des autres colonnes
le poids t. Notons enfin H(t, u, z) la série

H(t, u, z) =
∑
k>0

Hk(t, u)zk.

Nous utiliserons les notations ci-dessus pour les énoncés valables indifféremment dans les
trois modèles. Pour ceux concernant un modèle particulier, nous noterons, par exemple,
CMk (t, u), C�k(t, u) et C2

k (t, u) pour désigner la série Ck(t, u) dans les modèles triangulaire,
carré biaisé et carré droit, respectivement.

Le lien habituel entre empilements de dominos et empilements stricts de dominos donne

HM(t, u, z) = H�
(

t

1− t ,
u

1− u, z
)

; (5.1)

CM(t, u, z) = C�
(

t

1− t ,
u

1− u, z
)
, (5.2)

ou alternativement

H�(t, u, z) = HM
(

t

1 + t
,

u

1 + u
, z

)
; (5.3)

C�(t, u, z) = CM
(

t

1 + t
,

u

1 + u
, z

)
. (5.4)

Dans la suite, nous nous concentrerons donc sur les réseaux triangulaire et carré droit.

Le résultat suivant, valable dans les trois modèles, permet de calculer la série C(t, u, z) à
partir de la série H(t, u, z).

Proposition 5.7. La série C(t, u, z) des empilements connexes vaut

C(t, u, z) = H(t, u, z)
1 + zH(t, t, z) − 1.

Le calcul de la série C(t, u, z) se déduit donc de celui de H(t, u, z). En revanche, il est
impossible de faire la substitution z = 1 directement dans cette formule : en effet, nous
allons voir que la série H(t, u, z) ne converge pas au voisinage de z = 1.

Cette identité apparaît dans [10] pour le cas des empilements de dominos.

Preuve. Ce résultat repose sur le fait qu’un empilement peut se voir comme une suite
d’empilements connexes séparés par une ou plusieurs colonnes vides. En d’autres termes,
un empilement est une suite de colonnes vides éventuellement suivies d’un empilement
connexe ; à gauche de la première colonne vide se trouve également éventuellement un
empilement connexe. On trouve donc le lien

H(t, u, z) = 1 + C(t, u, z)
1− z − zC(t, t, z) .
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En posant u = t dans cette équation, on trouve

H(t, t, z) = 1 + C(t, t, z)
1− z − zC(t, t, z) .

Ensemble, ces deux équations impliquent l’identité de la proposition.

Plaçons nous maintenant dans le cas particulier où t = u, c’est à dire qu’on n’attache pas
d’importance particulière aux sites situés dans la première colonne. Dans le cas du réseau
triangulaire, les séries Hk(t, t) sont calculées dans la section 1.5.3 : elles valent

HMk (t, t) = 1
Fk+1(t) , (5.5)

où les polynômes de Fibonacci Fk(t) sont définis par

∑
k>0

Fk(t)zk = 1
1− z + tz2 .

On déduit de cette identité une expression des polynômes Fk(t) :

Fk(t) = 1−Dk+1

(1−D)(1 +D)k ,

oùD est la sérieDM(t) des nombres de Catalan. Ceci permet de calculer la sérieHM(t, t, z),
et donc d’en déduire la série CM(t, t, 1) des empilements connexes. Le détail du calcul est
donné dans [10]. Le résultat final, valable pour les réseaux triangulaire et carré biaisé, est

C(t, t, 1) = D

(1−D)
(

1−∑k>1
Dk+1

1−Dk(1+D)

) , (5.6)

où D vaut la série D(t) appropriée selon le réseau. Une preuve plus directe et combinatoire
de ce résultat est donnée dans [53].

En revanche, dans le réseau carré droit, il n’est pas possible de mener le même calcul. Le
calcul de la série H2

k (t) comptant les empilements de segments sans adjacence est discuté
dans la section 1.5.2 (cette série est alors notée Hgd

k (t)). Le lemme 1.35 montre qu’il est
impossible d’appliquer le théorème d’inversion (théorème 1.16), qui était la base du calcul
de HMk (t).

Soit Q(t) la série définie par

Q(t) = lim
k→∞

Hk(t, t)
Hk−1(t, t) (5.7)

Dans le réseau triangulaire, cette série est 1 +D(t). Dans le réseau carré, la limite semble
exister et avoir des coefficients positifs, mais est différente de D2(t). Cette série pourrait
être le paramètre naturel permettant d’exprimer la série C2(t, t, 1), mais je n’ai pu ni
trouver un équivalent de l’identité (5.6), ni même prouver l’existence de la série Q2(t) ou
la calculer.

L’examen des premiers termes de la série Q2(t) par Gfun [46] semble montrer qu’elle n’est
pas D-finie.
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5.2.2 Construction colonne par colonne

Nous présentons ici une autre méthode pour calculer la série des empilements connexes, qui
est essentiellement celle envisagée par Klarner. Nous nous concentrons, comme indiqué
précédemment, sur les réseaux triangulaire et carré droit. Là encore, nous montrerons
en quoi cette méthode permet d’aboutir pour le réseau triangulaire, mais rencontre des
difficultés pour le réseau carré droit.

Nous calculons également avec cette méthode la série, notée Dk(t, u), des demi-pyramides
de largeur au plus k, où la variable u compte les sites dans la première colonne et t les
autres sites. S’intéresser aux demi-pyramides est naturel pour deux raisons. Tout d’abord,
les demi-pyramides de dominos sont plus faciles à énumérer que les empilements connexes ;
ensuite, la formule (5.6) donnant la série génératrice des animaux multi-dirigés dans le
réseau triangulaire fait intervenir la série D(t) des demi-pyramides. Il est à espérer qu’il
en soit de même sur le réseau carré droit.

Soient A(v) = ∑
k>0Akv

k et B(k) = ∑
k>0Bkv

k des séries génératrices. Notons A(v) �v
B(v) le produit de Hadamard des séries A(v) et B(v), défini comme

A(v)�B(v) =
∑
k>0

AkBkv
k.

Lemme 5.8. Sur les réseaux triangulaire et carré droit, les séries Hk(t, u) sont données
par

H1(t, u) = 1
1− u ;

Hk(t, u) =
[
Hk−1(t, v)�v H2(v, u)

]
v=t

, k > 1.

De plus, les séries Ck(t, u) sont données par

C1(t, u) = u

1− u ;

Ck(t, u) =
[
Ck−1(t, v)�v C2(v, u)

]
v=t

, k > 1.

Enfin, les séries Dk(t, u) sont données par

D1(t, u) = u

1− u ;

Dk(t, u) = u

1− u +
[
Dk−1(t, v)�v D2(v, u)

]
v=t

, k > 1.

Ces identités se traduisent en équations définissant les séries H(t, u, z) et C(t, u, z) :

H(t, u, z) = 1 + z
[
H(t, v, z)�v H2(v, u)

]
v=t

;

C(t, u, z) = uz

1− u + z
[
C(t, v, z)�v C2(v, u)

]
v=t
.

Preuve. Commençons par le cas de la série Hk(t, u). L’expression de H1(t, u) est claire.
Soit H un empilement de largeur k avec k > 2, possédant i sites dans la première colonne
et j sites dans la deuxième.
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Soit x un segment de H. Notons x[1,2] le segment constitué des sites de x dans les deux
premières colonnes (ce segment n’est défini que si x possède au moins un tel site). Notons
H[1,2] l’empilement constitué de tous les segments de la forme x[1,2]. De la même manière,
notons H[2,k] l’empilement constitué de tous les sites des segments de H dans toutes les
colonnes sauf la première.

Les sites des colonnes à distance au moins 2 n’interagissant pas, l’empilement H est
entièrement déterminé par H[1,2] et H[2,k]. Écrivons maintenant la série génératrice, notée
H̃k(t, u, v), des empilements de largeur k avec une variable u comptant les sites dans la
première colonne, une variable v pour les sites dans la deuxième colonne et une variable
t pour les autres sites. On trouve

H̃k(t, u, v) =
∑

i>0,j>0
[vj]Hk−1(t, v)[uivj]H2(v, u).

Ceci est équivalent à
H̃k(t, u, v) = Hk−1(t, v)�v H2(v, u).

La série Hk(t, u) s’obtient ensuite en remplaçant v par t.

Pour calculer la série Ck(t, u), on remarque que l’empilement H possède un site dans
chaque colonne si et seulement si H[1,2] et H[2,k] possèdent un site dans toutes les leurs.
Le raisonnement est donc identique. Enfin, pour calculer la série Dk(t, u), on remarque
que l’empilement H est une demi-pyramide si soit il n’a de sites que dans la première
colonne, soit les empilements H[1,2] et H[2,k] sont des demi-pyramides. La formule annoncée
s’ensuit.

Le résultat suivant donne les valeurs des séries H2(v, u), C2(v, u) et D2(v, u) apparaissant
dans les formules ci-dessus.

Lemme 5.9. Les séries comptant les trois types d’empilements sur deux colonnes dans le
réseau triangulaire sont

HM2 (v, u) = 1
1− u− v ;

CM2 (v, u) = 1
1− u− v −

u

1− u −
v

1− v − 1 ;

DM2 (v, u) = u

1− u− v .

Dans le réseau carré, ces séries valent

H2
2 (v, u) = 1− uv

1− u− v + u2v2 ;

C2
2 (v, u) = 1− uv

1− u− v + u2v2 −
u

1− u −
v

1− v − 1 ;

D2
2 (v, u) = 1− v

1− u− v + u2v2 − 1.

Certaines de ces formules apparaissent dans [35].
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Preuve. Commençons par le réseau triangulaire. Dans ce réseau, le modèle d’empilements
sur deux colonnes possède deux pièces concurrentes, que nous noterons g (le domino de la
colonne de gauche) et d (celui de la colonne de droite). Les poids respectifs de ces dominos
sont u et v.

Un empilement peut être vu comme n’importe quel mot sur l’alphabet {g, d}, d’où la
formule pour HM2 (v, u). Cet empilement est connexe s’il ne contient ni seulement des g, ni
seulement des d ; cela oblige à retrancher les termes correspondant au langage 1 +g+ +d+

pour trouver la série CM2 (v, u). Enfin, l’empilement est une demi-pyramide s’il commence
par un g. On en déduit la formule pour DM2 (v, u).

Pour le réseau carré, le modèle des empilements de segments sur deux colonnes compte
trois pièces, toutes concurrentes entre elles : le segment comptant un site à gauche (que
nous noterons g), le segment comptant un site à droite (que nous noterons d) et le segment
comptant un site dans chacune des deux colonnes (que nous noterons b).

La condition de non adjacence interdit les motifs gd et dg ; ceci équivaut à dire qu’entre
deux pièces b consécutives, il se trouve soit uniquement des pièces g, soit uniquement des
pièces d. Les empilements sur deux colonnes sont donc reconnus par l’expression régulière
non ambiguë

(1 + g+ + d+)
[
b(1 + g+ + d+)

]∗
.

En remarquant que la pièce g a pour poids u, la pièce d pour poids v et la pièce b pour
poids uv, on en déduit l’expression

H2
2 (v, u) =

1 + u
1−u + v

1−v

1− uv
(
1 + u

1−u + v
1−v

) .
Cette expression se simplifie en la forme annoncée. La série C2

2 (v, u) est calculée de la
même manière que dans le réseau triangulaire. Enfin, un empilement non vide est une
demi-pyramide si et seulement si il ne commence pas par un d. L’expression régulière des
demi-pyramides éventuellement vides est donc

g∗
[
b(1 + g+ + d+)

]∗
.

On en déduit l’expression de D2
2 (v, u).

Les lemmes 5.8 et 5.9 nous permettent d’écrire le résultat suivant. Les équations sur le
réseau triangulaire apparaissent dans [10].

Théorème 5.10. Soit k > 2. Dans le réseau triangulaire, les séries Hk(t, u), Ck(t, u) et
Dk(t, u) obéissent aux équations de récurrence

HMk (t, u) = 1
1− uH

M
k−1

(
t,

t

1− u

)
;

CMk (t, u) = 1
1− uC

M
k−1

(
t,

t

1− u

)
− CMk−1(t, t) ;

DMk (t, u) = u

1− u + u

1− uD
M
k−1

(
t,

t

1− u

)
.
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Dans le réseau carré, ces mêmes séries vérifient
H2
k (t, u) = 1+(α+β)(α−1)

α−β H2
k−1(t, tα)− 1+(α+β)(β−1)

α−β H2
k−1(t, tβ) ;

C2
k (t, u) = 1+(α+β)(α−1)

α−β C2
k−1(t, tα)− 1+(α+β)(β−1)

α−β C2
k−1(t, tβ)− C2

k−1(t, t) ;

D2
k (t, u) = u

1− u + α + β

α− β
[
(α− 1)D2

k−1(t, tα)− (β − 1)D2
k−1(t, tβ)

]
,

où α = α(u) et β = β(u) sont les séries

α(u) =
1 +

√
1− 4u2(1− u)
2(1− u) , β(u) =

1−
√

1− 4u2(1− u)
2(1− u) . (5.8)

Preuve. Le résultat repose sur une décomposition en éléments simples des séries calculées
dans le lemme 5.9, vues comme des fractions rationnelles en la variable v. Nous trouvons,
pour le réseau triangulaire

HM2 (v, u) = 1
1− u

1
1− 1

1−uv
;

CM2 (v, u) = HM2 (v, u)− 1
1− v −

u

1− u ;

DM2 (v, u) = uHM2 (v, u).
Ceci permet d’extraire le coefficient de vj de la série HM2 (v, u) :

[vj]HM2 (v, u) = 1
1− u

(
1

1− u

)j
.

On fait de même pour les deux autres séries, en remarquant que les séries CMk (v, u) et
DMk (v, u) ont un coefficient constant en u nul si k > 1. Par conséquent, pour calculer le
produit de Hadamard, on peut se contenter d’extraire le coefficient en vj pour j > 1. On
trouve dans ce cas

[vj]CM2 (v, u) = 1
1− u

(
1

1− u

)j
− 1;

[vj]DM2 (v, u) = u

1− u

(
1

1− u

)j
.

Par définition du produit de Hadamard, on écrit l’identité du lemme 5.8 donnant, par
exemple, HMk (t, u) sous la forme

HMk (t, u) =
∑
j>1

(
[vj]HMk−1(t, v)[vj]HM2 (v, u)

)
tj.

En injectant la formule donnant les coefficients de HM2 (v, u), on trouve la formule du
théorème. On fait de même pour les séries CMk (t, u) et DMk (t, u).
Le réseau carré droit est traité de la même manière. On trouve les décompositions en
éléments simples suivantes :

H2
2 (v, u) = 1 + (α + β)(α− 1)

α− β
1

1− αv −
1 + (α + β)(β − 1)

α− β
1

1− βv ;

C2
2 (v, u) = H2

2 (v, u)− 1
1− v −

u

1− u ;

D2
2 (v, u) = α + β

α− β

(
α− 1
1− αv −

β − 1
1− βv

)
− 1.
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Ainsi, on extrait les coefficients de vj :

[vj]H2
2 (v, u) = 1 + (α + β)(α− 1)

α− β
αj − 1 + (α + β)(β − 1)

α− β
βj,

et pour j > 1 :

[vj]C2
2 (v, u) = [vj]H2

2 (v, u)− 1;

[vj]D2
2 (v, u) = α + β

α− β
[
(α− 1)αj − (β − 1)βj

]
.

On en déduit les formules annoncées.

Notant que la série C(t, u) des empilements connexes est la somme des séries Ck(t, u)
pour k > 1, tandis que la série D(t, u) des demi-pyramides est la limite des séries Dk(t, u)
quand k tend vers l’infini, on déduit du théorème 5.10 les équations

CM(t, u) = u

1− u + 1
1− uC

M

(
t,

t

1− u

)
− CM(t, t); (5.9)

DM(t, u) = u

1− u + u

1− uD
M

(
t,

t

1− u

)
, (5.10)

et pour le réseau carré

C2(t, u) = u

1− u + 1+(α+β)(α−1)
α−β C2(t, tα)− 1+(α+β)(β−1)

α−β C2(t, tβ)− C2(t, t); (5.11)

D2(t, u) = u

1− u + α + β

α− β
[
(α− 1)D2(t, tα)− (β − 1)D2(t, tβ)

]
. (5.12)

Comme attendu, l’équation gouvernant la série D2(t, u) est plus simple que celle gouver-
nant la série C2(t, u), à cause de l’absence de terme en D2(t, t). Le calcul des premiers
termes de la série D2(t, t) montre également que, contrairement au cas du réseau trian-
gulaire, cette série est différente de la série Q2(t) définie par (5.7).

En utilisant les formules du théorème 5.10, il est facile de vérifier par récurrence les
formules suivantes :

HMk (t, u) = 1
Fk(t)− uFk−1(t) ;

DMk (t, u) = uFk−1(t)
Fk(t)− uFk−1(t) ,

où les Fk(t) sont les polynômes de Fibonacci. On retrouve ainsi l’expression (5.5) quand
t = u. Il n’y a pas de formule aussi simple pour la série CMk (t, u), mais la formule ci-dessus
permet d’évaluer la série HM(t, u, z), qui à son tour permet de calculer la série CM(t, u, z)
grâce à la proposition 5.7. Tous ces calculs sont effectués dans [10].

Sur le réseau carré, les équations sont plus difficiles à résoudre. L’observation des séries
H2
k (t, u) etD2

k (t, u) pour les petites valeurs de k ne m’a pas permis de trouver un analogue
des identités ci-dessus, qui est le point de départ de la résolution du modèle triangulaire.
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5.2.3 Résultats asymptotiques

À présent, nous cherchons à tirer des équations précédentes des conséquences asympto-
tiques. Le résultat suivant se trouve dans [10] et s’obtient à partir de l’expression (5.6).
Théorème 5.11. Les séries CM(t, t, 1) et C�(t, t, 1) des animaux multi-dirigés sur les
réseaux triangulaire et carré biaisé ne sont pas D-finies. De plus, le nombre d’animaux
d’aire n est équivalent à Aµn, pour une constante A, sur ces deux réseaux avec µM =
4, 5878... et µ� = 3,5878....

Il n’existe pas de résultat aussi précis sur le réseau carré, mais Klarner [35] a donné,
en utilisant des matrices de transfert, un encadrement de la constante de croissance qui
donne µ2 = 3,7227....
Nous cherchons maintenant à obtenir des résultats impliquant le nombre de sites dans la
première colonne. Nous nous servirons pour cela des équations trouvées ci-dessus.
Théorème 5.12. Soit tc le rayon de convergence de la série C(t, t). Pour t < tc, soit
ρ(t) le rayon de convergence de la série C(t, u) vue comme une série en la variable u. Le
rayon ρ(t) vaut, selon le réseau,

ρM(t) =
(
1 +DM(t)

)−1
,

ρ�(t) = D�(t)−1,

ρ2(t) =
1 + t2 −

√
(1− t)(1− 3t− t2 − t3)

2t

−1

;

De plus, la valeur tc vérifie, selon le réseau,

tMc 6 1/4, t�c 6 1/3, t2c 6 t0,

où t0 est la solution réelle de
1− 3t− t2 − t3 = 0.

Les mêmes résultats valent pour la série D(t, u), avec une valeur différente de tc.

Dans les réseaux triangulaire et carré biaisé, le rayon de convergence de D(t, t) est en fait
exactement 1/4 et 1/3 respectivement, tandis que celui de C(t, t) est strictement inférieur.
Dans le réseau carré droit, le théorème montre que les constantes de croissance (égales
à l’inverse du rayon de convergence) des deux séries sont supérieures à 1/t0, qui vaut
3,3829.... Les constantes de croissance expérimentales des séries C2(t, t) et D2(t, t) sont
respectivement 3,7227... et 3,4165... ; en particulier, le rayon de convergence de D(t, t) est
strictement inférieur à t0, ce qui illustre la complexité du réseau carré droit par rapport
au triangulaire.
Soit P (t) la série qui intervient dans le calcul de ρ2(t) :

P (t) =
1 + t2 −

√
(1− t)(1− 3t− t2 − t3)

2t . (5.13)

Cette série est déjà connue en combinatoire, et porte le numéro A082582 dans l’Online
Encyclopedia of Integer Sequences de Sloane [48]. Elle compte les chemins de Dyck n’ayant
pas de grand pic, ou facteur uudd [47]. Un lien possible entre les animaux de Klarner et
ces chemins de Dyck est exploré dans la section 5.3.2.
Les fonctions donnant la valeur de ρ(t) pour t inférieur à tc sont montrées figure 5.3.
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1/4 1/3t00

1

ρM(t) ρ2(t)

ρ�(t)

t

Figure 5.3 – Les graphes des fonctions donnant le rayon ρ(t) dans les trois réseaux.
En réalité, ce rayon n’est défini que pour t < tc, avec tc inférieur à 1/4, 1/3 ou t0.

Preuve. Soit t < tc fixé. Le fait que la série C(t, t) converge montre que le rayon ρ(t)
existe (i.e., le coefficient de uk de la série C(t, u) converge pour tout k) et n’est pas nul.
La série C(t, u) étant à coefficients positifs, la fonction ρ est décroissante pour t < tc ;
de plus, le théorème de Pringsheim [27, théorème IV.6] montre que, si ρ(t) est fini, cette
série est singulière au point u = ρ(t).

Dans le réseau triangulaire, la série C(t, u) obéit à l’équation (5.9). Le terme u
1−u assure

que ρ(t) est inférieur à 1 ; de plus, le terme en C(t, t
1−u) domine celui en C(t, t) pour u < 1.

Faisons tendre u vers ρ(t). Le terme de gauche devient singulier, donc le terme de droite
aussi. Il résulte que t

1−u tend vers ρ(t). On en déduit l’équation

t

1− ρM(t) = ρM(t).

Cette équation n’a de solution réelle que si t 6 1/4, ce qui montre l’inégalité tMc 6 1/4.
De plus, la seule solution qui rende la fonction ρ(t) décroissante est

ρM(t) = 1 +
√

1− 4t
2 ,

qui est bien l’inverse de 1 +DM(t).

Dans le réseau carré droit, la série C(t, u) obéit à l’équation (5.11). Là encore, le terme
u

1−u montre que le rayon ρ(t) est inférieur à 1. Les séries α(u) et β(u) ont également pour
rayon de convergence 1. Enfin, comme montré figure 5.4, la quantité α(u) est toujours
supérieure à 1 et à β(u) pour 0 6 u < 1, ce qui montre que le terme dominant est celui en
C(t, tα). Répétant le même raisonnement que ci-dessus, nous obtenons l’identité, valable
pour t < tc :

ρ2(t) = tα
(
ρ2(t)

)
.

En utilisant l’équation (1− u)α(u)2 − α(u) + u2 = 0, on en déduit(
1− ρ2(t)

)(
tρ2(t)

)2
− tρ2(t) + ρ2(t)2 = 0.

La solution ρ2(t) = 0 ne convenant pas, on obtient finalement

ρ2(t)2 − (1 + t2)ρ2(t) + t = 0.
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0 1

1

u

β(u)

α(u)

Figure 5.4 – Les graphes des fonctions α et β pour u entre 0 et 1.

Cette équation n’a de solution réelle que si t < t0, ce qui montre l’inégalité t2c 6 t0 ; de
plus, la seule solution qui rend ρ(t) décroissante est ρ2(t) = P (t)−1.

Enfin, pour traiter le réseau carré biaisé, nous utilisons le lien (5.4). On obtient l’équation

ρ�(t)
1 + ρ�(t) = ρM

(
t

1 + t

)
,

qui montre bien que t�c 6 1/3 et que ρ�(t) est l’inverse de D�(t).

Le même raisonnement s’applique à la série D(t, u), donnée par les équations (5.10) et
(5.12).

5.3 Bijections avec les chemins de Dyck

Dans cette dernière section, nous développons une approche bijective pour traiter les ani-
maux multi-dirigés. Cette approche repose sur les bijections de le chapitre 2, qui trans-
forment les empilements de dominos et de segments en chemins de Dyck.

Dans la suite, nous considérerons les chemins de Dyck comme des mots sur l’alphabet
{u, d}, où u est le pas montant et d le pas descendant. De plus, si α est un mot a1 · · · an,
nous notons α̃ son image miroir an · · · a1.

5.3.1 Animaux multi-dirigés et chemins culminants irréductibles

Dans la section 2.2.3, il est montré que certains empilements de dimères sont en bijection
avec certains chemins. En utilisant en plus la bijection entre animaux et empilements, on
obtient le résultat suivant.

La définition suivante, qui est utilisée dans [9], est calquée sur la définition des ponts
auto-évitants (voir chapitre 3).

Définition 5.13. On appelle culminant un chemin prenant des pas u et d et joignant les
sommets v0 et vf , tel que la hauteur de tout sommet v 6= vf vérifie h(v0) 6 h(v) < h(vf ).
Un chemin culminant non vide α est dit irréductible s’il ne s’écrit pas α = βγ où β et γ
sont culminants non vides.
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Proposition 5.14. Soit n > 1. Il y a bijection entre les animaux multi-dirigés d’aire n sur
le réseau triangulaire et les chemins culminants irréductibles comptant n pas descendants.
Il y a également bijection entre les demi-animaux dirigés d’aire n et les chemins de Dyck
de longueur 2n.

Preuve. Pour construire cette bijection, nous utilisons la bijection f décrite dans la dé-
finition 2.2. Soit ω un chemin culminant de hauteur k, possédant n pas descendants et
n+k pas montants. La bijection f transforme ω en une paire (η,H), où η est composé de
k pas montants et H est un empilement de dimères de largeur au plus k − 1 comptant n
pièces.

Le chemin ω est irréductible si et seulement si, à toute hauteur, il possède au moins un pas
descendant. Ceci équivaut à dire que l’empilement H possède au moins un dimère dans
chaque colonne, c’est-à-dire qu’il est connexe. Par construction, les animaux multi-dirigés
d’aire n sont en bijection avec les empilements connexes de dimères ayant n pièces, ce qui
conclut la preuve.

Les chemins (excursions) de Dyck sont traités de la même manière. Si ω est un chemin
de Dyck non vide, f(ω) est de la forme (ε0, H), où ε0 est le chemin vide au point 0
et H un empilement dont les pièces minimales touchent la colonne 0, c’est-à-dire une
demi-pyramide.

La section 2.2.3 montre que les chemins de Dyck peuvent se voir comme des chemins stricts
de Łukasiewicz, en groupant les pas descendants consécutifs. Nous utilisons la bijection f
sur ces chemins de Łukasiewicz, ce qui donne des empilements de segments ; le lemme 2.17
montre de plus que les empilements de segments obtenus sont sans adjacence à droite.

Les empilements de Klarner étant, en particulier, sans adjacence à droite, ils peuvent donc
aussi se voir comme des chemins de Dyck. Pour décrire ces chemins, nous devons trouver
comment se traduisent les adjacences à gauche.

Définition 5.15. On appelle motif d’adjacence d’un mot de Dyck un facteur de la forme
udα̃uuβdu, où α et β sont des mots de Dyck.

Un tel motif, ainsi que l’adjacence gauche auquel il correspond, est illustré figure 5.5.

Proposition 5.16. Soit n > 1. Il y a bijection entre les animaux multi-dirigés d’aire n sur
le réseau carré droit et les chemins culminants irréductibles sans motif d’adjacence comp-
tant n pas descendants. Il y a également bijection entre les demi-pyramides de Klarner
d’aire n et les chemins de Dyck sans motif d’adjacence de longueur 2n.

Preuve. Soit ω un chemin culminant de hauteur k, vu comme un chemin strict de Łukasie-
wicz. Ainsi qu’expliqué ci-dessus, la bijection consiste à utiliser la bijection f décrite dans
la définition 2.2 pour transformer ω en un couple (η,H), où η est le chemin auto-évitant
composé de k pas montants et H est un empilement de segments de largeur k − 1. Le
chemin ω est irréductible si et seulement si l’empilement H est connexe.

Le chemin ω étant strict, le lemme 2.17 montre que l’empilement H n’a pas d’adjacence
à droite. Il reste à montrer que H possède une adjacence gauche si et seulement si ω
contient un motif d’adjacence.
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Soient γb et γa deux segments adjacents à gauche de H, et soient a et b les pas descendants
de ω correspondants. Les pas a et b sont donc de la forme j → i et k → j, respectivement.
Le chemin ω étant strict, le pas a est précédé d’un pas montant j − 1 → j et le pas b
suivi d’un pas montant j → j + 1. Intéressons-nous au facteur situé entre ces deux pas
montants inclus : il est de la forme udδdu ; le chemin δ commence à hauteur j − 1 et finit
à hauteur j + 1 (figure 5.5).
Soit c un pas descendant situé entre a et b et γc le segment correspondant. Comme γa
couvre γb, le segment γc ne peut être à la fois concurrent à γa et à γb. Ceci signifie que
le pas c ne peut pas passer par la hauteur j. Le chemin δ ne peut donc traverser qu’en
montant la ligne de hauteur j, ce qui montre qu’il est de la forme α̃uuβ.
Réciproquement, soit δ = udα̃uuβdu un motif d’adjacence commençant à la hauteur j−1
et finissant en j+ 1. Soit a et b les pas descendants contenant le premier et le dernier d de
δ, respectivement ; soit γa et γb les segments correspondants. Aucun pas descendant de δ
ne passant par la hauteur j, le segment γa couvre γb, donc ces deux segments constituent
une adjacence à gauche.
Le cas des demi-pyramides est traité de manière identique.

j − 1
j

j + 1

α̃

β

jj−1 j+1

α̃ β

Figure 5.5 – À gauche, un motif d’adjacence contenant les deux facteurs α̃ et β.
À droite, l’image par la bijection f de ce motif vu comme un chemin strict de
Łukasiewicz : les pas descendants au début de α̃ et à la fin de β deviennent deux
segments adjacents à gauche.

5.3.2 Chemins de Dyck sans grand pic ou vallée profonde

Pour conclure ce chapitre, nous nous intéressons aux demi-pyramides de Klarner, donc
aux chemins de Dyck sans motif d’adjacence. Nous comparons ces chemins à deux autres
familles de chemins de Dyck : les chemins n’ayant pas de facteur uudd (ou grand pic) et
les chemins n’ayant pas de facteur dduu (ou vallée profonde). Ces chemins ont été étudiés
dans [40, 47] ; les suites les énumérant portent respectivement les numéros A082582 et
A086581 dans l’OEIS [48]. Nous noterons P (t) et V (t) les séries génératrices comptant
respectivement les chemins de Dyck sans grand pic et sans vallée profonde.
Comme nous l’avons constaté plus haut, la série P (t), donnée par (5.13), est l’inverse
du rayon de convergence en u de la série C2(t, u) (voir théorème 5.12). En combinant les
équations vérifiées par les séries P (t) et α(u), donnée par (5.8), on trouve de plus l’identité

P (t) = α
(
tP (t)

)
.

La série V (t) est, quant à elle, donnée par

P (t) = 1 + tV (t).
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Le rayon de convergence des séries P (t) et V (t) est la valeur t0 du théorème 5.12.
De plus, si on compare les coefficients de la série P (t) et de Q2(t), donnée par (5.7), on
trouve

P (t) = 1 + t+ t2 + 2t3 + 5t4 + 13t5 + 35t6 + O(t7);
Q2(t) = 1 + t+ t2 + 3t3 + 6t4 + 16t5 + 41t6 + O(t7).

Ce développement suggère que les coefficients de Q2(t) sont supérieurs à ceux de P (t), ce
qui semble se confirmer aux ordres supérieurs.
Enfin, si on compare cette fois les coefficients de la série V (t) à ceux de 1 +D2(t), on
trouve

V (t) = 1 + t+ 2t2 + 5t3 + 13t4 + 35t5 + 97t6 + O(t7);
1 +D2(t) = 1 + t+ 2t2 + 5t3 + 13t4 + 36t5 + 104t6 + O(t7).

Là encore, les coefficients d’ordre supérieur de D2(t) semblent rester supérieurs à ceux de
V (t). Ceci est cohérent avec le théorème 5.12 qui affirme que le rayon de convergence de
D2(t) est inférieur à celui de V (t).
Au vu de l’inégalité coefficient par coefficient apparente V (t) 6 1 +D2(t), il semble in-
téressant de chercher une sous-classe des demi-pyramides de Klarner qui soit énumérée
par V (t), ce qui fournirait une nouvelle classe algébrique d’animaux. Une telle sous-classe
pourrait également servir de base à une sous-classe des animaux de Klarner que l’on sache
énumérer ; l’analogie avec le réseau triangulaire, où la série Q(t) est identique à l’inverse
du rayon de convergence de la série C(t, u), suggère que la série jouant le rôle de Q2(t)
pourrait être égale à P (t). Le travail qui suit est effectué en vue de cet objectif.
Définition 5.17. Soit δ = udα̃uuβdu un motif d’adjacence. On définit φ(δ) comme le
chemin uαuβdduu. Soit ω un chemin ayant un motif d’adjacence δ marqué. On note φ(ω)
le chemin ω où on a appliqué φ au facteur δ et marqué la vallée profonde ainsi construite.

Le chemin φ(δ), pour δ un motif d’adjacence, est illustré figure 5.6.

α̃

β

φ
α

β

Figure 5.6 – La transformation φ : un motif d’adjacence est transformé en vallée
profonde. La longueur du chemin est préservée.

Proposition 5.18. L’application φ est une injection de l’ensemble des chemins de Dyck
marqués d’un motif d’adjacence vers celui des chemins de Dyck marqués d’une vallée
profonde. Cette injection préserve la longueur des chemins.

Pour déduire de ce résultat l’injection cherchée des chemins sans vallée profonde vers les
chemins sans motifs d’adjacence, il faudrait appliquer répétitivement la fonction φ à un
chemin sans vallée profonde, en choisissant chaque fois le motif d’adjacence à transformer.
Ce choix doit être fait de sorte que l’opération soit réversible, c’est-à-dire que l’on puisse
savoir à chaque étape quelle vallée profonde vient d’être créée. Je n’ai pas pu pour l’instant
décrire de telle injection.
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Preuve. Tout d’abord, on note que, le chemin α étant un chemin de Dyck, le facteur φ(δ)
ne peut jamais descendre en dessous de la ligne de hauteur 0. Le chemin φ(ω) est donc
un chemin de Dyck si ω l’est.

Soit maintenant ω un chemin de Dyck marqué d’un motif d’adjacence. Montrons que,
étant donné son image φ(ω), on peut retrouver le chemin ω. Pour cela, soit c le point
situé avant la vallée profonde marquée, et supposons que le point c se trouve à hauteur j.
Soit b le point de dernier passage à la hauteur j − 1 avant c, et a le point de dernier
passage à la hauteur j − 2 avant b. On constate (figure 5.6) que le facteur situé entre b et
c est uβ, et le facteur situé entre a et b est uα. Connaissant α et β, on peut reconstituer
le chemin de départ ω.
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