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Résumé

Le but de cette these est d’établir des résultats énumératifs sur certaines classes de che-
mins et d’animaux. Ces résultats sont obtenus en appliquant la théorie des empilements
de pieces développée par Viennot. Nous étudions les excursions discretes (ou chemins de
Dyck généralisés) de hauteur bornée; nous obtenons des interprétations combinatoires
et des extensions de résultats de Banderier, Flajolet et Bousquet-Mélou. Nous décrivons
et énumérons plusieurs classes de chemins auto-évitants, dits chemins faiblement dirigés.
Ces chemins sont plus nombreux que les chemins prudents qui forment la classe natu-
relle la plus grande jusqu’alors. Nous calculons le périmétre de site moyen des animaux
dirigés, prouvant des conjectures de Conway et Le Borgne. Enfin, nous obtenons des ré-
sultats nouveaux sur I’énumération des animaux de Klarner et les animaux multi-dirigés
de Bousquet-Mélou et Rechnitzer.

Mots clés : combinatoire énumérative, combinatoire analytique, séries génératrices, empi-
lements de pieces

Abstract

The goal of this thesis is to establish enumerative results on several classes of paths and
animals. These results are applications of the theory of heaps of pieces developed by
Viennot. We study discrete excursions (or generalized Dyck paths) with bounded height ;
we obtain combinatorial interpretations and extensions of results from Banderier, Flajolet
and Bousquet-Mélou. We describe and enumerate several subclasses of self-avoiding walks
(SAW), called weakly directed walks. These classes are larger than the class of prudent
walks, which is the largest natural subclass of SAW enumerated so far. We compute
the average site perimeter of directed animals, proving conjectures from Conway and
Le Borgne. Finally, we obtain new results on the enumeration of Klarner animals and
multi-directed animals defined by Bousquet-Mélou and Rechnitzer.

Keywords : enumerative combinatorics, analytic combinatorics, generating functions, heaps
of pieces
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Introduction

Cette these s’inscrit dans le domaine de la combinatoire énumérative. Notre but sera
d’appliquer la théorie des empilements de pieces de Viennot a plusieurs problemes d’énu-
mération de chemins et d’animaux. La théorie des empilements est développée dans le
chapitre [I} Dans cette introduction, nous commencons par présenter succintement le do-
maine de la combinatoire énumérative. Nous présentons ensuite les familles de chemins et
d’animaux que nous étudierons. Enfin, nous résumons chapitre par chapitre les contribu-
tions de la these.

La combinatoire énumérative

Problémes d’énumération

L’objet de la combinatoire est 1’étude de structures discretes, en général possédant une
description simple. Etant donné un ensemble fini de telles structures, énumérer cet en-
semble consiste a déterminer son cardinal. Des problemes d’énumération interviennent
naturellement dans de nombreux domaines de recherche ; on peut notamment citer ’ana-
lyse d’algorithmes, ou ils apparaissent dans des calculs de complexité, et la physique
statistique, ou ils apparaissent dans la détermination des fonctions de partition.

Par exemple, un chemin de Dyck est un chemin constitué de pas montant ou descendant
d’une unité qui commence et finit a hauteur 0 et reste a une hauteur positive. Comme
montré figure [I, on compte 5 chemins de Dyck de longueur 6.

AAA O NA AN
AN N

FIGURE 1 — Les cinq chemins de Dyck de longueur 6.

En pratique, on souhaite décrire une méthode pour calculer le nombre d’objets de taille n,
pour tout entier n, sans avoir a les construire exhaustivement. Un cadre formel est celui
de classe combinatoire : une classe combinatoire est un ensemble C muni d’une fonction
de taille |.| & valeur dans les entiers, tel que, pour tout entier n fixé, 'ensemble C,, des
objets de C de taille n est fini. On note dans ce cas ¢, le cardinal de I’ensemble C,,.
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Pour reprendre I'exemple ci-dessus, les nombres de chemins de Dyck de longueur 2n, pour
n > 0, sont les célebres nombres de Catalan, donnés par

1 2n
Cn:n%—l(n)' (0.1)

Les nombres de Catalan sont sans doute la suite d’entiers la plus célebre de la combinatoire
énumérative. On peut renvoyer a [50], ou a l'entrée A000108 de I’Online Encyclopedia of
Integer Sequences [4§] pour de trés nombreux exemples ou elle intervient.

Une autre question naturelle consiste a trouver un équivalent simple du nombre ¢,, quand n
tend vers l'infini. C’est le domaine de la combinatoire analytique [27]. Dans notre exemple
des nombres de Catalan, la formule de Stirling permet de trouver, a partir de (0.1),

4m
mn3/2"

(0.2)

Cp

Un cadre un peu plus général que celui ci-dessus est celui des classes paramétrées. Une
classe paramétrée est une classe C munie d’un parametre p (un parametre, aussi appelé
statistique, est une fonction de C dans N). Par exemple, de nombreux parametres naturels
existent sur les chemins de Dyck, tels que la hauteur maximale d’'un sommet, ou encore
le nombre de pics (pas montants suivis d'un pas descendant).

Notons ¢, le nombre d’objets de la classe paramétrée C tels que |C| = n et p(C) = k.
L’ énumeération paramétrée consiste a calculer ces nombres pour tous entiers n, k. On peut
également s’intéresser au probleme plus faible de trouver la valeur moyenne, notée p,,, du
parametre p sur les objets de taille n.

D’autres problemes asymptotiques apparaissent dans le cas des classes paramétrées. La
connaissance des nombres ¢, est équivalente a celle de la distribution du parametre p
parmi les objets de taille n. On peut s’intéresser a I’évolution de cette distribution quand
n tend vers 'infini, et notamment a déterminer une distribution limite. Plus modestement,
on peut déterminer un équivalent simple de la valeur moyenne p,,.

Séries génératrices

La méthode la plus simple pour déterminer les nombres ¢, est de donner une formule
close, a la maniere de , permettant de les calculer. Les séries génératrices sont une
autre présentation des nombres ¢,. La série génératrice (dite ordinaire) de la classe com-
binatoire C est la série formelle

C(t) =) eat",

n=0

ou de maniere équivalente,
Ct)y=>_ ¢
cec

Les séries génératrices possedent de nombreuses propriétés agréables : des informations sur
la structure des objets de C se traduisent souvent en équations donnant la série C'(t) (voir
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ci-dessous). De ce fait, elles constituent un outil fondamental en combinatoire énumérative.
Par exemple, la série génératrice des nombres de Catalan est
1—+/1—4t
Clt) = —"——. (0.3)
2t

En effectuant un développement de Taylor, on retrouve l'expression ((0.1) donnant le
nombre ¢,. Une expression telle que (0.3) donnant la série génératrice d’une classe fournit
donc une méthode pour I’énumérer ; dans certains cas, on peut donner une telle expression
alors qu’aucune formule close simple n’existe pour les coefficients c,,.

Les séries génératrices les plus simples sont les séries rationnelles, qui sont égales au
quotient de deux polynomes. Les séries algébriques sont un peu plus complexes : on dira
que la série C(t) est algébrique s’il existe un polynéme P(x,y) non nul tel que P(t, C(t)) =
0. Par exemple, la série C'(t) des nombres de Catalan vérifie I’équation

C(t) =1+tC(t)>. (0.4)

Trouver une équation de ce type est trés utile car on peut s’en servir pour calculer algo-
rithmiquement les coefficients ¢, y compris s’il n’existe pas d’expression telle que (0.3])
donnant directement la série C(t).

Une famille encore plus générale de séries est celle des séries différentiellement finies, ou D-
finies [50, chapitre 6]. Une série est D-finie si elle est solution d’une équation différentielle
linéaire a coefficients polynomiaux. La encore, une telle équation sur la série C'(t) permet
de retrouver les coefficients ¢,. Il existe aussi des séries qui ne sont pas D-finies. Nous en
rencontrerons plusieurs dans cette these.

Une fois connue la série C'(t), ou une équation qui la définit, on peut aussi chercher
a en déduire 'asymptotique des coefficients ¢,,. Une technique utilisée est 1’analyse de
singularité, et est présentée en détail dans le livre [27]. Cette technique repose sur 1’étude
des valeurs de la série C(t) au voisinage de son cercle de convergence.

Enfin, soit p un parametre de la classe C et soit ¢, le nombre d’objets C' de C tels que
|C] =n et p(C) = k. On définit la série bivariée C,(t,u) de la manieére suivante :

Co(t,u) = > cppt™uF = #1929,

n>0 cec

Comme ci-dessus, la connaissance de la série Cy(t,u), ou d’'une équation qui la définit,
permet de calculer les coefficients ¢, ;. De plus, soit p, la valeur moyenne du parametre p
parmi les objets de taille n. Notons P(t) la série définie par

P(t) =) pucpt™ = > p(C)t°l.

n=0 ceC

Le coefficient p,c, est la somme des quantités p(C') pour tous les objets C' de taille n;
on 'appellera la valeur totale du parametre sur les objets de taille n. On peut calculer la
série P(t) a partir de la série bivariée C,(t,u) de la maniere suivante :
oC
P(t) = —2(¢,1).
() = S2)

Une fois connue la série P(t), on peut calculer les coefficients p, ¢, ; une simple division
par ¢, donne la valeur moyenne cherchée p,,.
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Méthodes d’énumération

Nous exposons maintenant les principales méthodes pour répondre aux problemes d’énu-
mération. Dans cette thése, nous nous intéressons principalement aux méthodes les plus
combinatoires, c¢’est-a-dire qui utilisent de maniere centrale la structure combinatoire des
objets a énumérer.

La méthode la plus élémentaire est la méthode bijective, qui consiste a décrire une bijection
entre ’ensemble a énumérer et un ensemble dont le cardinal est déja connu. Une bijection
est d’autant plus intéressante qu’elle est simple a décrire et qu’elle préserve la structure
des objets, par exemple si des parametres naturels des objets sont envoyés sur d’autres
parametres naturels. Bien stir, une telle approche n’est pas toujours possible.

Une autre méthode, souvent appelée méthode récursive, est de décrire une décomposition
canonique des objets de la classe C a énumérer en sous-objets plus petits. Ces sous-objets
peuvent eux-mémes appartenir a la classe C ou a d’autres classes dont I’énumération est
connue. Par exemple, on peut décomposer les chemins de Dyck de hauteur 2n au premier
retour a la hauteur 0, ce qui donne deux chemins de Dyck dont la somme des longeurs
fait 2n — 2 (figure . On obtient ainsi la formule de récurrence, valable pour n > 1 :

n—1
Cn =Y CkCn1—k,
k=0

avec la condition initiale ¢y = 1. Cette formule est équivalente a I’équation ((0.4) qui définit
la série C'(t) et permet de calculer les nombres ¢,,.

/\ A
/\ /\ /\

FIGURE 2 — En considérant le premier retour a la hauteur 0, on obtient une décom-
position canonique des chemins de Dyck non vides. Cette décomposition comprend
un pas montant, un pas descendant et deux chemins de Dyck plus petits. Cette
décomposition se traduit en une formule de récurrence sur les nombres ¢,, ou en une
équation donnant la série C(t).

Chemins

Les chemins sont des objets combinatoires étudiés sous de tres nombreuses formes. Les
chemins de Dyck, mentionnés plus haut, en sont un exemple. Dans cette these, nous nous
intéressons a deux grandes familles de chemins.

Excursions discretes

La premiere famille de chemins que nous étudions est celle des excursions discrétes. Les
excursions discretes sont une généralisation des chemins de Dyck : ce sont des chemins
qui commencent et terminent a hauteur 0 et restent a une hauteur positive. En revanche,
contrairement aux chemins de Dyck, leurs pas peuvent monter ou descendre d’un nombre
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quelconque d’unités. Pour cette raison, les excursions discretes sont également appelées
chemins de Dyck généralisés [37), 23].

Etant donné un ensemble fini S C 7, on s’intéresse aux excursions dont 'incrément de
hauteur de chaque pas est dans S (figure . Les chemins de Dyck correspondent au cas
S = {—1,1}. Plusieurs méthodes existent pour énumérer ces excursions : l'utilisation
de certaines propriétés des séries de Laurent [28], les méthodes par grammaires [37), 23],
la méthode du noyau [8, 2] ou encore l'identification des séries génératrices avec des
fonctions de Schur [6]. Le résultat principal d’énumération, qu’on peut obtenir par toutes
ces méthodes, affirme que la série génératrice des excursions est algébrique. De plus, si
S C{-b,...,a},lasérie possede un polynéme annulateur de degré (a:b) [2]. Si l'ensemble
S est symétrique (—S = S), alors on peut trouver un polyndéme annulateur de degré 2*

[6].

FIGURE 3 — Une excursion de hauteur 4 a pas dans S = {1, -2, —3}.

Chemins auto-évitants

La deuxieme famille de chemins qui nous intéresse est celle des chemins auto-évitants. Un
chemin du réseau carré est dit auto-évitant s’il ne visite pas deux fois le méme sommet.
Enumérer les chemins auto-évitants est un probléme trés étudié depuis plusieurs décen-
nies ; on renvoit au livre [42] pour une introduction compléte au sujet. On conjecture que
le nombre a,, de chemins auto-évitants de longueur n et la distance moyenne d,, entre
leurs extrémités vérifient

A ~ Ap"n’, d,, ~ kn”,

avec v = 11/32 et v = 3/4. Plusieurs méthodes prédisent ces valeurs, méme si aucune
n’est rigoureuse pour l'instant : études numériques [32, [44], comparaison avec d’autres
modeles [I7, [43], arguments probabilistes utilisant des processus SLE [3§], énumération
de chemins auto-évitants sur des réseaux aléatoires [26]... Ces valeurs se maintiennent sur
d’autres réseaux, a la différence de la constante de croissance p qui dépend du réseau. Il
a été récemment prouvé que la constante y vaut \/2 + /2 sur le réseau triangulaire [25] ;
elle pourrait également étre un nombre biquadratique, valant environ 2,64, sur le réseau
carré [33].

Vu la difficulté a énumérer les chemins auto-évitants, il est naturel d’étudier des classes
restreintes. Idéalement, on cherche des sous-classes qui aient a la fois une description
simple et naturelle et une structure permettant de les énumérer. On cherche également a
ce que ces sous-classes soient les plus grandes possibles. Ainsi, la classe naturelle la plus
grande qu’on sache énumérer pour I'instant est constituée de chemins prudents [4l, 22} [18],
avec une constante de croissance d’environ 2,48.
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Animaux

Un animal du réseau carré est un ensemble connexe et fini de sommets (figure [4]). Les
animaux sont étudiés en combinatoire et en physique statistique, ou ils sont par exemples
liés a des problemes de percolation.

FIGURE 4 — Un animal du réseau carré.

Comme les chemins auto-évitants, les animaux sont des objets tres simples a définir ; ils
sont en revanche tout aussi difficiles a énumérer. On appelle sites les sommets d’un animal ;
I’aire d’un animal est son nombre de sites. Notons a,, le nombre d’animaux d’aire n du
réseau carré. Le seul résultat connu sur les nombres a,, est que la quantité a'/™ tend vers
une constante K quand n tend vers l'infini, avec

3,87 < K < 4,65.

On conjecture que la valeur a, est équivalente a xu/n [14].

Face a la difficulté du probleme, on s’intéresse encore a des sous-familles qui soient plus
faciles a énumérer. Presque toutes les familles énumérables pour l'instant sont définies
soit par une propriété de convexité (par exemple, les animaux a colonnes convexes), soit
par une direction privilégiée. C’est cette derniére propriété qui nous intéresse dans cette
these ; nous étudions deux familles, les animaux dirigés et les animaux de Klarner (aussi
appelés animaux multi-dirigés).

Animaux dirigés

Soit S un ensemble fini de sommets. Un animal A est dit dirigé de source S si tout site
de A peut étre atteint a partir de S par un chemin ne prenant que des pas Nord et Est
et ne passant que par des sites de A. Le nom de ces animaux vient du fait qu’ils ont
une direction privilégiée, le Nord-Est. On peut également définir des animaux dirigés sur
deux autres réseaux, le réseau triangulaire et le réseau hexagonal. La figure [5] montre des
animaux dirigés a une seule source (on parle de source ponctuelle) sur les trois réseaux.

Contrairement aux animaux généraux, I’énumération des animaux dirigés de source ponc-
tuelle sur le réseau carré est bien connue [20], 29, [3]. La série génératrice de ces animaux
vaut

1 1414

A0 =5\ 1w

-1

Deux méthodes principales existent pour I’énumération des animaux dirigés. La premiere,
originellement employée par Dhar [20] puis reprise par d’autres auteurs [5, 41, 1], repose
sur la comparaison avec des modéles de gaz. La deuxieme méthode utilise une bijection
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W <1r ~

FIGURE 5 — Des animaux dirigés de source ponctuelle sur les réseaux carré, tri-
angulaire et hexagonal dirigés. Les réseaux sont tournés de sorte que la direction
privilégiée est représentée vers le haut.

avec des empilements de pieces [3]. Cette derniere méthode est explicitée et étendue au
chapitre

Les deux méthodes évoquées ci-dessus peuvent étre étendues au réseau triangulaire. En
revanche, le réseau hexagonal leur résiste pour I'instant. En fait, le probleme semble intrin-
sequement plus difficile : la série génératrice des animaux dirigés sur le réseau haxagonal
n’est probablement pas D-finie [31], alors qu’elle est algébrique sur les deux autres réseaux.

D’autres problemes sur les animaux dirigés consistent a prendre en compte d’autres para-
metres que l'aire. Les problemes de ce type sont trés nombreux (voir par exemple [15, 5]).
Des résultats précis existent pour certains parameétres (largeur, nombre de sites portés a
droite...), mais d’autres sont plus difficiles & étudier (hauteur, périmetre...).

Animaux de Klarner

Les animaux de Klarner forment un autre famille d’animaux. Comme les animaux dirigés,
ils se déclinent sur les réseaux carré et triangulaire, auxquels s’ajoutent le réseau carré
droit (c’est-a-dire le réseau carré avec la direction privilégiée Nord ; pour éviter 'ambiguité,
nous appellerons réseau carré biaisé le réseau carré, représenté figure [5 dont la direction
privilégiée est le Nord-Est). La définition formelle est donnée au chapitre ; sur les réseaux
carré biaisé et triangulaire, les animaux de Klarner sont des animaux dirigés pouvant avoir
plusieurs sources (figure @ Pour cette raison, on les qualifie également de multi-dirigés.
En particulier, tout animal dirigé de source ponctuelle est multi-dirigé.

/ N

/

FIGURE 6 — Deux animaux multi-dirigés sur le réseau carré biaisé (a gauche) et le
réseau triangulaire (au milieu). A droite, un animal de Klarner sur le réseau carré
droit.

Ces animaux ont été introduits par Klarner [35], sur les réseaux carré droit et triangulaire.
Bousquet-Mélou et Rechnitzer [I0] ont ensuite repris les animaux de Klarner sur le réseau
triangulaire et leur ont donné une définition plus agréable, liée a certains empilements de
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pieces. Ils ont aussi étendu la définition au réseau carré biaisé et leur ont donné le nom
d’animaux multi-dirigés.

La formule suivante, due a Bousquet-Mélou et Rechnitzer, donne la série génératrice des
animaux multi-dirigés sur le réseau triangulaire :

D
(1- D)<1 — k1 %) |
ou D désigne la série génératrice des nombres de Catalan,
1—+/1—4t
2t

Une formule analogue est valable sur le réseau carré biaisé, avec une valeur différente de la
série D. Une interprétation combinatoire de ces formules a été ensuite donnée par Viennot
[53]. En revanche, aucune formule de ce type n’existe pour I'instant sur le réseau carré
droit.

K(t) =

D = — 1.

En utilisant des matrices de transfert, Klarner a montré que le nombre d’animaux de
Klarner d’aire n sur le réseau carré droit est au moins proportionnel a 3,727, ce qui est
supérieur aux autres classes d’animaux énumérées jusqu’a présent (par exemple, le nombre
d’animaux dirigés est en 3" sur le réseau carré). La formule ci-dessus permet de déduire
que, sur le réseau carré biaisé, le nombre d’animaux multi-dirigés est proportionnel a

3,58".

Résumé de la theése

Chapitre

Le chapitre [1| sert de préliminaires aux autres chapitres, donnant plusieurs résultats qui
seront appliqués plus loin. Il présente la théorie des empilements, puis donne un certain
nombre d’extensions nouvelles répondant a nos besoins. Notamment, il énonce une géné-
ralisation du lemme d’inversion permettant de compter les empilements évitant certains
motifs et il montre comment énumérer les empilements marqués d’une piece.

Chapitre

Le chapitre [2| donne des méthodes d’énumération des excursions discrétes dans plusieurs
cas : celui ou S ne contient pas de pas strictement supérieurs a 1 (cas des chemins de
Lukasiewicz), et celui ou S est fini. Dans ce dernier cas, nous donnons une explication
combinatoire a la forme des séries des excursions de hauteur bornée [2, [6]. Notre approche
fournit aussi des résultats nouveaux dans le cas ou I’ensemble S des pas est symétrique.

Chapitre

Le chapitre |3 présente une nouvelle sous-classe de chemins auto-évitants, que nous ap-
pelons chemins faiblement dirigés. Nous énumérons cette classe en utilisant les résultats
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précédents sur les chemins de Lukasiewicz. Nous montrons qu’elle possede une constante
de croissance de 2,54 environ, ce qui la rend plus grande que celle des chemins prudents.
Nous montrons également que la série génératrice des chemins faiblement dirigés, a la
différence des séries comptant des classes plus simples, admet une frontiere naturelle dans
le plan complexe, et donc n’est pas D-finie. Nous donnons également un algorithme de
génération aléatoire des chemins faiblement dirigés. Enfin, nous présentons une classe de
chemins encore plus grande, mais plus difficile a énumérer.

Chapitre

Le chapitre [ étudie trois parametres des animaux dirigés : le nombre de sites adjacents,
le nombre de boucles et le périmetre de site. Nous obtenons une forme générale des séries
génératrices donnant la valeur moyenne de chaque parametre sur plusieurs réseaux carrés
et triangulaires. Ceci fournit une preuve combinatoire de résultats de Bousquet-Mélou [5]
et prouve des conjectures de Conway et Le Borgne [15] [39].

Chapitre

Le chapitre [ étudie les animaux de Klarner sur les trois réseaux triangulaire, carré biaisé
et carré droit. Nous donnons des équations caractérisant les séries génératrices de ces
animaux, et nous en déduisons des résultats asymptotiques. Nous donnons également des
bijections entre les animaux de Klarner et certaines familles de chemins de Dyck.
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Chapitre 1

Empilements de pieces

Ce premier chapitre a pour but de présenter la théorie des empilements et d’établir un
certain nombre d’extensions. Ces résultats seront appliqués tout au long de la these.

Le chapitre est organisé comme suit. La section présente succintement quelques élé-
ments de théorie des ensembles partiellement dirigés, qui sont le fondement de la théorie
des empilements. La section donne la définition formelle des monoides d’empilements,
ainsi qu’une vision alternative, les monoides partiellement commutatifs. La section
étudie ensuite au lemme d’inversion, qui est le résultat fondamental de la théorie, et en
donne une généralisation permettant d’énumérer les empilements évitant certains motifs.
La section donne quelques résultats pour énumérer les empilements dont on a marqué
certaines pieces. Enfin, la section définit deux modeles d’empilements, les empile-
ments de segments et ceux de dimeres, qui interviennent dans cette these a de nombreuses
reprises.

Notation. Si S est un ensemble et R une relation sur S, on notera indifféremment = R y
ou xy € R pour signifier que z et y sont liés par la relation R.

1.1 Ensembles partiellement ordonnés

Avant de définir les empilements, nous donnons ici quelques éléments de théorie des en-
sembles partiellement ordonnés dont nous aurons besoin. Aucune preuve n’est donnée;
une introduction plus compléte au domaine peut étre trouvée dans [49, chapitre 3].

1.1.1 Définitions, relation de couverture

Définition 1.1. Soit P un ensemble. Un ordre partiel sur P est une relation < telle que :
— < est réflexive : pour tout x € P, x < x;

— < est antisymétrique : pour tous x,y € P,six <yety <z, alorsx =y;

— < est transitive : pour tous x,y,z € P,si x <yety <z, alors z < 2.

Un ordre partiel strict sur P est une relation < telle que :

— < est irréflexive : pour tout z € P, x £ x;

— < est transitive : pour tous x,y,z € P,six <y ety <z, alors x < z.



18 Chapitre 1. Empilements de piéeces

Ces deux notions sont en fait essentiellement les mémes : a tout ordre partiel strict < sur
P, on peut associer un ordre partiel < défini par x < y siz < y ou x = y. Réciproquement,
a tout ordre partiel < on peut associer un ordre partiel strict < défini par x < ysiz <y
et x # y. Dans la suite, < désignera un ordre partiel sur P et < son ordre partiel strict
associé.

Un élément = de P est dit minimal s’il n’existe pas de y tel que y < x. Il est dit mazimal
s’il n’existe pas de y tel que x < y. Si x et y sont deux éléments de P, on dit que y couvre
x si x <y et quil nexiste pas de z tel que x < z < y.

Supposons que ’ensemble P est fini. L’ordre < est engendré par sa relation de couverture :
ceci signifie que pour tous z,y dans P, on a z < y si et seulement si il existe une suite
finie zy,...,x, telle que zy = =z, x, = vy, et x;41 couvre z; pour tout 7. La couverture
est en fait la plus petite relation ayant cette propriété : si R est une relation engendrant
I'ordre < et y couvre x, alors xy est dans R.

Le diagramme de Hasse de P est le graphe sont les sommets sont les éléments de P et dont
les arétes sont x — y si y couvre x. Par convention, quand on représente ce diagramme,
toutes les arétes pointent vers le haut, ce qui permet d’omettre leur orientation. Un
exemple se trouve figure [1.1]

1.1.2 Segments initiaux et finaux

Définition 1.2. Un sous-ensemble S de P est un segment initial si tout élément inférieur
a un élément de S est encore dans S :

reSety<r=yecs.

Un sous-ensemble S est un segment final si tout élément supérieur a un élément de S est
dans S :
reESetr<y=yes.

Enfin, un sous-ensemble X est une antichaine si ses éléments sont deux a deux non
comparables :
r,2ye X =z <Ly.

Soit S un segment initial de P. Il est facile de vérifier que le complémentaire P\ S est un
segment final, et vice-versa.

Soit X un sous-ensemble de P. On définit les deux ensembles suivants :

X ={yeP|dveXy<a};
tX ={yeP|3reX z<y}

L’ensemble | X est toujours un segment initial et ’ensemble 1 X est toujours un segment
final. Le lemme suivant montre que tout segment initial ou final admet une représentation
canonique de ce type.

Lemme 1.3. Soit S un segment initial (resp. final) de P. Il existe une unique antichaine
X tel que S =1 X (resp. 1 X). De plus, X est l’ensemble des éléments maximaux (resp.
minimaux) de S.
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1.1.3 Extensions linéaires

Définition 1.4. Un ordre C sur P est dit total si, pour tout x et tout y de P,ona xz C y
ouy L z.

Un ordre total C est une extension linéaire de < si x < y implique x C y pour tous x, y.

En utilisant le lemme de Zorn, on montre que tout ordre < admet une extension linéaire.
Le résultat suivant montre également qu’on peut trouver des extensions linéaires vérifiant
certaines conditions supplémentaires.

Lemme 1.5. Un élément x de P est minimal (resp. mazximal) si et seulement si il existe
une extension linéaire C de < tel que x est minimal (resp. mazximal) pour C.

Deux éléments x ety de P sont tels que y couvre x si et seulement si il existe une extension
linéaire C de < telle que y couvre x pour C.

1.2 Empilements et monoides partiellement commu-
tatifs

1.2.1 Empilements de pieces

La théorie des empilements de pieces que nous développons ici est due & Viennot [52] ; on
peut également citer [36] 3] sur le sujet.

Définition 1.6. Un modéle d’empilements est un alphabet A (éventuellement infini),
muni d’une relation C' telle que :

1. C est réflexive : pour tout a € A, aa € C';
2. C est symétrique : pour tous a,b € A, si ab € C alors ba € C.

Les éléments de A sont des positions, et deux positions a et b sont dites concurrentes si
ab est dans C'. Intuitivement, deux positions sont concurrentes si elles se chevauchent, de
sorte qu’une piece a position b peut étre posée sur une piece a position a.

Un empilement du modele (A, C') est représenté sur la figure [1.1] II consiste en un certain
nombre de pieces, toutes a une position dans A, qui s’empilent les unes sur les autres si
leurs positions sont concurrentes.

Définition 1.7. Un empilement de piéces H du modele (A, C') est un triplet (P, ¢, <), ou
P est un ensemble fini dont les éléments sont appelés piéces, £ est un étiquetage de P a
valeurs dans A et < est un ordre partiel sur P vérifiant pour toutes pieces x et y :

1. si l(x) et £(y) sont concurrentes, alors z < y ou y <X ;
2. si y couvre x pour l'ordre <, alors ¢(x) et (y) sont concurrentes.

Les pieces de H minimales pour 'ordre < sont appelées pieces minimales de H. L’ensemble
de leurs positions est noté min(H). Les piéces qui sont maximales sont appelées piéces
mazimales et 'ensemble de leurs positions est noté max(H ).

Enfin, un empilement (P, ¢, %) est trivial si P est une antichaine pour <.
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Ii

FIGURE 1.1 — A gauche, un empilement d’'un modéle & quatre positions a, b, ¢,
d, et relation de concurrence C' = {aa, bb, cc,dd, ab,ba,be, cb, cd,dc}. A droite, le
diagramme de Hasse de la relation <, avec une aréte entre x et y si y couvre x.

Un empilement de pieces s’entend d isomorphisme prés : deux empilements (P, {1, <) et
(Py, Uy, =%2) sont isomorphes s’il existe une bijection de P; dans P, envoyant ¢; sur {5 et
=<1 sur <s. On considérera alors qu’il s’agit du méme empilement.

L’étiquette ¢(x) d’une piece z est appelée la position de x. Une piéce y est dite au dessus
d’une piece x si x <X y; la piece x est dite au dessous de y.

Un empilement trivial est un ensemble de pieces dont aucune ne repose sur une autre;
la donnée d'un tel empilement est équivalente a celle des positions de ses pieces, qui sont
deux a deux non concurrentes. Pour cette raison, on fera souvent la confusion entre un
empilement trivial et I’ensemble des positions de ses pieces.

1.2.2 Monoide des d’empilements

Si Hi et Hy sont deux empilements, on forme le produit HiH, en laissant tomber Hy sur
H;. Un exemple est montré figure[[.2] Le résultat suivant donne une définition rigoureuse
de ce produit.

Proposition 1.8. Soit Hy = (Py,(1,=<1) et Hy = (Py, 0y, <o) deux empilements tels que
P NP,=@. Soit P= P, U P,. Il existe un unique empilement (P, {, <) tel que :

1. les restrictions de { et < a P, sont {1 et <1 ;

2. les restrictions de [ et < a Py sont {5 et <o ;

3. l’ensemble P, est un segment initial de P pour <.

L’empilement (P, ¢, %) ainsi construit sera appelé le produit de H; et de Hy, et noté Hy Ho.

]
[a] b T[] — a [ ]
Lo Lo
) 1 ] [ ]

FIGURE 1.2 — Le produit de deux empilements du modele de la figure .

Preuve. Soit (P,¢,<) un empilement vérifiant les conditions voulues. L’étiquetage ¢ est
entierement déterminé par ses restrictions a P; et P,. Soit x et y deux pieces de P telles
que y couvre x pour <. Le fait que P; est un segment initial rend impossible le fait que
y soit dans P; et x dans P,. Il y a donc trois cas possibles :

(a) xeP,ye Pretxr=yy;
(b) z€ Py Pretx <529;
(c) x € P,y € Py et {(z) et {(y) sont concurrentes.
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De plus, si deux pieces z et y vérifient (a), (b) ou (c), alors on doit avoir < y. Un ordre
étant engendré par sa relation de couverture, on en déduit que < est I'ordre engendré par
(a), (b) et (c), donc entierement déterminé.

Soit maintenant < 1’ordre engendré par les trois relations ci-dessus. Prouvons que (P, ¢, <)
est un empilement vérifiant les conditions de la proposition. Il est clair, par construction,
que deux piéces x et y telles que £(z) et £(y) sont concurrentes sont comparables. De plus,
si y couvre x, alors = et y vérifient (a), (b) ou (c¢). On en déduit que £(z) et ¢(y) sont
concurrentes. Donc (P, ¢, <) est bien un empilement.

Par construction encore, la restriction de < a P; et P, est bien <; et <y, respectivement,
et aucune piece de P; n’est jamais au dessus d'une piece de Ps. O

Le produit ainsi défini est associatif [52]. On note 1 'empilement vide, qui ne contient
aucune piece. L'empilement 1 est un élément neutre pour le produit. Soit H(A, C) V'en-
semble des empilements du modele (A, C) : cet ensemble est ainsi muni d’une structure
de monoide.

1.2.3 Monoides partiellement commutatifs

Les monoides partiellement commutatifs, également appelés monoides de Cartier—Foata,
apparaissent dans [12]. Le lien avec les monoides d’empilements est établi dans [36].

Soit. A* le monoide des mots sur I'alphabet A. Le monoide partiellement commutatif asso-
cié a la relation de concurrence C' est défini comme le quotient de A* par une congruence,
c’est-a-dire une relation d’équivalence compatible avec la multiplication [I3] section 1.5].
Plus précisément, on note =¢ la plus petite congruence de A* telle que ab =¢ ba pour
toutes les lettres a et b telles que ab & C.

Définition 1.9. Le monoide partiellement commutatif sur I'alphabet A et avec relation
de concurrence C' est le monoide quotient A*/ =¢. On le note £(A, C).

Cette construction signifie concrétement que £(A, C') est le monoide ayant pour généra-
teurs les lettres de A, muni de la relation ab = ba si a et b ne sont pas concurrentes.
Notons que par convention, une lettre a est toujours concurrente a elle-méme malgré
I'égalité aa = aa.

Soit a; - - - a,, un mot du monoide £(A, C'). On associe & ce mot un empilement, en créant
une piece x; de position a; pour tout i, et en les empilant dans ’ordre pour i de 1 a n. Si
deux positions a et b ne sont pas concurrentes, I’ordre dans lequel on empile les pieces de
positions a et b n’a pas d'importance, ce qui correspond au fait que a et b commutent.

Cette transformation montre que les monoides $(A, C) et £(A, C') sont isomorphes. Par
la suite, nous confondrons un mot de (A, C') et son empilement associé.

FExemple. L’empilement de la figure 1 est associé au mot baadcbde, qui peut également
s’écrire dbcdaabc.

Propriété 1.10. Soit H un empilement. On a les propriétés suivantes :
— La position a est dans min(H) si et seulement si H s’écrit aH'.
— La position b est dans max(H) si et seulement si H s’écrit H'D.
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— Soit a et b deux positions concurrentes. Il existe deux piéces x et y, de positions a et b,
telles que y couvre x si et seulement si H s’écrit H'abH".

Preuve. Toutes ces propriétés sont des conséquences directes du lemme [1.5] O

1.2.4 Séries génératrices

Soit (A, C') un modele d’empilements. On associe a chaque position a de A un poids a,
pris dans un anneau de séries formelles. Le poids d’un empilement H, noté H, est le
produit des poids des pieces qui le composent. On définit ainsi la série génératrice H des
empilements du modele $(A, C), si cette série existe :

H= Y 7

Hen(AC)

Dans la suite, nous travaillerons avec des poids universels, ¢’est-a-dire que nous considére-
rons que la série H appartient a ’anneau des séries formelles avec une indéterminée a pour
chaque position a. Ceci garantit I'existence de cette série. Pour travailler avec d’autres
poids, il suffit de prendre une spécialisation de la série H. Par exemple, en spécialisant
chaque indéterminée a en t, on obtient la série génératrice des empilements comptés selon

leur nombre de pieces :
Ha=t= Y .

HeH(AC)

Cette série n’est en revanche définie que si ’ensemble A est fini.

Soit maintenant S un sous-ensemble de A. On note Hg la série génératrice des empilements
dont les pieces minimales sont S :

Hs= Y H.
min(H)=S

De méme, on notera Hg la série génératrice des empilements dont les picces minimales
sont incluses dans S :

min(H)CS

Par souci de clarté, on se tiendra a la méme convention dans toute la these : chaque
fois qu’une série génératrice compte des empilements d’un modele, un indice [S] indique
qu’on compte les empilements H tels que min(H) C S, alors qu’un indice S indique qu’on
compte les empilements H tels que min(H) = S. Les deux séries génératrices ci-dessus
sont liées par :

Hig = > Hr; (1.1)
TCS

Hg = > (=1)\Hq. (1.2)
TCS

On définit a présent la série génératrice alternée des empilements triviaux :

T= Y (-)"T.

T trivial
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De méme, on définit la série alternée des empilements triviaux inclus dans un ensemble

de lettres S :
T = > (-D"'T.

TCS

1.3 Théorémes d’inversion

Les résultats présentés ici permettent de calculer plusieurs séries génératrices comptant
des empilements. Comme indiqué précédemment, nous supposerons que les poids des
positions sont universels; il est possible de spécialiser une identité a d’autres poids si les
spécialisations de toutes les séries qu’elle implique sont bien définies.

1.3.1 Inversion de Viennot

Le lemme d’inversion [52] est le principal résultat d’énumération sur les empilements, avec
de multiples applications. Il permet de calculer les séries H et Hjg), définies ci-dessus, a
partir des séries génératrices des empilements triviaux.

Théoréme 1.11 (Cartier-Foata, Viennot). Les séries formellesE] H et T sont inverses
l'une de lautre :
HT = 1. (1.3)

Plus généralement, la série Hig) vérifie :

HgT = Tas)- (1.4)

Si 'alphabet A est fini, la série T est un polynome, souvent facile a calculer ; ceci fournit
une méthode pour calculer H. En particulier, si A est fini, alors la série H est rationnelle.

Dans la suite, nous donnerons une généralisation de ce résultat.

Soit maintenant S un ensemble de positions. On appelle bord de S, et on note 95, les
positions a de S telles qu’il existe b hors de S tel que a et b sont concurrentes.

Corollaire 1.12. Soit S et T deux ensembles de positions tels que S CT C S. On a :

Hir) = Tis\rHig).

Preuve. Considérons I'ensemble A\ T Il est union disjointe de S\ T" et A\ S'; de plus,
comme 7' contient le bord de S, aucune position de S\ T' n’est concurrente a une position
de A\ S. La série des empilements triviaux inclus dans A \ 7" vaut donc :

Travr = Tis\r Tiavs)-

Le résultat découle donc du théoreme appliqué a Hypy et Hig. O

1. En réalité, ce résultat (ainsi que le corollaire et le théoréme [1.16)) est valable dans une algébre
de séries formelles partiellement commutatives de variables A et avec la relation ab = ba si ab ¢ C.
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1.3.2 Empilements a motifs exclus et modeles ordonnés

Définition 1.13. Soit H un empilement et soit a et b deux positions concurrentes. L’em-
pilement H contient le motif ab s’il existe deux pieces x et y, de positions respectives a
et b, telles que y couvre x.

Notons qu'un motif n’est pas symétrique : les motifs ab et ba sont différents. Par la
définition des empilements, un empilement ne peut contenir un motif ab que si ab est
dans C'. La propriété indique que dans ce cas, 'empilement H contient le motif ab si
et seulement si H s’écrit H'abH".

Etant donné un certain nombre de motifs interdits, notre but sera d’énumérer les empi-
lements ne contenant aucun de ces motifs. Soit (A, C') un modele d’empilements. On se
donne une partition C' = C; U Cy de la relation de concurrence (les relations C; et Cy ne
sont pas nécessairement symétriques : ainsi, il est possible que le motif ab soit dans C
mais ba dans Cy). On définit :

— H' ensemble des empilements dont tous les motifs sont dans Cj,

— H? T'ensemble des empilements dont tous les motifs sont dans Cs.

On note H! et H? la série de H' et la série alternée de H?, respectivement :

H'= Y H
HieH!
H? = > (—1)!H2l .
HoeH?
Soit S un sous-ensemble de A. On définit de méme les séries H[151 et H[ZS] comptant les
empilements dont les pieces minimales sont a positions dans S.

En choisissant C; = C et Oy = @, on retrouve pour H! I'ensemble de tous les empile-
ments et pour H? 'ensemble des empilements triviaux. Le théoréme fournit alors un
lien entre les séries H! et H2. Nous donnerons un résultat similaire dans le cas général,
moyennant certaines conditions sur le modele.

Définition 1.14. Un modéle ordonné d’empilements est un modele d’empilements (A, C)
muni d’un ordre partiel strict < sur A vérifiant les conditions suivantes pour toutes posi-
tions a, b et ¢ :

0. sib<a,alors ab ¢ C';

l.siacg C,b<aetbce C, alorsc<a;

2.siac g C,abe Cetc<b, alors c < a.
De plus, soit C; U C5 une partition de la relation de concurrence C'. Cette partition est
dite compatible avec 'ordre < si pour toutes positions a, b, ¢ :

3. Siac g C, ab e Cy et cb € Oy, alors ¢ < a.

4. Siac g C, ba € Cy et bc € C1, alors ¢ < a.

Les conditions 1, 2, 3 et 4 sont illustrées figure [1.3

Notons qu’en particulier, tout modele d’empilements (A, C') peut étre étendu en un modele
ordonné d’empilements par l'ordre vide, qui vérifie toujours les conditions 0, 1 et 2. De
plus, la partition C) = C, Cy = @ est toujours compatible avec 'ordre vide. Un autre
exemple est donné dans la section [L.5.1]

Le résultat suivant montre que, si toutes les positions non concurrentes sont comparables,
les conditions 1 et 2 sont automatiquement vérifiées.
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- 7 L b ] [ a ]
@] ‘ C Cy 4 Cy
[ a ] [ b ]
1 9 3 4

FIGURE 1.3 — A gauche, les conditions 1 et 2 impliquant I'inégalité ¢ < a si (A, C, <)
est un modeéle ordonné d’empilements. A droite, les conditions 3 et 4 impliquant
I'inégalité ¢ < a si C7 U Cs est une partition compatible.

Lemme 1.15. Soit (A, C) un modéle d’empilements et < une relation d’ordre strict sur
A telle que pour toutes positions a, b :

a<boub<a<=ab¢gC(C.

Alors (A, C, <) est un modéle ordonné d’empilements.

Preuve. La condition 0 est vraie par hypotheése. Pour prouver la condition 1, supposons
par Iabsurde qu’on ait trois lettres a, b, ¢ telles que ac & C, b < a et bc € C' mais ¢ £ a.
On a donc a < ¢, donc b < ¢, ce qui contredit le fait que b et ¢ sont concurrentes. Le cas
de la condition 2 est symétrique. O]

Nous pouvons a présent énoncer le résultat permettant d’énumérer les empilements a
motifs exclus. Ce résultat sera appliqué dans les chapitres suivants.

Théoréme 1.16. Soit (A, C, <) un modéle ordonné d’empilements et C1UCy une partition
compatible de C'. Les séries génératrices H' et H? sont inverses l'une de l'autre :

H'H? = 1. (1.5)
Plus généralement, soit S un segment initial de A pour l'ordre <. On a :

Ce théoreme implique bien le lemme d’inversion : en choisissant C; = C et Cy = &, on
retrouve pour H' les empilements généraux et pour H? les empilements triviaux. Cette
partition est toujours compatible avec I'ordre vide; de plus, tout sous-ensemble S de A
est un segment final pour l'ordre vide.

Pour prouver ce théoreme, on fixe H; un empilement de 7—[[15] et Hy un empilement de #H?2.
On définit les ensembles suivants :

7, = {a € max(H;) ‘ aHy € 7—[2};
Z2 = {b c IIllIl(HQ) ‘ Hlb < H[IS}},
Z =7Z1UZ,.

Les positions de Z sont appelées les positions transférables de (Hy, Hy). Si a est dans Z7,
notons Hy = Hja. Le transfert de a est 'application (Hja, Hy) — (Hj,aHs,). De méme si
b est dans Zy et Hy = bH), le transfert de b est I'application (Hy,bH}) — (H1b, H)).

Lemme 1.17. Soit a dans Z et soit (H, H)) les empilements obtenus en transférant a.
L’ensemble des positions transférables de (H;, H}) est encore Z.
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Preuve. Prouvons tout d’abord que si deux positions b et ¢ sont dans Z, avec b # ¢, alors
b et ¢ ne sont pas concurrentes. Les positions de Z; sont incluses dans max(H;), donc
sont deux a deux non concurrentes; de méme pour celles de Zs. Soit donc b dans Z; et
c dans Z5 : comme b est transférable, bc n’est pas dans (' ; comme c¢ est transférable, bc
n’est pas dans Cy. Donc be n’est pas dans C.

Soit maintenant Z’ I’ensemble des positions transférables de (Hj, H}). On remarque que
le transfert de la position a est involutif : a est dans Z’, et le transfert de a effectué a
partir des empilements (H{, H)) donne (Hy, Hy). Ainsi, il suffit de prouver que Z C 7' :
en appliquant le méme raisonnement aux empilements (H;, Hj), on montre que 2’ C Z.

Soit donc b dans Z avec a # b : comme a et b ne sont pas concurrentes, transférer a n’a

pas d’incidence sur le transfert de b. En particulier, on a b € Z’, ce qui montre bien que
zZ 7. ]

Lemme 1.18. Supposons que (Hy, Hy) n'est pas dans {1} x H[QA\S]. L’ensemble Z est non
vide.

Prouver ce lemme est la partie la plus difficile ; ¢’est 1a qu’intervient le fait que le modele
(A, C) est ordonné. Avant tout, nous montrons comment on en déduit le théoréme.

Preuve du théoréme[1.16. Tout d’abord, on note que I’équation (1.6) implique ([1.5) : il
suffit de choisir S = A, qui est bien un segment final.

Soit C un ordre total sur A. Soit D le domaine g?-[[ls] X 7-[2) \ ({1} X H[QA\S]). On définit
une application ®: D — D de la fagon suivante. Soit (H;, Hs) dans D et Z 'ensemble des
positions transférables. Soit a la position de Z la plus petite pour 'ordre C. On définit
®(H,, Hy) comme le résultat du transfert de a.

Le lemme [1.18] assure que ¢ est bien définie, et le lemme [1.17] assure que ® est une
involution. De plus, comme & transfere une piece de ou vers Hs, les contributions de
(Hy, Hy) et de ®(H,, Hy) dans la série H%S}H2 sont opposées et s’annulent. Ainsi, seules
les contributions des éléments hors de D restent, ce qui prouve I'équation . O]

Reste donc a prouver le lemme La preuve utilise de maniere centrale les conditions
0 & 5 décrites dans la définition [1.14] et illustrées sur la figure [1.3] Nous commengons par
énoncer deux lemmes supplémentaires.

Lemme 1.19. Soit H un empilement et a une position. On suppose qu’aucune piece de
H n’est a une position conucurrente a a et qu’il existe une piece de H a position b telle
que b < a. Alors il existe une position ¢ dans min(H) telle que ¢ < a.

Symétriqguement, s’il existe une piece b de H telle que a < b, alors il existe une position
¢ dans min(H) telle que a < c.

Preuve. Soit x une piece de H a position b, et soit y une piece minimale de H telle que
y < x; on note ¢ la position de y. Il existe donc des pieces zy, ..., x, dans H, telles que
x; couvre x;,1 pour tout 0 <7 < n et x, = y. Soit b; la position de x; : les positions b; et
bi+1 sont donc concurrentes pour tout i.

Par hypothese, a n’est concurrente avec aucune des b;. La condition 1 implique que pour
tout 4, si b; < a alors b;y; < a. Or by = b < a; de proche en proche, on trouve bien
c=1b, <a.
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Le cas symétrique est identique et utilise cette fois la condition 2. O

Lemme 1.20. Soit Hy un empilement de H? et a dans A tel que aHy n'est pas dans H2.
Alors il existe b dans min(Hs) tel que :

— soit ab est dans C1,

- soit b < a.

Symétriquement, soit Hy, un empilement de H' et b dans A tel que Hib n’est pas dans H?.
Alors il existe ¢ dans max(Hy) tel que :

— soit cb est dans Cy,

— soit ¢ < b.

Ce lemme est illustré figure [I.4]

Preuve. Traitons tout d’abord le premier cas. Supposons que Hy est dans H? mais pas
aH,, et notons x la piece minimale de aH, a position a. Il existe donc une piece y, a
position b, qui couvre z et telle que ab € C. On distingue deux cas de figure.

1. Soit y est une piece minimale de Hs, auquel cas b remplit les conditions du lemme.

2. Soit y n’est pas une piece minimale de Hy. Dans ce cas, soit HibH) une écriture de
I’empilement Hs telle qu'on ait

aHy = HjabHY.

Pour que cette derniere égalité soit vraie, la lettre a doit commuter avec toutes
les lettres de H). On en déduit qu’aucune piece de H) n’est concurrente a a. Soit
maintenant z une piece de HY telle que y couvre z et soit ¢ la position de z. On
a donc ¢b € Cy. La condition 3 implique donc que ¢ < a. Le lemme donne
'existence de d dans min(H}), donc dans min(Hs), tel que d < a.

Le cas symétrique est traité de la méme maniere et utilise la condition 4. O]

FIGURE 1.4 — A gauche, la preuve du lemme Si aH, n’est pas dans H?, il
existe b tel que ab € Cy. Si b n’est pas dans min(Hs), on prouve l'existence d’une
piéce a position d telle que d < a et d € min(Hz). A droite, la deuxiéme partie du

lemme m

Preuve du lemme [L.18 Par I'absurde, supposons que Z soit vide. Si H; est vide, alors
H, n’est pas dans ’H[QA\S} par hypothese. Il existe donc b dans min(Hs) tel que b € S.
L’empilement b étant dans H[IS], b est dans Z. C’est une contradiction.

Supposons maintenant H; non vide. Soit a dans max(H;), minimale pour 'ordre <. La
position a n’étant pas transférable, I’empilement aH, n’est pas dans H2. Le lemme m
assure donc l'existence d'un b dans min(H;) tel que b < a ou ab € C}.
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De plus, la position b n’est pas dans Zs par hypothese, donc H,b n’est pas dans ’H[ls]. Ceci
signifie soit que min(H,b) n’est pas inclus dans S, soit que H;b n’est pas dans H'. Nous
avons donc quatre cas a traiter.

— Soit b < a et min(H;b) n’est pas inclus dans S. Notons y la piece maximale de Hib a
position b; la seule piece minimale de H1b pouvant étre a position non dans S est y, ce
qui montre que b n’est pas dans S et y est minimale. Aucune piece de H; n’est donc a
position concurrente a b. Le lemme assure qu’il existe ¢ dans min(H;), donc dans
S, tel que b < ¢. Ceci contredit le fait que S est un segment initial.

— Soit ab € C et min(H1b) n’est pas inclus dans S. Notons a nouveau y la piece maximale
de Hib a position b. La piece y couvrant une piece a position a, les empilements H; et
Hib ont les mémes pieces minimales, ce qui contredit le fait que min(H;) C S.

— Soit b < a et Hyb n’est pas dans H'. Le lemme fournit un ¢ dans max(H;) tel que
¢ < bou cb € (5. La condition 1 montre donc que ¢ < a, ce qui contredit la minimalité
de a.

— Soit ab € Oy et Hyb n’est pas dans H'. Le lemme fournit un ¢ dans max(H;) tel
que ¢ < b ou ¢b € Cs. Les conditions 2 et 3 montrent donc que ¢ < a, ce qui contredit
la minimalité de a. O

Dans ce mémoire, nous donnons plusieurs applications du théoréme [1.16, La premiere, et
la plus simple, de ces applications est I’énumération des empilements stricts, déja bien
connue par ailleurs.

1.3.3 Empilements stricts

Définition 1.21. Un empilement est dit strict s’il ne contient aucun motif de type aa
pour a une lettre de A.

Soit C; l'ensemble des motifs ab pour a # b et Cy celui des motifs de type aa. Avec
les notations de la section précédente, I’ensemble des empilements stricts est H!. Les
empilements de H? sont qualifiés de multi-triviauz (voir figure .

[ O | a
Call[c] a (4]
b [d] a (d]

FIGURE 1.5 - A gauche, un empilement strict. A droite, un empilement multi-trivial.

Considérons maintenant le modele ordonné d’empilements (A, C, @). 1l est facile de vérifier
que la partition C' = C7 U Cy est compatible avec I'ordre vide. De plus, tout ensemble S
de positions est un segment initial de A pour l'ordre vide.

On définit la série génératrice H® des empilements stricts et la série génératrice alternée
T™ des empilements multi-triviaux. De méme, on définit les séries HfS] et T7g pour tout
ensemble S de positions. Le théoreme donne :

HT™ =1,
HigT" = T{}\ -
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Un empilement multi-trivial est construit en remplacant chaque piece d’'un empilement
trivial par une pile de taille arbitraire formée de pieces a la méme position. Chaque piece

de position a ayant pour poids —a, la série T7g) est donnée par la substitution :

- G
Tis = Tigy <a 1T C_L); (1.7)

Ainsi, on a, apres application du lemme d’inversion :

_ a
HFS] = H[s] (a — I C_l>. (18)
Alternativement, un empilement général est construit en remplacant chaque piece d'un
empilement strict par une pile de taille arbitraire. Chaque piece de position a a cette fois
un poids a, ce qui donne :

—a

_ a
Hig = HfS] (a - 1-)

Ces deux identités sont bien stir équivalentes.

1.4 Empilements marqués

Un probleme auquel nous serons confrontés est d’énumérer des empilements marqués
d’un certain ensemble de pieces. Le but de cette section est d’introduire des outils pour
manipuler ce type d’objets.

1.4.1 Empilements marqués et factorisations d’empilements

Définition 1.22. Un empilement marqué est un couple (H, X), ou H est un empilement
et X un ensemble de pieces de H formant une antichaine pour < (i.e. un ensemble de
pieces deux a deux non comparables).

Soit H = (P,¢,<) un empilement. On s’intéresse maintenant a factoriser 'empilement
H, c’est-a-dire a trouver un couple (Hy, Hy) d’empilements tels que H = H;H,. La pro-
position [I.8 qui définit le produit de deux empilements, montre que ceci est équivalent a
trouver une partition P = P, U P, ou P; est un segment initial de P.

Définition 1.23. Soit (H, X) un empilement marqué. La factorisation de H créée en
tirant les piéces de X vers le bas, notée F|(H, X), est le couple (Hy, Hy) tel que H = Hy H,
et ou les pieces de H; sont celles au dessous d’une piece de X (y compris les pieces de X
elles-mémes).

De méme, la factorisation de H créée en poussant les pieces de X wvers le haut, noté
Fi(H,X), est le couple (Hy, Hy) tel que H = HyH, et ot les pieces de Hy sont celles au
dessus d’'une piece de X (figure [1.6)).
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FIGURE 1.6 — A gauche, un empilement marqué. Au centre, son image par F. A
droite, son image par F}.

Proposition 1.24. Les applications F| et Iy sont des bijections de ['ensemble des empi-
lements marqués vers celui des couples d’empilements.

De plus, soit (H,X) un empilement marqué et (Hy, Hy) la factorisation F\(H,X). Les
pieces mazximales de Hy sont exactement les piéces de X. De méme, si (Hy, Hy) =
Fi(H,X), alors les piéces minimales de Hy sont les piéces de X.

Preuve. D’apres la proposition [I.8] trouver une factorisation de H revient & trouver une
partition P U P, de P, tel que P; est un segment initial et P, un segment final. La
proposition découle donc du lemme [1.3] O]

Ainsi, on ramene I’étude des empilements marqués a celle de couples d’empilements, plus
agréables a traiter. Etant donnés deux empilements H; et Hs, nous montrons maintenant
comment trouver les positions des pieces minimales du produit Hq Ho.

Définition 1.25. Soit H un empilement. On appelle voisinage de H, et on note v(H),
I’ensemble des positions a telles qu’au moins une piece de H est a une position concurrente
a a.

Lemme 1.26. Soit H, et Hy deuxr empilements. L’ensemble des positions des piéces mi-
nimales du produit HyHy est donné par :

min(Hy Hy) = min(Hy) U (min(Hz) \ v(Hy)).

Preuve. Toute piece minimale de H; est encore minimale dans H;H,, car elle ne peut
couvrir aucune piece de Hs.

Soit maintenant y une piece minimale de H,. La piece y n’est pas minimale dans H; H,
si et seulement si il existe une piece z de H;i telle que y couvre z. Ceci signifie que les
positions de z et y sont concurrentes, donc que la position de y est dans v(H). O

Soit H un empilement tel que min(H) = S. En écrivant 1’empilement H sous la forme
S H,, on trouve ainsi :

Hg = SHj, ), (1.9)

ot S est le produit des poids des positions de S. Cette identité fournit une alternative a
I'équation (|1.2)) pour calculer la série Hg en fonction de séries de type Hjzy.
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1.4.2 Empilements stricts et presque stricts

Nous traitons maintenant le cas des empilements stricts marqués. Comme précédemment,
nous cherchons a ramener leur étude a celle de couples d’empilements stricts. Pour cela,
nous définissons un objet intermédiaire.

Définition 1.27. Un empilement marqué (H, X) est dit presque strict si aucune piece
non marquée n’est couverte par une piece de méme position.

Soit (H,X) un empilement marqué presque strict. On appelle pile de H un ensemble
maximal de pieces a la méme position empilées directement les unes sur les autres; on
appelle piles marquées les piles de H contenant une piece de X. Ces piles consistent
toujours en une ou deux pieces, et la piece marquée est toujours en dessous. On appelle
X* T’ensemble consistant en la piece du dessus de chaque pile marquée. On définit les
transformations, illustrées figure :

F{(H,X) = F(H X").

i
[

—
% LI 1 [ ]

C1 B ]
T =

L1
I_II_I_I;I

FIGURE 1.7 - A gauche, un empilement marqué presque strict. Au centre, son image
par Fp. A droite, son image par Fy. Les deux factorisations séparant toujours les
deux pieces I'une sur l'autre a la méme position, tous les facteurs obtenus sont

stricts.

Lemme 1.28. Les applications F} et FY sont des bijections de l’ensemble des empilements
marqués presque stricts vers l’ensemble des couples d’empilements stricts.

De plus, soit (H,X) un empilement marqué presque strict et (Hy, Hy) la factorisation
FP(H, X). L’ensemble max(H,) est égal d l’ensemble des positions des picces de X. De
méme, si (Hy, Hy) = F¥(H, X), alors l’ensemble min(Hy) est I’ensemble des positions des
pieces de X.

Preuve. Tout d’abord, on remarque que si (Hy, Hy) est égal a F(H, X) ou F}(H, X),
alors Hy et Hs sont stricts. En effet, si deux pieces x et y sont dans la méme pile avec y
au dessus de x, alors = est toujours dans H; et y dans Ho.

L’ensemble X étant ’ensemble des pieces inférieures de chaque pile marquée, la transfor-
mation (H, X') = (H, X™) est injective; les fonctions F| et F| étant injectives, F et I
sont aussi injectives.

Soit maintenant H; et Hy deux empilements ; soit X I’ensemble des pieces maximales de
Hi et Y I'ensemble des pieces minimales de Hs. Soit Y~ I'ensemble des pieces inférieures
de chaque pile de 'empilement H; Hy contenant une piece de Y. On a :

(Hy, Hy) = F}(H,X) = F{(H,Y™),

ce qui prouve la surjectivité et donne les ensembles max(H;) et min(Hy). O
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Tout empilement marqué presque strict s’obtient a partir d’'un empilement strict en rem-
placant chaque piece marquée par une pile marquée, de taille 1 ou 2. En termes de séries
génératrices, cela correspond, pour chaque piece x de X de position a, a une multipli-
cation par 1 + a. Ainsi, on peut ramener ’étude des empilements marqués stricts aux
empilements marqués presque stricts, et donc aux paires d’empilements stricts.

1.4.3 Empilements marqués d’une piece

En application de ce qui précede, nous traitons le cas des empilements marqués d’une
seule piece, a position fixée. Soit (A, C') un modele d’empilements et a une position de A.

Notons M@ la série génératrice des empilements marqués d’une piece de position a et
V(@ 1a série génératrice des empilements H évitant a, i.e. tels que a ¢ v(H). De méme,
soit M(®s ]a série des empilements stricts marqués d’une piece de position a et V(®$ la
série des empilements stricts évitant a.

Les séries V(@ et V(@5 peuvent étre facilement calculées en utilisant le théoréme d’inver-
sion (théoreme|l.11]) : en effet, les empilements évitant a sont exactement les empilements
du modele dont les positions sont A \ v(a).

Soit S un sous-ensemble de A; on note Mf;]) et Vfg]) , les séries comptant les mémes

empilements que ci-dessus, dont les pieces minimales sont a positions dans S. On fait de
méme pour les empilements stricts.

Lemme 1.29. Supposons que la position a est dans S. On a :

(a) _ .

M[S] = H[S}H{a}, (1.10)
(a)s . ]' S S

Mig" = ;- HigH,). (1.11)

Supposons maintenant que a n’est pas dans S. On a :

Mg = (H[S] - Vfﬁ)H{a}; (1.12)
(a)s 1 s (a)s s
M) = H@<Hm — Vi ) o} (1.13)

Preuve. Soit (H,{x}) un empilement marqué d’une piece a position a. On utilise la bijec-
tion F} pour construire un couple (Hy, Hs), tel que min(H,y) = {a}. Le lemme assure
que :

min(H) = min(H;) U ({a} \ U(Hl)).
Si a est dans S, alors min(H) est inclus dans S si et seulement si min(H;) l'est : ceci prouve

I'équation ((1.10). Si a n’est pas dans S, alors min(H) est inclus dans S si et seulement si

min(H,) 'est et a est dans v(H;). La série Hyg) — V(;) comptant les empilements ayant a
dans leur voisinage, on a bien prouvé I’équation (1.12]

Considérons maintenant le cas des empilements stricts. Soit Mfg]) " la série comptant les

empilements marqués d’une piece de position a presque stricts. Ils sont obtenus en rem-
placant une piece de position a par une pile d’une ou deux pieces. On a donc :

Mg = (1+a)Mg".
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On utilise maintenant la bijection F pour transformer les empilements marqués en couples

d’empilements stricts. On prouve ainsi les identités (1.11]) et (1.13) de la méme maniere
que (L10) t (L12). 0

1.5 Empilements de segments et de dimeres

Pour finir ce chapitre, nous définissons deux modeles particuliers d’empilements de pieces :
les empilements de segments, et un cas particulier, les empilements de dimeres. Les empile-
ments de dimeres forment sans doute le modele d’empilements le plus utilisé, notamment
pour I"énumération des animaux dirigés [3]. Les empilements de segments, plus généraux,
ont été étudiés dans [11].

Ces deux modeles d’empilements nous seront utiles a de nombreuses reprises au cours de
cette these.

1.5.1 Empilements de segments

Définition 1.30. Un segment est un couple d’entiers (i,j) tel que ¢ < j. L’ensemble
des sommets du segment (i, j) est 'ensemble {i,...,j}; ’ensemble des arétes du segment
(1,7) est 'ensemble {i,...,j —1}; la longueur du segment (i, j) est 'entier j — i, égal au
nombre d’arétes du segment.

Deux segments sont concurrents s’ils ont au moins un sommet en commun ; de maniere
équivalente, ils sont concurrents si leurs arétes sont consécutives. Enfin, soient qq, q1, - . .
des indéterminées. On attribue a chaque segment de longueur ¢ le poids ¢,.

L’ensemble des segments muni de cette relation de concurrence et de ces poids définit un
modele d’empilements de pieces. Un empilement de segments est représenté figure [1.8|

Comme indiqué dans la définition, un segment de longueur non nulle peut étre représenté
par son ensemble de sommets ou par son ensemble d’arétes. L'une ou 'autre vision sera
plus commode selon les applications.

On s’intéresse maintenant a I’énumération des empilements de segments. Soit k£ un entier
positif ou nul et soit V} 'ensemble {0, ..., k}. On pose également V_; = @&. On considere le
sous-modele, appelé modele borné de largeur k, constitué des segments dont les sommets
sont dans Vj. On note Hj la série comptant les empilements de segments de ce modele.

Le théoréme [.11] donne .

Ty
ou T} est la série alternée des empilements triviaux de segments contenus dans V.

Hy, =

Soit T'(z) la série génératrice des séries Tj,—1 (I'utilité de ce décalage d’indice est apparente
ci-dessous) :

T(z) =Y Tp 12"

k>0

On note également Q)(z) la série des indéterminées ¢ :

Qz)=>_ gz’

£20
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Lemme 1.31. La série génératrice T(z) vaut :

1
(=) = 1 —z42Q(z)
Preuve. Un empilement trivial de segments, observé de gauche a droite, peut étre vu
comme une séquence d’éléments de deux types (figure :
— un sommet libre ;
— un segment de longueur ¢, contenant £ + 1 sommets.
La série T}, étant alternée, le poids effectif d'un segment de longueur ¢ est —g,. On ajoute
maintenant I'indéterminée z comptant le nombre de sommets. L’ensemble Vj._; comptant

k sommets, on a
1
ZTk_lzk = 1\
k>0 1- (Z — 20 Qe )

Le résultat s’ensuit. O

1.5.2 Adjacences droites et gauches

Définition 1.32. Soit a = (i4,Jj.) €t b = (i, jp) deux segments. Le motif ab est une
adjacence a droite si j, = iy ; il est une adjacence a gauche si j, = i,.

Ces notions sont illustrés figure (1.8

=1

*—eo—eo—e o0

FIGURE 1.8 — Un empilement de segments contenant une adjacence a droite et une
adjacence a gauche, marquées sur la figure.

On s’intéresse maintenant aux empilements de segments sans adjacence a droite. Pour
énumérer ces empilements, nous utiliserons les résultats de la section Notons C' la
relation de concurrence entre les segments, Cs 'ensemble des adjacences a droite et C le
complémentaire a C' de Cs.

Soient a = (i4,ja) €t b = (i, j») deux segments. On note a < b si on a 'inégalité j, < iy.

Lemme 1.33. Le modéle des segments muni de la relation d’ordre < est un modéle
ordonné. La partition C7 U Cy de C' est compatible avec cet ordre.

Preuve. Soit a = (i4, ja) €t b = (ip, jp) deux segments non concurrents. Leurs ensembles
de sommets sont disjoints, donc on a nécessairement j, < 7, ou j, < 14, donc a < b ou
b < a. Le lemme [1.15] implique donc que le modele des segments muni de 'ordre < est
ordonné.

Prouvons que la condition 3 de la définition est vérifiée. Soient a = (iq, Ja), b = (i, Jo)
et ¢ = (i, j.) trois segments tels que ab € Cy, cb € Cy et ac ¢ C'. Par I'absurde, supposons
que ¢ £ a; ceci implique que a < ¢. Comme cb est dans Cy, on a j. = 4, ; comme a < c,
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on a j, < i.; enfin, comme 7, < jp et i. < Je, on a j, < 1. Les segments a et b sont donc
non concurrents, ce qui contredit le fait que ab € 4.

De méme, on prouve la condition 4 : supposons que bc € C, ba € Cy et ac € C. Supposons
par l'absurde que a < ¢. On a donc j, = i, et j, < i., ce qui implique j, < 7., donc b < ¢,
ce qui contredit le fait que bc € Cf. O

Les conditions du théoreme sont donc remplies. On dira qu'un empilement est quasi-
trivial si tous ses motifs sont dans Cs.

A nouveau, placons nous dans le modeéle des segments inclus dans V. Notons H{ la série
des empilements sans adjacence droite de ce modele. Notons également T} la série alternée
des empilements quasi-triviaux. Le théoreme affirme que

1
Hl = —.

Notons T%(z) la série génératrice des séries T, cette fois sans décalage d’indice :

Tz) = Tiz".

k=0
Lemme 1.34. La série T%(2) vaut

1

d
Tz) = 2100
Preuve. La preuve reprend celle du lemme [1.31] a la différence que deux segments a et
b d’'un empilement quasi-trivial sont autorisés a étre adjacents a droite. On choisit cette
fois la vision par arétes plutot que par sommets. Un empilement quasi trivial, observé de
gauche a droite, peut se voir comme une séquence de deux types d’éléments :

— une aréte non occupée;

— un segment de longueur ¢, occupant ¢ arétes.

Ceci permet de conclure de la méme manieére que pour le lemme [1.3T] L’absence de
décalage d’indice est due au fait que seules k arétes relient les sommets de V. O]

o—e—e—6e O e O

*—o

([

([ *—o—0
*—eo—o e—e O e—o

FI1GURE 1.9 — En haut, un empilement trivial de segments inclus dans V5. En bas,
un empilement quasi-trivial de segments inclus dans Vjg.

Dans ce qui précede, nous avons tenu compte uniquement des adjacences a droite. Dans le
chapitre [5, nous chercherons & énumérer des empilements de segments sans adjacence ni
a droite, ni a gauche. Posons CY ’ensemble des motifs ab ot a et b sont adjacents a droite
ou a gauche et C] son complémentaire a C. Le lemme suivant montre que l'approche
développée ci-dessus ne peut pas fonctionner dans ce cas.
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Lemme 1.35. [l n’existe pas d’ordre partiel < sur le modéle des segments rendant com-
patible la partition C7 U C}.

Ce lemme montre qu’il est impossible d’appliquer le théoréme pour énumérer les
empilements sans adjacence. Soit H, ,gd la série des empilements sans adjacence de segments
inclus dans Vj. Expérimentalement, les séries 1/ H;Zd ne vérifient pas d’équation aussi
simple que les séries T, et T, ce qui tend & montrer que le probléme est effectivement
plus difficile.

Preuve. Posons a = (1,1), b= (0,2) et ¢ = (0,0). Les motifs ab et ba sont dans C, tandis
que les motifs be et ¢b sont dans C4. De plus, les segments a et ¢ ne sont pas concurrents.

Supposons que la partition C7 U C} est compatible avec l'ordre <. La condition 3 de
la définition implique que ¢ < a, et la condition 4 implique que a < c¢. C’est une
contradiction. O]

1.5.3 Empilements de dimeres
Définition 1.36. On appelle dimére un segment de longueur 1.

Les dimeéres sont donc les segments contenant une seule aréte. Pour cette raison, on
confondra souvent un dimere avec son unique aréte.

En utilisant la méme relation de concurrence que pour les segments, I’ensemble des dimeres
est un modele d’empilements. Attribuons le poids ¢ a chaque dimere. Le modele des
empilements de dimeéres étant un sous-modele de celui des segments, les séries génératrices
des empilements de dimeres peuvent étre obtenues en effectuant dans les séries comptant
les empilements de segments les substitutions ¢; =t et g, = 0 pour ¢ # 1. Ainsi, la série
génératrice Q(z) vaut tz.

Soit Hy(t) la série génératrice des empilements de dimeres inclus dans Vi. Comme le
montre le lemme |1.31] cette série s’écrit 1/T(t), avec

Z Tk_l(t)Zk

k>0

B 1
1 — 24122

Définition 1.37. Les polynomes de Fibonacci, notés Fy(t), sont les polynémes obéissant
a la relation de récurrence suivante :

Fu(t) = Fu_i(t) — tFys(t), k

WV
N

Cette définition est équivalente a

1

Z Fof=—
=0 1 — 2+ t22

On en déduit l'identité Tj_1(t) = Fy(t). Pour cette raison, les polynémes de Fibonacci
apparaitront chaque fois qu’un probleme d’énumération fait intervenir des empilements
de dimeéres.
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Considérons maintenant le modele des segments de longueur > 1 inclus dans V4, et utili-
sons les poids g, = t* pour ¢ > 1. La série Q(z) vaut donc

Notons H{(t) la série comptant les empilements de segments sans adjacence droite de ce
modele. D’apres la lemme [1.34] cette série vaut 1/T¢(t), avec

1 1—tz

T2k = = .
kz}() k(?) 1—Z+IZZ 1 — 2+ t22

On réécrit cette égalité comme

1
1 T = ——
+Z,§) k()2 1 — 2+ t22

On en déduit que la série T () vaut le polynéme de Fibonacci Fy,1(t). On a donc 1'égalité
T(t) = Ty(t), donc aussi Hi(t) = Hy(t).

Cette égalité s’explique par une bijection entre empilements de segments sans adjacence
droite et empilements de dimeres. Cette bijection s’obtient en remplagant chaque segment
i, j] par I'empilement de dimeéres [i,i + 1]---[j — 1, j] (figure [1.10). La bijection inverse
consiste a regrouper en segments tous les dimeres adjacents a droite.

*—e
*—o
*—o
*—o

FIGURE 1.10 — La bijection entre empilements de segments de longueur non nulle
sans adjacence droite et empilements de dimeéres. Chaque segment est remplacé par
une suite de dimeres adjacents a droite.
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Chapitre 2

Excursions discretes

Rappelons qu'une excursion discrete est un chemin qui prend des pas de hauteur dans un
ensemble S C Z, qui commence et termine a hauteur 0 et qui ne visite que des hauteurs
positives (figure [3). On définit la hauteur d’une excursion comme la hauteur maximale
d’un de ses sommets.

On considére maintenant pour tout pas s de S un poids ¢, a valeur dans un corps K.
Notons Ej la série génératrice des excursions de hauteur au plus k£ comptées selon ces

T

poids. Il est classique [2] que cette série est rationnelle, et s’écrit sous la forme

Fia’

Ey

ol les Fj sont des polynomes, dont nous donnerons une interprétation combinatoire par
la suite.

Soit F'(z) la série
F(z) =Y Ez" (2.1)
k>0
Supposons que cette série est rationnelle, et s’écrit F'(z) = N(z)/D(z). Soit E la série
génératrice des excursions sans contrainte de hauteur. En écrivant la relation de récurrence
des polynémes Fj et en faisant tendre k vers l'infini, on trouve l'identité D(F) = 0 (une
preuve plus détaillée se trouve dans [6]). Ainsi, la série E est algébrique sur le corps K.

Dans son article [6], Bousquet-Mélou montre que la série F(z) est rationnelle si I’ensemble
S des pas autorisés est fini. Plus précisément, si max S = a et min S = —b, on peut prendre
les polynémes N(z) et D(z) de degrés respectifs d,p, —a — b et dgp, o1t dyp = (“:b). Ceci
montre donc que la série £ est algébrique de degré au plus d, ;. Bousquet-Mélou montre
également que, si 'ensemble S est symétrique, ce qui implique a = b, le dénominateur

peut étre réduit au degré 2°.

Dans ce chapitre, nous étudions les excursions discretes dans deux cas. Le premier est
celui des chemins de Lukasiewicz, dont I'ensemble des pas S est inclus dans Z~ U {1}.
Nous verrons que, dans ce cas, la série F'(z) est rationnelle des que la série >°; g_;27 I'est.

Le deuxieme est le cas plus classique ou I'ensemble S est fini. Nous donnons une explica-
tion combinatoire au fait que la série F(z) est rationnelle en donnant des interprétations
combinatoires du numérateur N(z) et du dénominateur D(z), ainsi que de leurs degrés.
Nous étudions aussi le cas ou ’ensemble S est symétrique. Dans ce cas, nous montrons que
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la fraction rationnelle N(z)/D(z) se simplifie, et nous en déduisons plusieurs propriétés
intéressantes des polynémes Fj, et des séries Fj.

Le chapitre est organisé comme suit. La section donne des outils classiques, dus a
Viennot, pour relier les chemins dans un graphe quelconque aux empilements de cycles
élémentaires ; nous utilisons ces outils pour interpréter combinatoirement les polynomes
F}.. La section applique ces résulats a 1’étude des chemins de hLukasiewicz. La sec-
tion [2.3] quant a elle, étudie le cas ol l'ensemble des pas S est fini, ainsi que le cas
particulier ou il est, de plus, symétrique.

2.1 Chemins dans un graphe orienté

Dans cette section, on notera G = (V, A) un graphe orienté. Un chemin de G est une suite
a=ay---a, darcs de A consécutifs (c’est-a-dire que le point d’arrivée de chaque arc est
le point de départ du suivant). Si s est le point de départ de a; et ¢ le point d’arrivée de
a,, on dira que « joint s a t et on notera a: s — t. Pour tout sommet s de V', on définit
également le chemin vide au point s, noté 4, qui ne contient aucun arc et joint s a s.

Un sommet u est visité par un chemin « si u est le point de départ ou d’arrivée d’un arc
de . L’ensemble des sommets visités par « est appelé le support de «, et noté supp(«).

Comme pour les empilements, on attribue a chaque arc a un poids a. Si @« = a; - - - a,, est
un chemin de GG, on note @& son poids, défini comme le produit des poids des arcs qui le
composent :

A=ay -y,
On note également Wy, la série génératrice des chemins de GG joignant s a ¢ :

Wst: Z Q.

a: s—t

De la méme maniere que pour les empilements, nous supposerons que les poids des arcs
sont universels, ¢’est-a-dire que nous travaillons dans I’anneau des séries formelles avec une
indéterminée a pour chaque arc a. Ceci garantit 'existence de Wy ; considérer d’autres
poids revient ensuite a spécialiser cette série.

2.1.1 Matrice d’adjacence

Supposons I’ensemble des sommets V' fini. On peut alors, sans perte de généralité, supposer
que V. ={0,...,k — 1}. On note A la matrice d’adjacence de G, dont le coeflicient A;;
vaut la somme des poids @ pour tous les arcs a joignant 7 a j; on note également W la
matrice dont le coefficient (i, j) vaut la série W;; définie ci-dessus.

Il est classique que, si n > 0, le coefficient (i, j) de la matrice A" compte les chemins de
G de longueur n joignant ¢ a j. Ainsi, la matrice W vaut :

W=> A"=(1-A4)"",
n=0
ou 1 désigne la matrice identité. La formule de Cramer donne donc le coefficient W;; :

Wi‘ = )
det(1 — A)

(2.2)
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ou cof;;(1 — A) désigne le cofacteur de coordonnées (j,7) dans la matrice 1 — A.

Dans la suite, nous donnons une interprétation classique, due a Viennot, de cette formule
utilisant des empilements de pieces.

Remarque. On a supposé ici 'ensemble V' fini, ce qui suffira a nos besoins. Dans le cas ou
cet ensemble est infini, il reste possible d’écrire la formule . Cette équation implique
alors un déterminant infini, défini par exemple dans [30]. Tout le reste de cette section
reste valable dans ce cadre, mais nous omettrons les détails.

2.1.2 Empilements de cycles

On s’intéresse désormais aux cycles du graphe G, c’est-a-dire les chemins ayant méme
point de départ et d’arrivée, vus a une permutation cyclique des arcs pres. Le poids d'un
cycle v, noté 4, est égal a son poids en tant que chemin, c¢’est-a-dire au produit des poids
des arcs qui le composent.

Définition 2.1. Un chemin est dit auto-évitant s’il ne passe pas deux fois par le méme
sommet. De méme, un cycle non vide est dit élémentaire s’'il ne passe pas deux fois par
le méme sommet. Deux chemins ou cycles sont concurrents si leurs supports ne sont pas
disjoints.

Nous noterons [3: s ~ t si le chemin auto-évitant g joint s a t.

Muni de cette relation de concurrence, ’ensemble des cycles élémentaires de G est un
modele d’empilements de pieces. Nous présentons maintenant un lien, dii & Viennot, entre
les chemins et les empilements de ce modele.

Définition 2.2. Soit @ = ay - - - a,, un chemin joignant s a ¢. On construit inductivement
une suite (5;)o<icn de chemins auto-évitants, et une suite (H;)o<i<n, d’empilements de
cycles, de la maniere suivante :
— Bp = €5 (le chemin vide au point s) et Hy = 1;
— si ¢ > 0, on distingue deux cas :
— si la concaténation 5;_ja; est un chemin auto-évitant, alors 8; = 3;_1a; et H;y1 = H;;
— sinon, on écrit B;_1a; = B;7y, ou 7y est un cycle élémentaire; on pose ensuite H; =
yH;_1.
Dans le deuxieme cas, on dira que l'arc a; est un arc terminal du chemin «. Enfin, on

pose f(a) = (B, Hy)-

Plus intuitivement, on construit le couple f(a) = (5, H) en parcourant le chemin a.
Des que le chemin atteint un sommet déja visité, le cycle élémentaire comstitué des pas
depuis la premiere visite se « détache » de . Une fois tous les cycles détachés, il ne reste
quun chemin auto-évitant 5. De plus, soient ~q,...,7v, les cycles qui se sont détachés.
L’empilement H est construit en empilant ces cycles dans 1'ordre inverse :

Un arc est terminal s’il provoque un détachement de cycle. Cette construction est illustrée
figure [2.1
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e
= 2 s O=x
7

ay Qg

(8,H)

FIGURE 2.1 — En haut, un chemin o = a; --- ag joignant les sommets 0 et 2. En
suivant ce chemin, l'arc a4 fait se détacher le cycle v1 = asasaq; Varc a7 fait se
détacher le cycle vo = a7 ; enfin, I’'arc ag fait se détacher le cycle v3 = agag. 1l reste
ainsi un chemin auto-évitant 5 = ajas. L’empilement de cycles ainsi obtenu est
H = v3727y1. Son unique cycle minimal, 3, est concurrent a .

Théoréme 2.3 (Viennot). L’application f est une bijection entre les chemins joignant s
at etles couples (8, H), ot [ est un chemin auto-évitant de s a t et H est un empilement
de cycles élémentaires tel que tous les cycles minimauzr de H sont concurrents a 3.

Nous dirons que deux arcs a et b sont consécutifs si le point d’arrivée de a est égal au
point de départ de b. Le lemme suivant permet de caractériser les chemins contenant des
arcs terminaux consécutifs.

Lemme 2.4. Soit a un chemin et (8, H) = f(«). Soient a et b deux arcs terminauz de
a ; sotent v, et v, les cycles de 'empilement H contenant les arcs a et b. Supposons de
plus que les arcs a et b sont consécutifs dans le graphe G.

Les arcs a et b apparaissent consécutivement dans le chemin « si et seulement si vy, couvre
vy dans 'empilement H.

Preuve. Notons u le sommet d’arrivée de 'arc a, qui est le sommet de départ de I'arc b.
Tout d’abord, on note que les cycles v, et 7, visitent tous deux u, donc sont concurrents.

Supposons que les arcs a et b apparaissent consécutivement dans le chemin «. Les deux
arcs étant terminaux, les cycles 7, et 7, se détachent consécutivement. Les cycles étant
empilés dans 'ordre inverse, on en déduit que 7, couvre 7, dans I'empilement H.

Supposons maintenant que les arcs a et b n’apparaissent pas consécutivement. Soit 71 le
chemin compris entre a et b : ce chemin va de u a u, et visite donc deux fois le sommet wu.
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Par conséquent, un cycle 9 visitant u se détache entre v, et ,. Le cycle ¢ étant concurrent
a la fois a v, et a v, le cycle v, ne couvre pas ,. O]

Nous allons maintenant utiliser le théoreme pour calculer la série génératrice des
chemins joignant s a t. On remarque que les arcs contenus dans le chemin « et dans f(«)
sont les mémes, de sorte que la bijection f conserve le poids.

Si S est un ensemble de cycles élémentaires, on rappelle qu’on note Hg) la série génératrice
des empilements de cycles H tels que min(H) C S. Le théoreme implique que :

We= > BHu)

B: st

ou v(3) désigne 'ensemble des cycles élémentaires concurrents a . En particulier, dans
le cas ou s = t, le seul chemin auto-évitant [ possible est le chemin vide. En notant v(s)
I’ensemble des cycles élémentaires contenant s, on a donc :

Wis = Hpu(s))-
Notons maintenant F' la série alternée des empilements triviaux de cycles :
F= Y (1%
QAR

ol 7 - - -, désigne un empilement trivial de cycles élémentaires. Si X est un sous-ensemble
de V', notons Fjx) la série alternée des empilements triviaux de cycles dont tous les sommets
sont dans X. En utilisant le théoreme [1.11], on trouve :

/6_ su
W,, = Z Fiv\supp(8)] : (2.3)
B st
et en particulier :
V\{s}]
Wes = . 2.4
4 (2.4)

Esquissons a partir de cette formule une preuve du fait que la série Ej, comptant les
excursions de hauteur au plus k dont les pas sont dans un ensemble fixé S, est de la forme
Fy./Fyy1 ou les Fj, sont des polynomes. Notons Vj, I'ensemble {0, ..., k} et Fjyq la série
alternée des empilements de cycles sur Vj, (cette série est en fait un polynéme). I’ensemble
Vi \ {0} est égal a {1,...,k}, en bijection avec {0,...,k — 1}. La série Fjy,\ {0} est donc
égale a Fy.

On s’intéresse également a la série Fj,; comptant les chemins commengant a la hauteur 0,
finissant a la hauteur 7, et ne visitant que des sommets de hauteur entre 0 et k£ inclus.
La formule (2.3) montre que cette série est aussi rationnelle, de dénominateur Fj ;. Son
numérateur est en revanche plus complexe.

2.1.3 Permutations partielles

Nous allons maintenant faire le lien entre les formules (2.2) et (2.3). Pour cela, nous
utilisons la notion de permutation partielle.
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Définition 2.5. Une permutation partielle d’ordre k est un couple 7 = (S,0), ou S est
un sous-ensemble de {0,...,k — 1} et o est une permutation de I’ensemble S.

L’ensemble S est appelé le support de m et noté supp(n); les cycles de 7 sont les cycles
de 0. On note leur nombre cyc(w). Enfin, la signature de 7, notée (m), est égale a la
signature de o.

On note P, 'ensemble des permutations partielles d’ordre k. La signature d’une permu-
tation partielle vérifie la formule classique :

e(m) = (—1) |supp(m)|+eye(r)

Soit maintenant G le graphe complet de sommets V' = {0,...,k—1} et 7 une permutation
partielle d’ordre k. On peut représenter 7 sous forme de diagramme, en tragant un arc
i — (i) pour tous les sommets s de supp(m). Chaque cycle de 7 devient alors un cycle
élémentaire du graphe G; ces cycles sont a supports disjoints, donc non concurrents.
Cette remarque fournit une bijection entre les permutations partielles et les empilements
triviaux de cycles de G.

009

FIGURE 2.2 — Un empilement trivial de cycles. La permutation partielle correspon-
dante, d’ordre 5, s’écrit m = (S5, 0), avec S = {0,1,2,4} et 0 = (4 1 0)(2). Elle vérifie
cyc(m) = 2.

On calcule a présent la série det(1 — A) en développant le déterminant :

k-1
det(1—A)= > e(o) [TQ = Aiow),
c€Sy =0

ou G, est le groupe des permuatations d’indice k. En développant le produit, on trouve :

det(l1—A)= > (o) Y (H _Ai,a(i)> (H 5i,a(i))-

cEG), Sc{o,....k—1} \i€S iZS

Les seules contributions non nulles de la deuxiéme somme sont celles telles que o(i) =
pour tout ¢ hors de S. Notons & la restriction de o & S et 7 la permutation partielle (S, 7).
Les permutations ¢ et ¢ ayant méme signature, on trouve :

det(l — A) = Z E(ﬂ') H (—Aiﬂr(i)).

TE€PE i€supp(m)

On en tire :

det(l — A) = Z (_1)cyc(7r) H Az,w(z)

TEPy i€supp(m)
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En utilisant le lien de la figure [2.2] cette derniére série s’interprete comme la série alternée
des empilements triviaux de cycles. Ainsi, la série F' définie plus haut est égale a det(1—A).
En notant 7 le produit des A; ,(; pour ¢ dans supp(7), cela s’écrit :

F= Y (-1)%mz, (2.5)

TEP

On a bien montré que les dénominateurs des expressions (2.2) et (2.3) sont les mémes.
Les numérateurs peuvent étre traités de méme.

2.1.4 Graphes avec une symétrie

On considere maintenant le cas ou le graphe G possede une symétrie, c’est-a-dire une
involution ¢ agissant sur les sommets de V' laissant invariant le graphe, y compris le
poids des arcs. Comme ¢ est une involution, on peut toujours trouver une partition V =
Vo U V1 UV, de 'ensemble des sommets telle que :

— Vo est I'ensemble des points fixes de ¢ ;

— l'image par ¢ de Vj est V5.

On note V' le quotient de Vi U V4 par l'involution ¢, c¢’est-a-dire I’ensemble des paires
{v,¢(v)} pour v dans V;. Par abus, si v est dans V; U V5, on notera encore v sa classe
d’équivalence.

Définition 2.6. On note G* le graphe dont les sommets sont V* = V5 U V’/, muni d’un
arc s — t pour chaque arc s — t de G tel que s est dans Vy U V.

On note G~ le graphe dont les sommets sont V'~ = V', muni :

— d’un arc s — t, de poids a, pour chaque arc a: s — t de G tel que s et t sont dans V; ;

— d'un arc s — t, de poids —a, pour chaque arc a: s — t de GG tel que s est dans V; et ¢
dans V5.

Les graphes G et G~ sont appelés les graphes réduits de G' correspondant a la partition
Vo U V3 UV, Un exemple de construction de ces graphes est donné figure [2.3]

Le résultat qui suit montre que si le graphe G posséde une symeétrie, les séries génératrices
F et Wy, définies précédemment, sont calculables a partir de séries analogues dans les
graphes réduits. On note F'* et F'~ les séries comptant les configurations de cycles de
Gt et G, respectivement. De méme, on note W, et W, les séries comptant les chemins
joignant la classe d’équivalence de s a celle de t.

Lemme 2.7. La série F' des empilements triviaux de cycles vaut :
F=FTF".

De plus, soient s et t des sommets de V. La série Wy des chemins de s a t dans le graphe
G est donnée par :
— st t est dans Vjy, alors

Wst = Ws—; ;

— st s est dans Vg et t n’est pas dans Vy, alors

”st: * ;
2
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v
G
v —U
u
ECeONEE
Uu
u
G* G~

FiGURE 2.3 — En haut, le graphe G, ou on a indiqué le poids des arcs. Ce graphe
admet une symétrie laissant 1’état 0 fixe et envoyant 1 sur 2. En bas a gauche, le
graphe G correspondant A cette symétrie; les deux arcs de poids u joignant 0 & 1
et de 0 & 2 deviennent deux arcs de 0 a {1,2}. En bas a droite, le graphe G~ ; l'arc
de poids v joignant 1 & 2 devient un arc de poids —v joignant {1,2} dans lui-méme.

- st s ett sont dans Vi ou s et t sont dans Vs, alors

Wst = W;t— _;— WS? ;

— si s est dans V7 et t dans Vo ou vice versa, alors

Wst — W;f; ; WS; .

Preuve. Soit A la matrice d’adjacence du graphe G. Le fait que G est invariant par
I'involution ¢ implique que la matrice A est de la forme suivante, ou les blocs correspondent
aux ensembles V, V] et V5 :

AOO AOl AOl
A= AlO All A12
AlO A12 All

Soit P la matrice de changement de base suivante :
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ou 1 désigne le bloc identité. La matrice inverse vaut

1] 0 0
Pt=10[1/2| 1/2
0]1/2|—1/2

Dans cette nouvelle base, la matrice A s’écrit :

Ago 2401 0
PlAP = | Ay | An + A 0
0 0 A — A

On note AT et A~ les deux blocs de cette matrice :
Aoo ‘ 2A0
Ao ‘ A+ A

At = A‘:<A11—A12>.

Ceci permet d’exprimer le déterminant F' de la matrice 1 — A :
F =det(l — A) =det(1 — A*)det(1 — A7).

On reconnait dans A1 et A~ les matrices d’adjacence des graphes G+ et G, respective-
ment. Ainsi, on a bien I'égalité ' = F*F~.

Soit maintenant W, W* et W~ les pseudo-inverses (1 — A)~!, (1 — AT)let (1 - A7)}
respectivement. On commence par écrire les décompositions en blocs de W et W™ :

, W—(Wﬁ).

La décomposition en blocs de la matrice A permet d’écrire

Weh | Wot | 0
Plwp=| Wi Wi | o
0 o |wg

On en déduit I'expression suivante de la matrice W, par changement de base inverse :

WO—B % @
w=| wi WH;Wﬁ WH;WH
o WL =W | W+ W

Le coefficient (7, j) des matrices W, W+ et W~ étant égal a la série des chemins joignant
i a j dans les graphes G, G* et G, on lit bien dans cette matrice les expressions de Wy
du lemme. O]
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Pour finir, nous déduisons du lemme [2.7] le résultat plus simple suivant.

Lemme 2.8. Soit s un sommet quelconque de V. On a [’égalité

ZWst: Z W:;

teVv teV+

Preuve. Supposons tout d’abord que s est dans V5. En utilisant le lemme [2.7] on trouve

ZWst—ZWs‘iJrZ Wi

teVv teVp teVy teVa

On rappelle que ¢(V) = V] et que I/VJr o(1) = = W pour tout t dans V. En regroupant la
deuxieme et la troisieme, on trouve

D Wa=2 Wi+ Wi
teV teVy teVy

Ceci permet de conclure.
Supposons maintenant que s est dans ;. Dans ce cas, on a
Wi — Wy

S = Y wy ey Tt W g T W

tev teVp teVy teVa

On procede de méme que précédemment. Les termes en W, s’annulant, on trouve a

nouveau
_ + +
ZWst - Z Wst + Z Wst‘
tev teVy tevi
Le cas ou s est dans V5 étant identique, ceci prouve le lemme. O

Remarque. Dans cette these, nous ne considérons que le cas ou 'automorphisme ¢ est
une involution. Cependant, on peut considérer le cas plus général ou le graphe G possede
un groupe I' d’automorphismes. Montrons que dans ce cas également, la série F' des
empilements triviaux se factorise.

Considérons l'espace Ey des combinaisons linéaires formelles de sommets de V. Via la
matrice d’adjacence, on peut considérer I’ensemble A des arcs comme un endomorphisme
de Ey. Soit v une permutation de V. Le fait que v est un automorphisme de G est
équivalent au fait que les endomorphismes A et v commutent.

Soit p I'application linéaire définie par

b=

Z 7.
|F| ~yel'
Le fait que I" est un groupe implique que p est un projecteur (p o p = p). Par conséquent,
les sous-espaces Im p et Kerp sont supplémentaires dans Ey . De plus, I’endomorphisme
A commutant avec tous les 7, il commute avec p, donc les sous-espaces Im p et Ker p sont
stables par A. On a donc

F = det(1— A) = det(1 = Ajtmp) det(1 = Ajger) = FTF".

Pour calculer les déterminants F'* et F'~, il faut décrire une base de Ey compatible avec
la décomposition Ey = Imp @ Kerp et écrire la matrice A sur cette base. On obtient
une matrice formée de deux blocs diagonaux A* et A~, que 'on voit comme matrices
d’adjacence de deux graphes G et G~. Les séries F'™ et F'~ sont les séries alternées des
empilements triviaux de cycles sur ces graphes. Ainsi, si s et ¢ sont des sommets, on peut
exprimer la série Wy, en fonction de séries de chemins dans les graphes réduits G* et G~.
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2.2 Chemins de Lukasiewicz

Définition 2.9. Un chemin de Lukasiewicz est une excursion discrete a pas dans un
ensemble S tel que S C {1} UZ~. Les pas de valeur 1 sont appelés pas montants; les pas
de Z~ sont des pas descendants.

Cette définition est légerement différente de la notion habituelle de chemins de Lukasie-
wicz. Les pas contraints a étre de hauteur 1 sont les pas montants, non les descendants ;
les excursions joignent les sommets 0 et 0, non 0 et —1. Nous utilisons néanmoins la dé-
finition ci-dessus, en particulier parce qu’elle est plus commode pour traiter les chemins
culminants.

2.2.1 Chemins généraux et empilements de segments

Soit S ensemble de pas inclus dans {1} UZ~. Quitte a attribuer le poids 0 & certains pas,
nous supposerons que ’ensemble des pas autorisés est S = {1} UZ~. Nous notons m le
poids du pas montant 1 et d le poids du pas descendant —s. Soit D(z) la série génératrice
des poids des pas descendants :

D(z) =) dsz".

s=>0

Les cycles élémentaires des chemins de pas dans .S ont une forme particuliere, due au fait
que le seul pas montant est de hauteur 1. Un cycle élémentaire est toujours composé d’un
unique pas descendant —s et de s pas montants. Un tel cycle a pour poids —m?d; et il
occupe s+ 1 sommets consécutifs. Par conséquent, un cycle contenant un pas descendant
de valeur —s peut étre vu comme un segment de longueur s (voir section . Cette
correspondance est illustrée figure [2.4]

Wzo—o—o—o

FiGURE 2.4 — Un cycle visitant 4 sommets et contenant un pas descendant de
hauteur 3 est un segment de longueur 3.

Notons que la série

Z midgz°®

s=0
vaut D(mz). Le résultat suivant, qui donne la série F'(z) définie par ({2.1)), est donc une
application directe du lemme |1.31]

Théoréme 2.10. La série F(z) associée a l’ensemble S est donnée par

1
1 —z+2D(mz)’

F(z)

Le théoreme ci-dessus permet de calculer les polynémes Fj., donc la série Ej, des excursions
de hauteur au plus k, qui vaut Fy/Fj.1. Notons que la série F'(z) est rationnelle des que
la série D(z) lest.

La série E/, comptant les excursions sans contrainte de hauteur, est donnée par le résultat
suivant.
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Proposition 2.11. La série E des excursions vérifie [’équation suivante :

E =1+ ED(mE).

Preuve. Soit o une excursion non vide. On considere le dernier pas de «. Ce pas est
nécessairement descendant ; notons le —s. On obtient la factorisation suivante :

a=a (-s).

On effectue a présent une décomposition de Catalan du chemin ' : on considere le dernier
pas montant qui finit & hauteur ¢, pour tout ¢ = 1,...,s. On obtient la décomposition
suivante, illustrée figure [2.5] :

a=aplagl - as(—s).

Par construction, les chemins «; sont tous des excursions. On obtient donc ’équation
suivante sur la série F :

E=1+Y mE"*d,

s=0

La proposition s’ensuit. O

FIGURE 2.5 — Décomposition d’une excursion de dernier pas —3. Cette décomposi-
tion implique 3 pas montants et 4 excursions.

On note a présent Ej; la série des chemins joignant 0 a ¢ et ne visitant que des sommets
entre 0 et k inclus.

Proposition 2.12. La série L ; vaut

Appelons pseudo-culminants les chemins de hauteur k joignant 0 a k. D’apres la proposi-
tion ci-dessus, la série C = Ej des chemins pseudo-culminants de hauteur k& vaut

mk

Fria

Ch
Preuve. On utilise la formule (2.3). Le seul chemin auto-évitant qui joint 0 a i est celui

composé de i pas montants ; son poids est m’ et il visite les sommets {0, ...,7}. On a donc

Foi — miF[{iJrl,..A,k}].
Frn

L’ensemble {i + 1,...,k} comptant k — i sommets, la série Fiiita,.. k) vaut Fy_;. O
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2.2.2 Chemins stricts

Dans cette section, nous cherchons a énumérer les chemins stricts, définis ci-dessous, qui
nous seront utiles dans le cadre de ’énumération de chemins auto-évitants et d’animaux.
Définition 2.13. Un chemin de Lukasiewicz est dit strict s’il ne contient pas deux pas
descendants consécutifs.

Nous noterons E* la série comptant les excursions strictes.
Proposition 2.14. La série E* vérifie
E* =1+ D(mE™).
Preuve. La preuve suit celle de la proposition [2.11] Soit o une excursion stricte non vide

et —s son dernier pas. L’excursion « étant stricte, ce pas ne peut étre précédé d’un pas
descendant. On trouve donc la décomposition suivante :

a=aglagl - a,_11(=s).
Les chemins «;, pour ¢ =0,...,s — 1, sont tous des excursions strictes. On a donc
* *
E* =Y m*(E*)*d,,
520
ce qui termine la preuve. O

Notons maintenant Ej ; la série des chemins stricts de hauteur au plus k joignant 0 a 1.
Le résultat suivant est I’analogue du théoreme et de la proposition permettant
de calculer les séries Ej ;.

Théoréme 2.15. La série £} ; est donnée par

. m
ki — T?
k
ou les séries Fy sont définies par
1
F*(z) = Frok = . 2.6
(2) Ig) F 1 —2z+ D(mz) (26)

En particulier, on trouve la série C} = Ej ;. des chemins stricts pseudo-culminants :

mk

Fy
Pour prouver ce résultat, nous utiliserons encore la bijection décrite dans la définition [2.2]
qui transforme un chemin « en un couple (3, H), ot 5 est un chemin auto-évitant et H
est un empilement de segments.

Nous aurons besoin de comprendre plus finement la structure de I'empilement H. En
particulier, nous nous intéressons aux arcs terminaux du chemin «. Un arc ¢ — ¢ + s
dans le graphe Gy sera dit montant (resp. descendant) si s est un pas montant (resp.
descendant).
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Lemme 2.16. Soit o un chemin joignant 0 a i dans le graphe Gy. Les arcs terminauz de
a sont exactement les arcs descendants de «.

Preuve. Considérons la procédure décrite dans la définition . A chaque étape, nous
avons un chemin auto-évitant 3;_1, qui joint 0 a un sommet j de G}. L'unique chemin
ayant cette propriété est composé de j pas montants et visite donc tous les sommets entre
0et .

On en déduit que si a; est un arc montant, alors 5;_ja; est encore auto-évitant, de sorte
que a; n’est pas terminal ; & l'inverse, si a; est un arc descendant, le chemin 3;_ja; n’est
jamais auto-évitant. L’arc a; est donc terminal. O

Lemme 2.17. Soit o un chemin de Lukasiewicz et (5, H) son image par f. Le chemin
« est strict si et seulement st H n’a pas d’adjacence a droite.

La définition d’adjacence & droite peut étre trouvée dans la section [1.5.2]

Preuve. Soit a et b deux arcs descendants de « tels que les arcs a et b de GG, sont consé-
cutifs. Les lemmes et singifient que les arcs a et b sont consécutifs si et seulement
si les cycles correspondants vy, et 7, sont tels que 7, couvre 7, dans l’empilement H.

On utilise maintenant la correspondance décrite figure 2.4 qui permet de voir les cycles
Ya €t 7, comme des segments. Le fait que les arcs descendants a et b sont consécutifs dans
Gy, signifie que les segments 7, et 7, sont adjacents a droite (figure . Ainsi, le chemin
« possede deux arcs descendants consécutifs si et seulement si 'empilement H possede

deux cycles v, et v, adjacents a droite tels que 7, couvre 7. O]
4
3 f
2 —_—
1
0 01234

FIGURE 2.6 — A gauche, un chemin de Lukasiewicz. A droite, 'empilement de seg-
ments associé via la bijection f. Les segments correspondant aux deux pas descen-
dants consécutifs sont adjacents a droite.

Preuve du théoréme[2.13. Soit a un chemin strict joignant 0 & 7 dans le graphe G, et soit
(8, H) 'image de « par f (voir définition [2.2). Le seul chemin auto-évitant de 0 a i est
composé de ¢ pas montants, et visite les sommets O, ..., 1.

Le lemme montre que 'empilement de segments H est sans adjacence a droite; de
plus, ses segments minimaux sont concurrents a 8. On remarque ensuite que ’ensemble des
segments concurrents a [ forment un segment initial pour 'ordre < (si v, est concurrent
a [ et v, < 74, alors 7, est concurrent a (3). Le lemme montre donc que 'on peut
appliquer le théoreme [I.16] Soit F}' la série des empilements quasi-triviaux de segments
inclus dans Vj, et F| X] la série des empilements quasi-triviaux de segments inclus dans un
ensemble de sommets X. On a

M F i

Fo ok 7

* JE—
Ep. =
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soit
[ nt
oL
kg — F*
k
La valeur de F} est ensuite donnée par le lemme O

2.2.3 Chemins de Dyck et empilements de dimeéres

Les chemins de Lukasiewicz les plus simples sont ceux dont les pas sont dans S = {—1,1}
et tels que chaque pas a pour poids t. De tels chemins sont appelés chemins de Dyck
(figure . Les cycles élémentaires des chemins de Dyck sont tous composés d’un pas
montant et d'un pas descendant, et leur poids est 2. De tels cycles peuvent se voir
comme des dimeéres (voir section . Le poids d'un dimeére étant t* plutot que t, les
polyndmes comptant les empilements triviaux sont F(¢%), ot les Fy(t) sont les polynomes
de Fibonacci (voir définition [1.37).

F1GURE 2.7 — Un chemin de Dyck de hauteur 4.

La proposition [2.11}, quant a elle, donne I’équation suivante pour la série des excursions :
E=1+tF.
De cette équation, on tire la valeur de E :
1—V1—42
2t2 '

Les coefficients de cette série sont les nombres de Catalan, dont nous avons parlé dans
I'introduction de la these.

E =

La section [1.5.3| présente une maniere alternative d’obtenir les polynémes de Fibonacci,
comme comptant des empilement quasi-triviaux de segments. Nous montrons ci-dessous
une vision des chemins de Dyck analogue de ces empilements.

Considérons 'ensemble de pas S = {1} U Z-, muni des poids ¢; = tl*l. Un chemin de
Dyck peut étre vu comme un chemin strict prenant de tels pas (donc un chemin strict de
Lukasiewicz), en groupant tous les pas descendants consécutifs en un seul pas descendant.

Nous utilisons les résultats de la section précédente pour énumérer ces chemins. Dans ce
cadre, le poids m vaut toujours ¢, et la série D(z) vaut

D(z) = Zt"slzs =

s>1

tz
1—tz

proposition [2.14] montre que la série E* des chemins de Dyck vérifie

t2E*

EFr=14 ———.
+1—t2E*
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On calcule également la série F*(z) définie dans la section [2.2.2]:

B 1 o 1—t%z
o l—z4 B2 1 — 2222

1—t22

F(2)

Ceci permet de calculer la série £y ; des chemins de hauteur au plus k joignant 0 a i, en
utilisant le théoréme 2.13] : ,
Lo mFE

Ces deux méthodes sont bien siir équivalentes : I’équation gouvernant la série E* définit
également la série des nombres de Catalan. De plus, les polynomes F; sont définis par
Fy =1, Ff=1—t*et F} = Fy | — t?F}_, pour k > 1. Ainsi, ils sont identiques aux
polynémes de Fibonacci Fy(t?).

2.3 Chemins prenant un nombre fini de pas

A présent, Nous nous intéressons aux chemins dont les pas montants peuvent étre su-
périeurs a 1. Nous nous restreignons aux cas ou ’ensemble des pas S autorisés est fini.
Comme indiqué ci-dessus, la série F'(z) est dans ce cas rationnelle (F(z) = N(z)/D(z)).
Nous développons une approche combinatoire qui nous permet d’interpréter les poly-
nomes N(z) et D(z) et de déduire de nouveaux résultats dans le cas ou 1’ensemble S est
symétrique, qui viennent s’ajouter a ceux de [6].

Nous faisons a nouveau la distinction entre les pas montants et descendants, en définissant
les sous-ensembles

St ={s:s€Sets>0}
ST ={-s:seSets<0}

Nous laissons de coté I’éventuel pas 0. De plus, suivant la notation de [6], nous notons a
I’élément maximal de ST et b I’élément maximal de S~.

2.3.1 Diagrammes de permutations

Soit 7 un empilement trivial de cycles, identifié a une permutation partielle via la bijection
de la figure[2.2] Ainsi que le montre la figure ces empilements ne sont pas aussi simples
que pour les chemins de Lukasiewicz. Nous séparons les arcs de 'empilement 7 en trois
catégories :

— des arcs fires i — 1,810 € S

— des arcs montants, de la forme i — i + sT avec st € ST ;

— des arcs descendants, de la forme i < i + s~ avec s~ € S™.

Pour représenter ’empilement 7, on placera les sommets sur une droite horizontale. Les
arcs montants seront tracés au-dessus de cette droite et les arcs descendants seront tracés
au-dessous, comme sur la figure [2.2] Le fait que 7 est un empilement trivial de cycles é1é-
mentaires entraine que chaque sommet ¢ appartient a 1'un des six types suivants, illustrés
figure [2.§]:

— 1 est un sommet libre : aucune aréte n’est incidente a 7 ;
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— 1 est un point fize : un arc fixe est incident a i;

— ¢ est une téte de cycle : un arc montant sort de ¢, un arc descendant entre en 7;

— ¢ est un sommet transitoire haut : deux arcs montants sont incidents a 7, I'un entrant,
I’autre sortant ;

1 est un sommet transitoire bas : deux arcs descendants sont incidents a ¢, I'un entrant,
I’autre sortant ;

1 est une queue de cycle : un arc montant entre en i et un arc descendant en sort.
Enfin, nous considérerons un autre parametre d’un empilement trivial de cycles, le nombre
de croisements stricts. Un croisement strict est constitué de deux arcs qui se coupent sur
le diagramme : soit deux arcs montants i — j et i’ — j', soit deux arcs descendants i < j
et i < j'. Dans les deux cas, ces arcs doivent vérifier 1 < i’ < j < 7.

o ¥ 8 )

FIGURE 2.8 — Les six types de sommets possibles, de gauche a droite : sommet libre,
point fixe, téte de cycle, sommet transitoire haut, sommet transitoire bas, queue de
cycle.

Remarquons que le diagramme de la permutation inverse 7—! est obtenu en prenant le
symétrique du diagramme de 7 par rapport a ’horizontale. Cette opération préserve les
points fixes, tétes de cycle et queues de cycle.

On note fixe(m) le nombre de points fixes de 7, téte(m) le nombre de tétes de cycles de 7
et crois(m) le nombre de croisements stricts de 7. Le résultat suivant permet de calculer
le terme (—1)¥*™) de la formule (2.5 en fonction de ces trois parametres.

Lemme 2.18. Toute permutation partielle m vérifie

(_1)cyc(7r) _ (_1)ﬁxe(w)—i—téte(w)—f—crois(w)'
Remarque. Les parametres que nous avons introduits sont reliés a d’autres parametres plus
classiques. Suivant les définitions de [16], nous notons exc(r) le nombre d’ezcédances faibles
de 7 (tétes de cycles, sommets transitoires hauts et points fixes dans notre terminologie)

et croi(m) son nombre de croisements (croisements stricts et sommets transitoires hauts).
Il découle des définitions que ces parametres sont reliés par

croi(m) + téte(m) + fixe(w) = crois(m) + exc(m).
Le lemme ci-dessus se réécrit donc en

(_l)cyc(w) _ (_1)exc(7r)+croi(7r)‘

Preuwve. Etablissons le résultat par récurrence sur crois(). Supposons tout d’abord que
la permutation 7 ne possede pas de croisement strict. Les cycles de 7 sont alors soit des
points fixes, soit contiennent une téte de cycle, une queue de cycle, et un certain nombre
de sommets transitoires (figure 2.9). On a donc

cyc(m) = fixe(m) + téte(m),
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qui implique bien 'identité du lemme.

Supposons maintenant que m possede au moins un croisement strict. Supposons qu’il
s’agit d’un croisement haut, donc deux arcs montants a: ¢ — j et a’: i/ — j' tels que
i < i < j < j (sicen’est pas le cas, on répete le raisonnement sur la permutation
7~1). Supposons de plus que i’ est minimal, puis que 7 est maximal : ainsi, aucun arc
qui part & un point entre i et i’ ne croise a ou a’. Soit 7 la transposition échangeant i
et i’ et considérons la permutation 77 : dans cette nouvelle permutation, les arcs a et a’
ne se croisent plus (figure . Les autres croisements sont inchangés, ce qui montre que
crois(m7) = crois(m) — 1. De plus, multiplier par une transposition augmente ou diminue
le nombre de cycles de 1. On trouve donc bien le résultat par hypothese de récurrence. [

L) WO® ) @

m — m
i J J i J 7

FIGURE 2.9 — En haut, une permutation sans croisement strict comportant deux
cycles : 'un est un point fixe, 'autre contient une seule téte de cycle. En bas,
Popération de décroisement consistant a multiplier par la transposition (i,14").

2.3.2 Cas général

Le résultat que nous allons montrer est le suivant, qui apparait dans [6].

Théoréme 2.19. Soit a = max(S™) et b = min(S™) et soit F(z) la série définie par (2.1)).
Il existe deux polynomes D(z) et N(z), de degrés en z respectifs (azb) et (azb) —a-—0b,
tels que

N(z)
D(z)

F(z) =
Le terme dominant de D(z) est
g (a+zf1)q_b(a+271) Z(a;rb) '

Le terme dominant de N(z) est

iqa(H;H)7b61—b(a+271)7“z(a#)*a*b.

Comme indiqué précédemment, si E est la série comptant les excursions non bornées du
modele S et si F(z) s’écrit comme dans le théoréeme, on a D(E) = 0. La série E est donc

algébrique de degré au plus (“;rb).
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Pour énumérer les empilements triviaux du graphe G_1, nous construisons un automate
fini qui construit successivement les arcs incidents a chaque sommet. Soit 7 un empilement
trivial de cycles et ¢ un entier entre 0 et k. On note m; 'ensemble des arcs de 7 incidents
& au moins un élément de {0,...,i — 1} (figure 2.10). Ainsi, on a myp = @ et m; = 7. De
plus, notons 7; le produit des poids des arcs de m; et f;(7) la quantité

fz‘ (7‘(‘) — (_ 1)ﬁxe(m)+téte(7ri)+crois(7ri)ﬁi‘

Le lemme [2.18| implique que
fi(m) = (=),
ce qui, combiné avec la formule (2.5), donne

Fo= Y fulm) (27)

TEP

@ » © @

FIGURE 2.10 — Le diagramme 74 correspondant a un empilement trivial de cycles.
Il contient tous les arcs incidents & un sommet grisé. L’ensemble A4 est {4,5};
I'ensemble By est {5, 7}.

En supposant construits le diagramme 7; et la quantité f;, nous allons montrer comment
construire les éléments suivants m;;1 et f;1;. Nous notons A; (resp. B;) 'ensemble des
sommets supérieurs ou égaux a ¢ qui sont points d’arrivée (resp. de départ) des arcs de m;
(figure [2.10). En particulier, aux points i =0 et i = k, on a A; = B; = @.

Pour construire les arcs incidents au sommet i, il nous faut décider a quel type ce sommet
appartient (voir figure . Ce choix dépend des arcs de 7; qui sont déja incidents a i,
donc de si i appartient ou non a A; et B;. Le choix des arcs incidentes a ¢ détermine
ensuite les ensembles A;,; et B;, ;. Les six cas a distinguer sont détaillés dans le tableau
de la figure [2.11]

Si le sommet 7 est une téte de cycle ou un sommet transitoire haut, un nouvel arc montant
de la forme i — i+ s est créé. Bien stir, ’élément i+ s ne doit pas étre déja dans I’ensemble
A;, sans quoi 7 ne serait pas un empilement trivial. De méme, si i est une téte de cycle ou
un sommet transitoire bas, un arc descendant de forme i <— i + s est créé, avec i +s & B;.

Cette remarque montre que si ¢ est un sommet libre, fixe ou transitoire, le cardinal des en-
sembles A; et B; n’est pas affecté ; si est une téte de cycle, ces deux cardinaux augmentent
d’un; si ¢ est une queue de cycle, les deux cardinaux diminuent d'un. Par récurrence, on
voit donc que le cardinal de A; reste égal au cardinal de B;. De plus, le fait que les pas
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type de ¢ conditions At B

libre 1 €A ¢ B A B;

point fixe 1 €A 1B, A B;

téte de cycle i¢gA i¢gB AU{i+sT} B;U{i+ s}
transitoire haut i€ A, ¢ B; A;U{i+s}\{i} B,

transitoire bas i € A; i€ B; A; B; U {i+s}\{i}
queue de cycle i€ A, ieB; A\ {i} B\ {i}

FIGURE 2.11 — Un résumé des six types de sommets décrits figure Connaissant
les ensembles A; et B; et le type du sommet i, on en déduit les ensembles A; 11 et
Bi+1. Ce tableau gouverne les transitions du graphe A.

de ST sont au plus a et les pas de S~ sont au plus b implique que A; C {i,...,i+a— 1}
et B; C{i,...,i+b—1}.

Supposons maintenant qu’un arc montant i — ¢+s est créé. Un autre arc montant i — j’,
avec 1! < i, croise cet arc sii < j' < i+s; ceci implique que j' € A;. Ajouter 'arc i — i+s
ajoute donc un croisement pour chaque élément j de A; tel que 7 < 7 < ¢+ s. De méme,
ajouter un arc descendant ¢ <— i + s ajoute un croisement pour chaque élément j de B;
tel quet < j <1+ s.

Ainsi, il est possible de construire 'empilement trivial 7 et de calculer la quantité fr(m)
en ne gardant en mémoire que les ensembles fl@ et B;. On note A; et B; les ensembles
A; —i et B; — i, respectivement, de sorte que A; C {0,...,a—1} et B; C{0,...,b—1}.

Les remarques ci-dessus aboutissent & la construction d’un graphe A, dont les chemins sont
en bijection avec les empilements triviaux des graphes G,_1. Pour éviter la confusion, nous
utilisons le langage des automates pour parler du graphe A, appelant états ses sommets
et transitions ses arcs.

Définition 2.20. On note .4 'automate fini (Q,7") défini comme suit.
— Les états de Q sont les couples (A, B), tels que A C {0,...,a—1}, BC{0,...,b—1}
et |A| = |B].
— Les transitions de 7 appartiennent a six catégories :
— les sommets libres (4,B) - (A—1,B—1), telsque 0 € Aet 0 ¢ B;
— les points fixes (A,B) > (A—1,B—1),telsque 0 € A, 0Z Bet 0 € S;
— les tétes de cycle (A,B) = (AU{s"} —1,BU{s } —1), telles que 0 ¢ A, 0 ¢ B,
steSt\Aets €S\ B;
— les sommets transitoires hauts (A, B) — (AU{s"}\ {0} — 1, B —1), tels que 0 € A,
0ZBetsteSt\A,;
— les sommets transitoires bas (A, B) — (A —1,BU{s } \ {0} — 1), tels que 0 & A,
0€Bets €S5S \B;
— les queues de cycle (A, B) — (A\ {0} —1,B\ {0} —1),avec 0 € A et 0 € B.
— Le poids d’une transition t = (A, B) — (A, B) est efof*f~, avec :
— e vaut —1 si ¢ est un point fixe ou une téte de cycle, 1 sinon;
— si t est un point fixe, fy vaut g (le poids du pas 0 de S); sinon, f, vaut 1;
— si t est une téte de cycle ou un sommet transitoire haut, f* vaut (—1)°g+ o ¢ est
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le nombre d’éléments de A différents de 0 et inférieurs & s™ ; sinon, f* vaut 1;
— si t est une téte de cycle ou un sommet transitoire bas, f~ vaut (—1)°gs— ot c est le
nombre d’éléments de B différents de 0 et inférieurs a s~ ; sinon, f~ vaut 1.
On note également @)y 1'état (&, @) de Q.

Un exemple de la construction de 'automate A est donné figure [2.12] Le nombre d’états

de cet automate est
min(a,b) a b
jzo J)\J

min(a,b) a b
=% G62)

L’identité de Chu-Vandermonde (choisir j éléments parmi a puis b — j éléments parmi b
est équivalent a choisir b éléments parmi a + b) donne donc

o= ("1") 28)

que nous réécrivons en

FIGURE 2.12 — L’automate A correspondant a ’ensemble S = {—2, —1,1,2}, muni
des poids q_1 = q1 =t et g_2 = ¢2 = u. Dans chaque état, la ligne du haut représente
I'ensemble A (les éléments de A sont représentés par un e et les éléments hors de A
par un o), tandis que la ligne du bas représente ’ensemble B. Les deux ensembles
sont inclus dans {0,1}. En trait épais, 'unique empilement trivial de cycles passant
par tous les états de A (voir lemme . Son poids est uS.

En utilisant ce qui précede, on aboutit au résultat suivant.

Lemme 2.21. Les empilements triviauz de cycles du graphe Gi_1 sont en bijection avec
les chemins allant de Qo a Qq et de longueur k dans 'automate A. De plus, le poids du
chemin correspondant a 'empilement 7 est la quantité fi(m).

Ce lemme permet d’utiliser les résultats de la section pour prouver le théoréme [2.19]
Pour cela, nous définissons trois suites d’états de 'automate A. Nous supposerons que
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Py=({0,...,5 = 1},{0,....5 - 1}), 0<j <
Q={a—j...,a=1}{b—j,....b—1}), 0<j<b;
Rj= ({4 i+b=14{0,....b—1}), 0<j<a—b

Les égalités Py = Qo, Q» = R._p et Ry = P, montrent que ces trois suites couvrent en
tout a + b états (figure [2.13)).

Lemme 2.22. Soit II un empilement trivial de cycles élémentaires de 'automate A qui
ne visite pas le sommet Qy. L’empilement 11 ne visite aucun des états Q);, ni aucun des
R;, ni aucun des P;.

Preuve. Soit (A, B) un état tel que 0 € A et 0 € B. Par définition, toute transition sortant
de (A, B) est une queue de cycle et mene a (A—1, B—1). En particulier, la seule transition
sortant de 'état P;, pour j > 0, meéne a P;_;. Ceci prouve que tout cycle contenant I'un
des P; contient Fp, qui est Q.

Soit maintenant (A, B) un état tel quea—1€ Aetb—1¢€ B soit t: (A", B") — (A, B)
une transition qui mene vers cet état. L'ensemble A’ est inclus dans {0,...,a — 1}, donc
a — 1 n’est pas dans A’ — 1; de méme, b — 1 n’est pas dans B’ — 1. La seule possibilité est
donc que t est une téte de cycle, avec A" = A\ {a—1} +1et B =B\ {b—1}+1. En
particulier, la seule transition arrivant a @);, pour j > 0, est une téte de cycle venant de
()j—1. Ceci prouve que tout cycle contenant I'un des (); contient Q).

Enfin, soit (A, B) un état tel que B = {0,...,b— 1} mais 0 ¢ A. Toute transition partant
de (A, B) doit étre un état transitoire bas. Tous les points de {1,...,b — 1} étant déja
dans b, seul le pas s~ = b est possible. L’état d’arrivée de cette transition est (A — 1, B).
En particulier, la seule transition partant de R;, pour j > 0, arrive en R;_;. Ceci prouve
que tout cycle contenant I'un des R; contient Ry, c’est-a-dire P, ; on a déja établi qu'un
tel cycle contient . O

Lemme 2.23. [l existe un unique empilement trivial de cycles Il de ’automate A visitant
tous les états. Son poids est, au signe pres,

I g, ("), (07,

De plus, les états P;, Q; et R; définis ci-dessus sont les états d'un cycle élémentaire I'y
de I1. Ce cycle est de poids B
[y = iQabqua-

Preuve. Soit II un empilement trivial de cycles visitant chaque état, que I'on peut donc
voir comme une permutation de ’ensemble des états. Soit M le nombre d’arcs montants
de longueur a contenus dans les transitions de II (c’est-a-dire le nombre de tétes de cycle
et sommets transitoires hauts avec s = a). Soit (A, B) un état tel que a — 1 € A. Toute
transition qui arrive dans un tel état doit contenir un arc montant de longueur a. Le
nombre d’états (A, B) tels que a — 1 € A est

=(71()
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P Ry=PF

FIGURE 2.13 — Les états P;, Q; et Rj pour a = 4, b =2, g4 =t et g2 = u. Ces
états forment un cycle élémentaire de automate A, de poids t2u*. De plus, tout
cycle élémentaire qui contient un quelconque de ces états contient aussi I’état Qq.

On a donc, puisque II visite chaque état,

()0 -FE)0 ()

De plus, si une transition contenant un arc montant part d'un état (A, B), on doit avoir
0 ¢ B. On a donc, de la méme maniere

w0207

Les inégalités ci-dessus sont donc des égalités, ce qui signifie que toutes les transitions de
IT partant d’un état (A, B) tel que 0 ¢ B contiennent un arc montant de longueur a.

On répete le méme raisonnement sur les arcs descendants de longueur b. Leur nombre est

a+b—1
()
Les remarques précédentes déterminent entierement les transitions partant de n’importe
quel état (A, B) :
—si0 € Aet 0€ B, la transition partant de (A, B) est une queue de cycle;
—si0€ Aet0¢ B, la transition partant de (A, B) est un sommet transitoire haut dont
I’arc est de longueur a;
- si0 ¢ Aet0€ B, la transition partant de (A, B) est un sommet transitoire bas dont
I’arc est de longueur b;
- si0 ¢ Aet0¢ B, la transition partant de (A, B) est une téte de cycle dont les arcs

sont de longueurs a et b.
Le nombre d’états (A, B) tels que 0 ¢ A étant (“+b_1) et le nombre d’états (A, B) tels

a
que 0 € B étant (‘”2_1), le poids des transitions de II est bien celui annoncé.
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Pour vérifier que le II ainsi construit est bien un empilement trivial, on examine un état
(A, B) et on montre qu’il existe une unique transition de IT arrivant en (A, B). Pour cela,
on utilise le fait que tous les arcs montants des transitions de II sont de longueur a, tandis
que tous les arcs descendants sont de longueur b. Ainsi, une transition arrivant en (A, B)
contient un arc montant si et seulement si @ — 1 est dans A ; la méme transition contient
un arc descendant si et seulement si b — 1 est dans B. Ceci détermine bien de maniere
unique la transition et montre que II est un empilement trivial.

Enfin, on vérifie aisément que le cycle
Qo— = Qy=R,p— - —Ry=PFP,— - — Py=0Q

est un cycle de II ayant le poids ¢,’¢_4*. Un exemple de la permutation II est donné

figure [2.12] O]

Preuve du théoréme[2.19. Le lemme montre que F(z) peut se voir comme la série
génératrice des chemins joignant )y a )y dans 'automate A. Nous calculons cette série a
'aide de la formule ({2.4)). Pour tenir compte de la longueur des chemins dans 'automate
A, nous ajoutons un poids z a toutes les transitions. Soit D(z) le polyndéme comptant
les empilements triviaux de cycles de A et N(z) le polynéme comptant les empilements
triviaux ne visitant pas I'état Q)q.

Le lemme montre que le degré de D(z) est égal au nombre d’états de A, soit (“Zb> :
il fournit également le terme dominant du polynéme D(z). D’apres le lemme la série
N(z) compte des empilements triviaux de cycles de 'automate A privé de a + b états. Le
lemme fournit ainsi le degré et le terme dominant du polynéme N (z). O

2.3.3 Ensembles de pas symétriques

Définition 2.24. Un ensemble de pas S est symétrique si —S = S et si, pour tout s de
S, les pas s et —s ont méme poids.

Le résultat que nous allons montrer est le suivant.

Théoréme 2.25. Supposons que l'ensemble S est symétrique et soit D(z) et N(z) les
polynomes du théoréme[2.19. Ces deux polynomes ont un facteur commun :

D(z) = D"(2)X(2) ;

de sorte que la série F(z) s’écrit

N7(2)

PO =D

De plus, les degrés des polynomes DT (z) et NT(z) sont respectivement d et d — 2a, avec
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Rappelons que, si F'(z) est une fraction rationnelle, son dénominateur est un polyndéme
annulateur de la série des excursions E. Bousquet-Mélou s’est également intéressée aux
ensembles de pas finis symétriques dans [6]. Son principal résultat sur le sujet est le
sulvant.

Théoreme 2.26. I existe un polynome annulateur de la série E de degré 2.

Soit E(z) le polynéme annulateur de Bousquet-Mélou. On observe expérimentalement
que ce polynéme est un diviseur du polynome D*(z) :

D*(z) = D(2)Y (2).

Le facteur Y (z) et le facteur X(z) du théoreme sont tous deux de degré d — 2°.
Toujours expérimentalement, on a en fait 'égalité X (z) = Y(z). Je n’ai pas trouvé d’ex-
plication a ce fait remarquable. En revanche, la fraction rationnelle N*(z)/D"(z) semble
irréductible en général : le facteur Y (2) ne divise pas N7 (z).

Preuve du théoréme[2.23. Pour prouver le théoréme, nous considérons automate A in-
troduit précédemment. Soit ¢ I'involution sur les états de A définie par ¢p(A, B) = (B, A).
Puisque S est symétrique, 'automate A est, par construction, invariant sous ’action de

b.

Soit A" et A~ les automates réduits introduits dans la définition 2.6); appelons D*(2) et
D~ (2) les polynémes comptant les empilements triviaux de cycles dans ces graphes. Le
lemme affirme que

D(z) = D" (2)D (2).

De plus, I'état Qo = (&, D) est invariant sous l'action de ¢. Soit NT(z) la série des
empilements triviaux de cycles de AT ne visitant pas I'état (Qy. La formule ([2.4) montre
que la série des chemins de Qy & )y dans 'automate A* est

NT(z)
D+(z)
Le lemme affirme que cette série est F(z), ce qui permet de conclure. O]

Le théoreme exploite le fait que si S est symétrique, 'automate A 1'est aussi. Nous
présentons ci-dessous un autre résultat, exploitant cette fois le fait que le graphe Gy est
symétrique. Ce résultat part du fait suivant, constaté par Bousquet-Mélou : considérons
les polynomes de Fibonacci F, (%), associés a 'ensemble de pas S = {—1,1} des chemins
de Dyck. Ces polynomes admettent, pour tout k, une factorisation :

F?) = B (0 F; ().

De plus, soit Sk(t) la série des chemins de hauteur au plus k et finissant & une hauteur
quelconque. On peut écrire

Si(t) = ZO Eyi(t),

ou Ej;(t) est la série des chemins finissant & hauteur i. Les résultats de la section
montrent que la série Sy (¢) est rationnelle, de dénominateur Fyyi(t?). En réalité, on
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constate une simplification : le dénominateur se réduit au facteur Fjf (). Nous nous
proposons d’expliquer ce fait.

Montrons tout d’abord les raisons de la factorisation du polynéme Fj . Soit ¢ I'involution
agissant sur les sommets du graphe G, définie par ¢(i) = k—i. Le fait que S est symétrique
implique que Gy est invariant sous l'action de ¢. Posons V' = {0,...,k} 'ensemble des
sommets de G. On définit la partition suivante de V', selon la parité de k :
—sik=20—1,onpose Vo =0, V1, ={0,.... 0 —1}et Vo ={¢,... 20— 1};
—sik=20 onpose Vo=, V1 ={0,....0—1} et Vo ={l+1,...,2(}.

Dans les deux cas, I’ensemble des points fixes de ¢ est Vj et ¢(V7) = V5. Ceci permet de
définir les graphes réduits G et G}, (définition . Ces graphes sont illustrés figure :2.14.
Rappelons que la série des empilements triviaux de cycles de Gy est Fyq ; notons Fj,; et

F).,, les séries analogues sur les graphes réduits. Le lemme [2.7montre bien la factorisation
Fip1 = Fil 1 Fiyy.

FIGURE 2.14 — En haut, les graphes G4, G} et G; du modele S = {-2,—-1,1,2}
de la figure . Le graphe réduit G est identique & G2 auquel on a ajouté deux
arcs (en trait épais). Le graphe réduit G est identique & G auquel on a ajouté un
arc (en trait épais). En bas, les graphes G5, G3 et G5 du méme modele. Les deux
graphes réduits sont identiques au graphe G2 auquel on a ajouté trois arcs.
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Nous pouvons dés a présent expliquer le fait que, pour les chemins de pas dans {—1, 1},
le dénominateur de la série Si(t) est Fyf(t) : notons E;; la série des chemins joignant
les sommets {0, k} a {i,k — i} dans le graphe G". Le lemme [2.8] montre que

k/2
Se(t) = E,ji.
1=0

On conclut en remarquant que toutes les séries E,:“ . ont pour dénominateur F} "1 (t) d’apres

la formule ({2.3]).

Nous énoncons maintenant un résultat valable pour tous les ensembles de pas symétriques.
Rappelons que Ej et C} désignent respectivement la série génératrice des excursions et
des chemins pseudo-culminants dans le graphe Gy.

Théoreme 2.27. Les séries E,, et C), valent

sont rationnelles de dénominateur DT (z).

Pour prouver le théoréme, nous commencgons par établir le lemme suivant.

Lemme 2.28. Soit H un graphe dont l’ensemble des sommets est {0,...,j — 1}. Pour
k > j, soit Gp_1 + H le graphe de sommets {0,..., k — 1} et dont les arcs sont ceux de
Gy et ceur de H (si k < j, on ne garde que les arcs joignant des sommets de Gy_1).

Soit F' la série des empilements triviauz de cycles de Gj_y + H, avec la convention
F = 1. Soit F1(z2) la série
F(z) =Y Fl"
k>0

La série FH(z) est rationnelle de dénominateur DT (2).

Preuve. La contribution de la série FY! pour k < j étant un polyndme, on peut se res-
treindre a étudier les graphes G_1 + H pour k > j. Dans ce cas, soit 7 un empilement
trivial de cycles de G—1 4+ H. On rappelle qu’on note 7; I’ensemble des arcs de 7 incidents
a au moins un sommet de {0,...,5 — 1}.
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Fixons 1 un ensemble d’arcs tel qu’il existe un empilement trivial 7 avec m; = 9. Soit
Qy = (flj, BJ) I’état de 'automate A correspondant au diagramme . L’ensemble des
empilements triviaux m de Gy, tels que m; = v est en bijection avec les chemins de longueur
k — j joignant I'état @), vers @y dans 'automate A.

Le nombre d’arcs incidents aux sommets 0, ..., j — 1 étant fini, le nombre de diagrammes
possibles 9 est fini. Notons W, (2) la série des chemins joignant les états Q) et )y dans
I’automate A. On a

Z F,f[(z)zk _ Z(_1)ﬁxe(q/))—l—téte(zp)—l—crois(w) |¢|Z]W¢(Z)
k>j P

Le lemme permet d’exprimer la série Wy (z) en fonction de la série W (z) comptant
des chemins dans 'automate réduit A™ :

Z FkH(Z)Zk _ Z(_1)ﬁxe(w)théte(w)Jrcrois(w) |2/J‘Z]WJ(Z)

k=j P

D’aprés la formule (2.3)), la série W, est rationnelle de dénominateur D (z), ce qui termine
la preuve. O

Preuve du théoréme[2.27. Tout d’abord, notons que les graphes G et G privés du som-
met {0,k} sont Gy, et G, _,, respectivement. Les séries des empilements triviaux de
cycles de G} et Gy étant respectivement Fy', et Fj,, la formule (2.4) donne

F+
W(jb = F_"'If )
k+1

F_

W — ~k
00 Fk—+1

Le sommet 0 étant dans V) et le sommet k£ dans V5, le lemme donne les expressions
de Ek et Ck

L’ensemble S étant fini, le nombre d’arcs de G, joignant V; a V5 est indépendant de k si
k est assez grand. Il existe donc quatre graphes H; , Hy H; et H; tels que, en utilisant
la notation du lemme 2.28 :

G35, =Gy + H;r;

Gy =G+ H,;
Gyy = Gea + HY
Gy =G+ Hy

Ces graphes sont illustrés figure 2.14] Le lemme permet de conclure. O



Chapitre 3

Chemins faiblement dirigés

Le but de ce chapitre est 1’étude de familles de chemins auto-évitants du réseau carré,
appelées chemins faiblement dirigés. Avec une constante de croissance d’environ 2,54, ces
chemins sont plus nombreux que les chemins prudents, jusqu’alors la sous-famille naturelle
la plus nombreuse que l'on sache énumérer [19] [7] avec une constante d’environ 2,48.

Parmi les familles de chemins auto-évitants les plus simples, on compte les chemins diri-
gés et partiellement dirigés, qui seront en quelque sorte les briques de base des chemins
faiblement dirigés. Un chemin auto-évitant est dirigé s’il ne contient que deux types de
pas, par exemple Nord et Est; il est partiellement dirigé s’il ne contient que trois types
de pas (figure . Ces chemins sont tres faciles a énumérer car ils sont automatiquement
auto-évitants des qu’ils ne font pas de demi-tour direct. Il est facile de voir que la série
génératrice T'(t) des chemins ne partiellement dirigés ne contenant que trois types donnés

de pas est
141

) =15 —p

(3.1)
Une autre notion classique que nous utilisons est celle de pont. Appelons hauteur du
sommet v, et notons h(v), son ordonnée. Un pont est un chemin joignant les sommets
vy et vy tel que tout sommet v # vy vérifie h(vg) < h(v) < h(vg). Un pont non vide est
irréductible s’il ne peut pas s’écrire a8 ou « et [ sont des ponts non vides. Un pont est

montré figure [3.1}

FIGURE 3.1 — A gauche, un chemin partiellement dirigé ne contenant que des pas
Nord, Est et Ouest. A droite, un pont factorisé en deux ponts irréductibles.

Par construction, si a et # sont deux ponts, le chemin a5 est encore un pont ; inversement,
tout pont admet une unique décomposition en ponts irréductibles [42], section 4.2]. Nous
donnons une généralisation de cette factorisation aux chemins généraux et 1'utilisons pour
caractériser les chemins faiblement dirigés.
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Le chapitre est organisé comme suit. La section définit les chemins faiblement dirigés
et en donne une caractérisation en termes de facteurs irréductibles. Nous définissons éga-
lement une variante diagonale du modele. Nous énumérons les chemins faiblement dirigés
dans la section [3.2] La section donne la nature des séries génératrices et le compor-
tement asymptotique du nombre de chemins faiblement dirigés, ainsi qu’un algorithme
de génération aléatoire uniforme de ponts faiblement dirigés. Enfin, nous proposons une
nouvelle famille encore plus nombreuse de chemins dans la section [3.4]

3.1 Définitions

Dans tout le chapitre, nous considérerons les chemins comme des mots sur 'alphabet
{N,S,E, O}. De plus, nous appellerons, par exemple, chemin NSE un chemin auto-évitant

composé uniquement de pas N, S et E. Nous faisons de méme pour tous les sous-ensembles
de {N,S,E, O}.

3.1.1 Chemins faiblement dirigés

Le point de départ de la définition des chemins faiblement dirigés est le suivant : les
chemins NEO et SEO sont caractérisés par le fait que le facteur entre deux points quel-
conques de méme hauteur n’est composé que d’un seul type de pas (E ou O). Les chemins
faiblement dirigés sont, de ce point de vue, une généralisation naturelle des chemins par-
tiellement dirigés.

Définition 3.1. Un chemin est dit faiblement dirigé si le facteur situé entre deux points
quelconques de méme hauteur est partiellement dirigé.

En réalité, un chemin joignant deux points a la méme hauteur doit contenir autant de
pas Nord que de pas Sud. En conséquence, le facteur situé entre deux points de méme
hauteur d’un chemin faiblement dirigé est soit un chemin NSE, soit un chemin NSO.

3.1.2 Décomposition en facteurs irréductibles

La définition ci-dessus, bien que trés simple et naturelle, n’est pas commode du point de
vue de ’énumération, pour laquelle on préfere une présentation sous forme de décompo-
sition en parties plus simples. Nous donnons maintenant une caractérisation des chemins
faiblement dirigés faisant intervenir les ponts irréductibles définis plus haut. Un chemin
faiblement dirigé n’étant pas nécessairement un pont, il nous faut tout d’abord définir
une factorisation des chemins généraux en facteurs irréductibles.

Définition 3.2. Soit un chemin joignant les sommets vy et vy. Ce chemin est dit positif
si tous ses sommets v vérifient h(v) > h(vp). Il est dit copositif si tous ses sommets v # vy
vérifient h(v) < h(vy).

Dans la suite, si « est un chemin, on note & le chemin réciproque de . Ce chemin est
obtenu en lisant a a l'envers et en remplacant les pas N par des S, les E par des O et
vice-versa. Géométriquement, prendre le chemin réciproque est équivalent a parcourir le
chemin a ’envers.
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Définition 3.3. Soit a un chemin non vide. Le chemin « est dit réductible s’il peut s’écrire
sous la forme (v, ou 3 est copositif non vide et v est positif non vide. Il est dit coréductible
si @ est réductible. Enfin, il est dit irréductible s’il n’est ni réductible ni coréductible.

Lemme 3.4. Soit o un chemin. Une et une seule des conditions suivantes est vérifiée :
1. « est vide;
2. « est irréductible ;

3. « posséde une unique factorisation de la forme oy ---0,7, ou B est un chemin
copositif irréductible, v est un chemin positif irréductible, et les ; sont des ponts
irréductibles ;

4. & possede une unique factorisation de la méme forme que celle de la condition 3.

Pour prouver ce lemme, nous donnons une caractérisation plus simple des chemins réduc-
tibles. On appelle séparateur d’'un chemin un pas N partant de la hauteur j et qui est
seul dans sa ligne (c’est-a-dire qu’il est le seul a croiser la droite de hauteur j + 1/2). Un
séparateur est terminal s’il est le dernier pas du chemin.

Lemme 3.5. Un chemin est réductible si et seulement si il contient un séparateur non
terminal.

Preuve. Soit o un chemin. Si «v 8’écrit Sy ou 3 est copositif non vide et v positif non vide,
alors le dernier pas de 3 est un séparateur non terminal. Réciproquement, si a possede
un séparateur non terminal, alors on construit la factorisation Sy en coupant apres ce
séparateur. O

Preuve du lemme [3.4 Supposons que le chemin « est non vide et joint les sommets v et
vy. On remarque tout d’abord que si « est réductible, on a h(vg) < h(vy); de méme, si o
est coréductible, on a h(vy) > h(vy). Le chemin o ne peut donc étre a la fois réductible
et coréductible.

Supposons maintenant que « est réductible. On forme la factorisation o = [y -« -0,y
en coupant apres chaque séparateur. Aucun des facteurs ne contenant de séparateur non
terminal, chaque facteur est irréductible ; inversement, toute factorisation de ce type qui
ne coupe pas apres un séparateur contient un facteur réductible, ce qui prouve I'unicité.

Si a est coréductible, on répete le méme raisonnement sur le chemin a. O

Le chemin « s’il est irréductible, et les chemins 3, v, et J; sinon sont appelés les facteurs
irréductibles du chemin a.

Proposition 3.6. Un chemin est faiblement dirigé si et seulement si tous ses facteurs
irréductibles sont partiellement dirigés.

La proposition est illustrée figure [3.2]

Preuve. Puisque les facteurs irréductibles d’un chemin vivent dans des bandes horizontales
disjointes, le facteur situé entre deux points de méme hauteur est inclus dans un seul
facteur irréductible. Il est donc partiellement dirigé des que tous les facteurs irréductibles
le sont.
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A 4
'y

FIGURE 3.2 — Les deux caractérisations des chemins faiblement dirigés. A gauche, le
facteur situé entre deux visites a la méme hauteur est soit un chemin NSE, soit un
chemin NSO. A droite, les quatre facteurs irréductibles sont soit des chemins NSE,
soit des chemins NSO.

Réciproquement, considérons un chemin faiblement dirigé irréductible a. Nous montrons
par 'absurde que ce chemin est soit un chemin NSE, soit un chemin NSO. Supposons qu’il
contienne a la fois un pas E et un pas O. Dans ce cas, il contient un pas E et un pas O
séparés uniquement par des pas N et S; le chemin étant auto-évitant, ces pas sont en fait
soit tous N, soit tous S. Par symétrie, supposons que le chemin « s’écrit

o = BEN’Oy.

Soit B l'intervalle des hauteurs visitées par le chemin § et C' l'intervalle des hauteurs
visitées par v. Si B et C sont disjoints, le chemin « est réductible, car I'un des pas N de la
factorisation ci-dessus est séparateur. S’ils visitent chacun un point a une méme hauteur
h, le facteur situé entre ces deux points contient des pas E, O et N, et donc aussi des pas
S, donc n’est pas partiellement dirigé. C’est une contradiction. O

3.1.3 Modele diagonal

Nous introduisons également des chemins faiblement dirigés dans un modele diagonal.
Ce modele repose sur une définition différente de hauteur : la hauteur d’un sommet est
maintenant la somme de ses coordonnées. La définition des chemins faiblement dirigés est
ensuite identique au modele horizontal : un chemin est faiblement dirigé si le facteur situé
entre deux points de méme hauteur est partiellement dirigé. Pour éviter 'ambiguité, nous
appellerons modele horizontal le modele décrit ci-dessus ou la hauteur d’un sommet est
son ordonnée.

La nouvelle notion de hauteur permet également de définir des ponts. Le lemme reste
vrai, avec une preuve identique (les pas N et E pouvant tenir lieu de séparateur). De la
méme maniere, tout chemin dont les facteurs irréductibles sont partiellement dirigés est
faiblement dirigé. La réciproque, en revanche, n’est pas vraie, comme le montre le chemin

de la figure [3.3



3.2. Enumération 71

FiGURE 3.3 — Un chemin faiblement dirigé du modele diagonal, découpé en cinq
facteurs irréductibles. A noter que le troisiéme facteur n’est pas partiellement dirigé.

3.2 Enumération

3.2.1 Ponts partiellement dirigés

La proposition montre que les chemins faiblement dirigés sont essentiellement des
suites de facteurs partiellement dirigés irréductibles; de plus, tous ces facteurs sauf le
premier et le dernier sont des ponts. En conséquence, pour énumérer ces chemins, nous
commencons par énumérer les ponts partiellement dirigés. Il est en fait plus agréable
d’étudier les pseudo-ponts, ou chemins joignant vy a vy tels que tout sommet v vérifie

h(vg) < h(v) < h(vy) (figure B.4).

FIGURE 3.4 — A gauche, un pseudo-pont NSE du modéle horizontal. Au milieu, un
pseudo-pont NSO du modele diagonal. A droite, un pseudo-pont NSE du modele
diagonal.

Prenons 'exemple des ponts NSE dans le modele horizontal. Attribuons la hauteur 1 au
pas N, la hauteur —1 au pas S et la hauteur 0 au pas E. Un pseudo-pont NSE est alors,
dans la terminologie du chapitre [2, un chemin pseudo-culminant. Cependant, la famille
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des chemins NSE ne rentre pas directement dans le cadre de ce chapitre a cause de la
condition d’auto-évitance, qui interdit les motifs NS et SN.

Pour contourner cette difficulté, nous donnons une autre maniere de voir les chemins NSE.
Nous dirons qu'un chemin NSE est propre s’il ne commence ni ne finit par un pas S. Cette
restriction n’a pas d’importance, car tous les pseudo-ponts sont des chemins propres. Si
a est un chemin NSE (donc auto-évitant) propre, nous appelons facteur descendant tout
facteur situé strictement entre deux pas N consécutifs. On obtient ainsi une factorisation
du chemin « en pas N et en facteurs descendants. Le chemin « étant auto-évitant et
propre, tous les facteurs descendants sont des chemins SE propres. Le langage D des
facteurs descendants possibles est reconnu par ’expression réguliere non ambigué

D=1+E+EE+S)E (3.2)

De plus, par construction, la factorisation ne contient pas deux facteurs descendants
consécutifs.

Nous pouvons maintenant compter les ponts partiellement dirigés du modele horizontal.
Nous avons montré que les facteurs irréductibles d’un chemin faiblement dirigé sont né-
cessairement des chemins NSE ou des chemins NSO. Par symétrie, nous nous contentons
donc d’étudier les chemins NSE.

Proposition 3.7. Soit k > 0. La série génératrice des pseudo-ponts NSE de hauteur k
dans le modele horizontal est

ot les Gy (t) sont les polynomes définis par

Go(t)=1—1t, Gi(t)=1—2t+1* 1,
Grt) = (1 —t+ 2 +t3)Gp1(t) — 2Gp_a(t) pour k > 2.

La série génératrice des ponts NSE vaut, quant a elle,

B(t) =1+t By

k>0

Preuve. Comme indiqué précédemment, nous factorisons les pseudo-ponts en isolant les
pas N. Le facteur N a pour hauteur 1 dans le modele horizontal, tandis qu'un facteur des-
cendant  a pour hauteur —|f|g, ot || est le nombre de pas S dans le chemin 3. Ceci fait
de 'ensemble de pas {N}UD un modele de chemins de Lukasiewicz ; deux facteurs descen-
dants ne pouvant étre consécutifs, les pseudo-ponts sont les chemins pseudo-culminants
stricts de ce modele.

Soit D(t, z) la série génératrice des facteurs descendants, ou ¢ compte le nombre de pas
et z la hauteur. L’expression réguliere non ambigué (3.2)) se traduit en
2
Dt,z)=t+ ——.
(t,2) 1—t—tz

Le théoreme [2.15] donne donc
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ou les polynomes Gy sont définis par

1 1—t—t%2

,g) (t)z 1—2z+4+D(t,tz) 1—(1—t+2+13)z+1222

On en déduit la formule de récurrence des polynéomes G (t). Enfin, un pont NSE est soit
vide, soit un pseudo-pont NSE suivi d'un pas N. On en déduit la formule donnant B(t). [

Nous étudions maintenant le modele diagonal. Dans ce modele, il nous faut étudier quatre
types de ponts : les ponts NSO, les ponts NSE, les ponts NEO (équivalents, via la symétrie
par rapport a I’axe NE, aux ponts NSE) et les ponts SEO (équivalents aux ponts NSO.

Proposition 3.8. Soit k > 0. La série génératrice des pseudo-ponts NSO de hauteur k
dans le modele diagonal est

A1 tk
B = ;
EGh(t)
ot les polynomes Gy (t) sont définis par
Go(t) =1, Gi(t)=1-1¢,
Gr(t) = (1 + )G 1(t) — t2(2 — 1) Gr_o(t) pour k > 2.

La série des ponts NSO vaut

Preuve. Le cas des pseudo-ponts NSO est traité de la méme maniere que pour le modele
horizontal : les facteurs descendants sont les facteurs situés entre deux pas N consécutifs.
La différence est que les pas O ont pour hauteur —1 dans le modele diagonal, ce qui signifie
qu'un facteur descendant 8 a pour hauteur —|3|. On obtient donc la série génératrice
D(t, z) des facteurs descendants

222
D(t,z) =t —_—
(h2) =t o
Les polynémes Gy (t) sont cette fois définis par
1—2t?
> Gi(t)e" = 2 22 2),2’
>0 1—(1+4+t)z+t2(2—1?)z

ce qui donne bien la formule de récurrence de la proposition. De plus, un pont NSO est
soit vide, soit un pseudo-pont suivi d'un pas N. O

Proposition 3.9. Soit k > 0. La série génératrice des pseudo-ponts NSE de hauteur k
dans le modeéle diagonal vaut
By = (2 - t)"By(1),
ot la série B%(t) est donnée par la proposition[3.8. De plus, la série des ponts NSE vaut
BX(t)=1+2tY Bi(t).

k>0
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Le cas des chemins NSE est plus compliqué, car le pas E a pour hauteur 1 dans le modele
diagonal. Les facteurs de D n’ont donc plus nécessairement une hauteur négative, ce qui
nous fait sortir du cadre des chemins de Y.ukasiewicz. Nous utilisons donc une méthode
différente pour nous ramener au cas des chemins NSO.

Nous notons EZ(t) la série des excursions NSE de hauteur au plus k& (une excursion est un
chemin positif terminant & hauteur 0). Nous notons également F}(t) la série des excursions
NSO de hauteur au plus £ ne finissant pas par S.

Lemme 3.10. Les séries E2(t) et Ej(t) sont liées par

1+ EX(t) = (2 — ) Ef(t).

Preuve. Soit o une excursion NSO de hauteur au plus k& qui finit par NO; écrivons o =
BNO. Le chemin [ est alors une excursion qui ne termine pas par S, ce qui montre que
I'excursion « est comptée par t2E;(t).

On remarque ensuite que la série EZ(t) compte également les excursions NSO : en effet, les
excursions NSE sont exactement les chemins réciproques des excursions NSO. Le passage
au chemin réciproque ne change ni la longueur, ni la hauteur.

Soit donc « une excursion NSO quelconque de hauteur au plus k. On distingue deux cas :

— soit « ne finit pas par S : de telles excursions sont comptées par Ej(t);

— soit « 8’écrit S le chemin (8 ne finit donc pas par N. Soit o/ = SO : le chemin o' est
une excursion finissant par O mais pas par NO. La remarque précédente montre que
ces excursions sont comptées par Ej(t) — 1 — t2E;(t).

Ajouter ces deux contributions permet d’établir le lemme. O

Preuve de la proposition[3.9. Soit k > 1 et soit o un pseudo-pont NSO de hauteur k. On
coupe a au dernier passage a hauteur 0. On trouve o = SN+, ot v est un pseudo-pont de
hauteur £ — 1 et 8 est une excursion de hauteur au plus k£ qui ne termine pas par S. On
a donc

By(t) = tE; () By, (t).

Soit maintenant o un pseudo-pont NSE de hauteur k. On coupe « un pas apres le dernier
passage a la hauteur 0, ce qui donne o« = 7, ou v est un pseudo-pont de hauteur k£ — 1
et 3 est soit N, soit une excursion de hauteur au plus k suivie d’un pas E (figure [3.5)). On
en déduit

Bi(t) = (t+tEX(t)) BE_y(t).
Le lemme permet de conclure.

Pour finir, un pont NSE est soit vide, soit un pseudo-pont suivi d’un pas N ou E. On en
déduit la formule donnant B?(t). O

Pour finir, nous énumérons également les ponts NO pour résoudre certaines ambiguités.

Proposition 3.11. Soit k > 0. La série génératrice des pseudo-ponts NO de hauteur k
dans le modele diagonal est
tk

B —
FOR(12)
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o

FIGURE 3.5 — A gauche, la factorisation des pseudo-ponts NSO. Au milieu et &
droite, la factorisation des pseudo-ponts NSE : le premier facteur est soit un pas N
(milieu), soit une excursion suivie d’un pas E (droite).

ot les Fy(t?) sont les polynomes de Fibonacci évalués en t* (voir définition . De plus,
la série des ponts NO est
B(t)=1+41t>_ B(1).

k=0

Preuve. Le pas N ayant pour hauteur 1 et le pas O pour hauteur —1, les pseudo-ponts NO
sont identiques a des chemins de Dyck pseudo-culminants. La proposition découle donc
des résultats de la section [2.2.3] Le résultat apparait par ailleurs tel quel dans [9]. O

3.2.2 Ponts faiblement dirigés

Grace aux ponts partiellement dirigés énumérés dans la section précédente, nous pouvons
maintenant énumérer les ponts faiblement dirigés du modele horizontal. Pour le modele
diagonal, nous nous contentons d’énumérer les ponts composés de ponts irréductibles
partiellement dirigés ; nous avons vu que tous ces ponts sont faiblement dirigés.

Proposition 3.12. Dans le modéle horizontal, la série des ponts faiblement dirigés est

donnée par
1

S 1+t-2(1-B@1))
ot B(t) est la série des ponts NSE donnée par la proposition .

W(t)

)

Preuve. On utilise le fait que tout pont s’écrit de maniere unique comme suite de ponts
irréductibles. Si I(t) est la série des ponts NSE irréductibles, on a

1

B =y

Un pont faiblement dirigé irréductible est, d’apres la proposition 3.6, un pont irréductible
NSE ou NSO. Le seul pont irréductible qui soit a la fois NSE et NSO est N. On a donc

On en déduit la formule annoncée. O
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Proposition 3.13. Dans le modéle diagonal, la série des ponts composés de ponts irré-
ductibles partiellement dirigés est donnée par

1
EEE T 2(1- B(t)7) —2(1 = B\(t)™) —2(1 - B>(t)")

ou les séries B(t), B (t) et B*(t) sont données par les propositions et

respectivement.

w(t)

)

Preuve. Soit I°(t) et I'(t) et I?(t) les séries des ponts irréductibles NO, NSO et NSE
respectivement. Un pont s’écrivant de maniére unique comme une suite de ponts irréduc-

tibles, on a, pour n € {0, 1,2},

1

B =TTy

Notons Zyso 'ensemble des ponts irréductibles NSO ; on utilise une notation similaire pour
les autres ensembles de pas. Soit aussi Z ’ensemble des ponts irréductibles partiellement
dirigés; on a
7 = Inso U Znse U Zseo U Ineo-
De plus, on a
Inso N ZInse = {N}, Inso NZseo = 4, Inso N ZIneo = Ino,
Inse N Zseo = Zsk, Inse N Ineo = {N, E}, Tseo N Ineo = {E}.

Les ensembles Zyo et Zsg sont comptés par 1°(¢), les ensembles Zyso et Zsgo sont comptés
par I'(t), et les ensembles Zysg et Zygo sont comptés par I%(t). Un argument d’inclusion-
exclusion élémentaire donne donc la série I%(t) des ponts partiellement dirigés

I9(t) = 2I'(t) 4 2I%(t) — 21°(t) — 2t.

On en déduit la formule pour W(t). O

3.2.3 Chemins faiblement dirigés généraux

Nous énumérons maintenant les chemins faiblement dirigés qui ne sont pas nécessairement
des ponts. Par souci de simplicité, nous nous limitons au modele horizontal.

Lemme 3.14. Soit P(t) la série des chemins NSE positifs et Q(t) celle des chemins NSE
copositifs. Ces deur séries sont données par

p(t):1< 1_754_1_75)7.
22\ V1 -2t —¢2
Q(t) =1+tP(t).

Preuve. Pour prouver ce résultat, nous utilisons une factorisation standard des chemins
positifs. Nous appelons ezcursion NSE un chemin NSE qui commence et finit a hauteur 0
et dont tous les points ont une hauteur positive. Soit o un chemin NSE positif. Si a n’est
pas une excursion, nous coupons « apres son dernier passage a hauteur 0. Nous obtenons
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a = [Nv, ou v est un chemin positif et 5 est une excursion ne terminant pas par S,
autrement dit, une excursion propre dans notre terminologie. Notons E(t) la série des
excursions NSE propres et F(t) la série des excursions générales. On trouve

P(t) = E(t) +tE(t)P(t).

Pour calculer la série E(t), nous voyons les excursions NSE propres comme des chemins
stricts de Lukasiewicz en utilisant la factorisation évoquéee précédemment. Nous utilisons
la proposition [2.14], qui donne 1’équation

E(t) = 1+ D(t,tE(1)),
ou D(t, z) est la série génératrice des facteurs descendants, qui vaut
t2
D(t,z)=t4+ ——.
(t2) =ty

On en déduit

L—t+ 22 +15 = [(1—t4)(1— 2t — 2)

t) = 57 )
Pour calculer E (t), on remarque qu’'une excursion propre non vide est une excursion suivie
d’un pas E, ce qui donne E(t) = 1 + tE(t). On en déduit la valeur de P(t). Pour calculer
Q(t), on remarque qu'un chemin copositif non vide est obtenu comme l'image miroir en
tant que mot d’un chemin positif suivie d’un pas N final. O

Théoreme 3.15. La série des chemins faiblement dirigés du modéle horizontal vaut
W(t) =1+ (2Ir(t) — 2t) +2(21(t) — t)W () (21p(t) — 1),

ot les séries Ip(t), Ip(t) et Ig(t) comptent les chemins NSE irréductibles générauz, positifs
et copositifs, respectivement, et sont données par

Q) -1

E(t) = T() ~ 1= 2UoBOeA),  Iolt) = —pm, Talt) ==

ot la série T(t) est donnée par (3.1)), la série B(t) par la proposition|3.7 et les séries P(t)
et Q(t) par le lemme |3.14).

Preuve. Notons Ip(t), Ip(t) et Io(t) les séries génératrices des chemins NSE irréductibles
généraux, positifs et copositifs respectivement. En décomposant les chemins NSE en fac-
teurs irréductibles selon les quatre cas du lemme et en remarquant qu'une suite de
ponts irréductibles est un pont, on trouve

T(t) =1+ I7(t) + Io(t)B(t)Ip(t) + Io(t)B(t)Ip(t).

De plus, un chemin non vide est positif si et seulement si son premier facteur l'est; un
chemin est copositif si et seulement si son dernier facteur I'est. On en déduit

P(t) =1+ B(t)Ip(t);
Qt) =1+ Io(t)B(1).

Ceci donne les valeurs des séries Ir(t), Ip(t) et Io(t).
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Pour énumérer les chemins faiblement dirigés, on utilise le fait qu'un chemin est faible-
ment dirigé si et seulement si ses facteurs irréductibles sont des chemins NSE ou NSO
(proposition . Les chemins NSO irréductibles sont comptés par les mémes séries que
les chemins NSE, par symétrie; on remarque de plus que les seuls chemins irréductibles
qui soient a la fois NSE et NSO sont N et S; de plus, N est positif et copositif. Les séries
des chemins irréductibles partiellement dirigés généraux, positifs et copositifs sont donc
respectivement 2/7(t) — 2t, 2Ip(t) — t et 2I(t) — t. On en déduit la forme de la série
W(t). O

3.3 Applications

3.3.1 Asymptotique

Dans cette section et la suivante, nous étudions des propriétés analytiques des séries calcu-
lées précédemment. Nous utilisons pour cela des résultats classiques d’analyse complexe.
Nous commengons par remarquer que la série T'(t), comptant les chemins partiellement
dirigés et donnée par , a pour rayon de convergence v/2 — 1. En d’autres termes, cette
série est convergente dans le disque

D:{ZE(C:|Z|<\/§—1}.

A fortiori, toutes les séries génératrices comptant des chemins partiellement dirigés sont
également convergentes dans le disque D.

Théoreme 3.16. Soit W,, le nombre de ponts faiblement dirigés de longueur n du modéle
horizontal. On a, quand n tend vers l’infini,

WTL ~ H:u’n7

avec |t >~ 2,5447.

Soit F,, le nombre de facteurs irréductibles d’un pont faiblement dirigé. L’espérance et la
variance de F), vérifient

E(F,) ~ mn, V(F,) ~ s°n,

ot m ~ 0,318 et 52 ~ 0,7. La variable aléatoire FZ;\/g" converge en probabilité vers une loi

normale.

Ces résultats restent vrais pour les chemins faiblement dirigés généraux.

De ce résultat, on déduit que la distance moyenne entre les extrémités d’'un chemin fai-
blement dirigé de longueur n croit linéairement, car cette distance est minorée par E(F,).

Preuve. La proposition donne la série W (t) en fonction de la série B(t) des ponts
NSE. Cette série comptant des chemins partiellement dirigés, elle est convergente dans le
disque D défini ci-dessus, et W (t) est méromorphe dans D.

Soit I(t) la série 2(1 — B(t)™!) — t des ponts partiellement dirigés irréductibles. Dans le
disque D, la série W (t) possede un pole a chaque valeur de ¢ telle que I(t) = 1. Supposons
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qu'un tel pole existe. La série I(t) étant apériodique et a coefficients positifs, il existe
un unique pole dominant, qui est de plus réel positif et simple. Pour prouver I’existence
de ce pdle, nous utilisons des bornes supérieures et inférieures de la série I(t). Soit I,, et
T,, le nombre de ponts partiellement dirigés irréductibles et de chemins NSE généraux,
respectivement. On a 0 < [, < 27,,, ce qui montre que

S Lt =1"(t) <I{t)<IT(t)= > Int"™+ > 2T,,t".
m<n m<n m>n

Notant I¢,(t) et T<,(t) les sommes partielles jusqu’a ordre n des séries I(t) et T'(t), on
peut calculer les séries I~ (t) et I7(t) de la fagon suivante :

I (t) = La(8), IH(t) = T(t) = (2Twn(t) — I<n(t)).

En utilisant ces bornes, nous montrons l'existence d’un péle dominant, que nous notons
p. Prendre n = 300 fournit 5 décimales exactes. Ceci prouve que p < v/2 — 1; comme
le rayon de convergence de la série I(t) est au moins V2 — 1, ceci montre que les ponts
faiblement dirigés forment une séquence surcritique [27), section V.2].

On en déduit le comportement asymptotique annoncé de W,,, avec u = 1/p. De plus,
soit W(t,u) la série des ponts faiblement dirigés ou u compte le nombre de facteurs
irréductibles :

1
W(t,u) = ——. 3.3
() = Tt (33)
Le comportement de F,, est donné par [27, proposition IX.7]. Les nombres m et s vérifient
_ 1 2o )+ I'(p) = I'(p)”
pl'(p)’ pI'(p)? '

Nous calculons les valeurs approchées de m et s? & partir de celle de p.

Intéressons-nous maintenant a la série W (t) des chemins faiblement dirigés généraux,
donnée par le théoreme Les séries Ip(t), Io(t) et Ir(t) comptent toutes des chemins
NSE, donc sont convergentes dans D. De plus, les séries 21o(t) — ¢ et 2Ip(t) — t sont
strictement positives pour ¢ > 0. La série W(¢) a donc, comme W (t), un unique pole
dominant dans D, qui est p.

De plus, la série donnant les chemins faiblement dirigés généraux prenant en compte le
nombre de facteurs irréductibles est

W(t,u) = 1+u(20r(t) — 2t) + 2u*(2Uo(t) — )W (t,u) (2Lp(t) — 1),

ou W (t,u) est donné par (3.3). Les résultats s’ensuivent. ]

Théoréme 3.17. Soit W¢ le nombre de ponts du modéle diagonal de longueur n composés
de ponts irréductibles partiellement dirigés. On a, quand n tend vers l’infini,

Wy ~ k",
avec p ~ 2,5378.

Soit F¢ le nombre moyen de facteurs irréductibles d’un tel pont. L’ espérance et la variance
de F? vérifient

E(Fy) ~ mn, V(F;) ~ s*n,

ot m~ 0,395 et s> =14 2.1073. La variable aléatoire Ff&gn converge en probabilité vers
une loi normale.
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Preuve. Les arguments sont identiques a ceux de la preuve du théoreme [3.16] La encore,
la série W(t, u) s’écrit

1
d —
Wt = T gy

ot I4(t) compte les chemins partiellement dirigés irréductibles du modele diagonal. La
seule modification est la borne supérieure sur la série I(t) que nous utilisons, qui est
I4(t) < 4T(t) au lieu de I(t) < 27'(¢). O

Remarque. Les théoremes [3.16] et montrent que la constante de croissance est 16ge-
rement supérieure dans le modele horizontal. Il ne semble pas que ceci soit prévisible.
Ecrivons les séries W (t) et W4(t) sous la forme

1
1= I(t)

1

W(t) = 1_7%,

we(t)
ot I(t) et I%(t) comptent les ponts partiellement dirigés irréductibles. La série 1(t) =
2t + O(t?) domine la série I(t) = ¢ + O(t?) au voisinage de 0, mais les graphes des deux
séries se croisent avant que l'une ou l'autre n’atteignent 1 (figure [3.6). Ainsi, la série I(t)
atteint 1 avant la série 14(t).

.95

).85

).754

FIGURE 3.6 — Les graphes des séries I(t) et I¢(t) pour 0,35 < t < 0,4. La série I%(t)
domine d’abord, puis les graphes se croisent avant que les séries n’atteignent 1.

3.3.2 Nature des séries

Nous nous intéressons maintenant a la nature des séries que nous avons calculées. Par
souci de simplicité, nous ne traitons que le modele horizontal, mais les ponts formés de
ponts irréductibles partiellement dirigés dans le modele diagonal peuvent étre traités par
des arguments similaires. Nous utilisons ici des résultats classiques d’analyse complexe.
Le lecteur pourra se référer a [45] sur ce sujet.

Théoréme 3.18. La série B(t) des ponts NSE donnée dans la proposition converge
au voisinage de 0 et admet un prolongement méromorphe dans C\ €, ot € consiste en les
deuz intervalles réels [—v/2 — 1, —1] et [v/2 — 1,1] et en la courbe

1—:52—23:3}

50:{x+iy:x>06ty2: T2
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Cette courbe, montrée figure est une frontiére naturelle de la série B(t) : tous ses
points sont des singularités de B(t). Les mémes résultats restent vrais pour la série W (t)
des ponts faiblement dirigés. En particulier, B(t) et W (t) ne sont pas D-finies.

ro.5

FIGURE 3.7 — La courbe & et les poles de la série Bgo(t).

Lemme 3.19. Soit f et g deux fonctions holomorphes sur un domaine ouvert conneze
U C C telles que g(z) n'est jamais nul, ' est non identiquement nulle, et pour tout entier
k, f¥ n’est pas identiquement égale d g. Soit S I’ensemble

S={zcU:FkeN, f(2)"=g(2)}.

L’ensemble des points d’accumulation de S dans U est égal a 'ensemble des z de U tels
que [f(2)] = 1.

Preuve. Soit z un point d’accumulation de S. Il existe donc une suite (z,) de complexes
tendant vers z, et une suite d’entiers (k,,) tels que

f(zn>kn = g(zn).

Les fonctions z — f(z)* — g(z) étant holomorphes non identiquement nulles, leurs zéros
sont isolés; on peut donc supposer que k, tend vers l'infini. Par continuité, les nombres
f(zn) et g(z,) tendent vers f(z) et g(z), respectivement. Comme g¢(z) n’est pas nul, la
valeur f(z,)*" ne peut ni tendre vers 0, ni diverger, ce qui montre que f(z) est de module 1.

Soit maintenant S’ ’ensemble des points z tels que | f(2)| = 1. Les zéros de f’ étant isolés,
I'ensemble des z tels que f’(z) # 0 est dense dans S’. Soit de plus w dans §’. La fonction f
étant holomorphe non constante donc ouverte, il exsite un z arbitrairement proche de w
tel que f(z) est une racine quelconque de 'unité. L’ensemble des z tels que f(z) est une
racine de I'unité est donc dense dans S’. L’ensemble des points d’accumulation de S étant
fermé, il suffit donc de montrer que tous les z tels que f'(z) # 0 et f(z) est une racine de
I'unité sont des points d’accumulation de S.

Si g est identiquement égale a 1, I'ensemble S est égal a I’ensemble des points z tels que
f(2) est une racine de 'unité; I’ensemble des points d’accumulation de S est bien S’
Sinon, supposons, encore par densité, que g(z) # 1; supposons également que f(z) est
une racine f-iéme de 1'unité. Soit k un multiple de ¢; on a donc f(2)* = 1. Nous allons
montrer I'existence d'un point 2, proche de z, tel que f(z;,)* = g(z1). Réberivons cette

équation en .
(75) =otw
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Une condition suffisante pour cela est

1 log(f(=)/f(2))

k log g(2x)

Sachant que g(z) ¢ {0,1}, un développement limité au point z donne

1_—‘]“(2) 2L — R 2_22
F F)logg(n) )+ 0(Gr =)

Sachant que f’(z) # 0, cette équation admet, pour k assez grand, une solution vérifiant

f(2)logg(2) 1 O( 1 )

Zp— 2=

f'(z)  k k2
Les nombres z;, ainsi définis tendent donc vers z et sont différents de z pour k assez grand.
Le point z est donc un point d’accumulation de S. O

Lemme 3.20. Pour z # 0, Uéquation z(u+u"') = 1—2+42%+2% a deux racines comptées
avec multiplicité. Le produit de ces racines est 1. Leur module est 1 si et seulement si z
est dans ’ensemble £ défini ci-dessus.

Soit

1—z+z2—|—23—\/(1—24)(1—22—22)
u(z) = 2z

la série donnant la racine définie en z = 0. Cette série a pour rayon de convergence
V2 — 1 et pour singularités £v/2 — 1, +1 et +i. Elle admet un prolongement analytique

dans Uy = C\ ([_\/5— 1L, -1 U V2 - 1,1 U]—ico, —i| U [HOOD

Preuve. L’existence de deux racines de produit 1 est claire. Supposons maintenant qu’elles
ont pour module 1, i.e. u est de la forme . La quantité h(z) = % = cos f est donc
dans l'intervalle réel [—1, 1]. En écrivant z = x + iy et en exprimant la partie imaginaire
de h(z) en fonction de z et y, on trouve que h(z) est réel si et seulement si y = 0 (donc
z € R) ou

v (1 +2x) =1— 2% — 22° (3.4)

Comme y? > 0, ceci n’est possible que si z € [—1/2,z.] ol z. vérifie 1 — 22 — 223 = 0.
Observons que la courbe ainsi définie contient &.

Pour les valeurs réelles de z, une étude élémentaire de h montre que h(z) € [—1,1] si et
seulement si z € [—v/2 — 1, 1] U[v2 — 1,1] gﬁgure 3.8, gauche). Si z = x + iy n’est pas
réel et si est vérifiée, on a h(z) = %2;4‘”3. Sachant que z. € [—1/2,z.], ceci est
vrai si et seulement si z > 0 (figure [3.8] milieu). Nous avons ainsi prouvé que |u(z)| =1
si et seulement si z € €.

Les propriétés de la série u s’obtiennent par des résultats classiques d’analyse complexe
(en fait, u admet un prolongement analytique sur C coupé selon n’importe quelles courbes
joignant les 6 singularités). La figure [3.8 & droite, montre un tracé du module de u(z)
prolongée comme ci-dessus. O]



3.3. Applications 83

3 ) 3 i 2 04 0.2 02 4[03 T2 14 /
“ N
N
\ 2 -2 -13

—1+4z% 4428
14+2x

FIGURE 3.8 — Les fonctions ¢ — h(t) = % et x —
module de u(z) montrant les deux coupures sur l’axe réel.

, et le tracé du

Preuve du théoréme [3.18. Considérons la série By,(t) définie dans la proposition B.7 Cette

série vaut
N u(t) —u(t)™!

Bi(t) = 7
) (1= But) = t)u)s — (1 = u®)~ — t)u(t)*

Cette fonction est méromorphe dans C; un complexe z en est un pdle si

(1—2)u(z)"t =t
(1—2)u(z) — 2z

U(Z)zk —

Posons

(1—2)u(z)™' -2
(1—2)u(z) —z °

f(z) = u(2)?, 9(z) =

D’apres le lemme [3.20] la fonction f est holomorphe dans U, et la fonction g méromorphe;
de plus, f n’est pas constante et on vérifie facilement que le numérateur comme le déno-
minateur de g ne s’annulent qu’en 0. Posons donc U = Uy \ {0}. Les lemmes et
montrent que les points d’accumulation des pdles des By(t) sont les points de £.

Les poles de B(t) n’ont donc pas de point d’accumulation hors de £, ce qui montre que
B(t) admet un prolongement méromorphe dans C \ €. Montrons maintenant que & est
une frontiere naturelle de B(t). Pour cela, nous montrons que si z est non réel, il est un
pole d’au plus une série f?k(t), donc un pdle de B(t); par conséquent, les points de &
sont des points d’accumulation de poles de B(t), donc des singularités de B(t). Supposons
donc que z est un pole de By(t) et By(t). Lidentité montre que u(z)?** = u(z)%,
donc |u(z)| = 1. Réécrivons en

z u(z)k+l _ u(z)f(kﬂ)

1—z  u(2)b —u(z)"*

Ainsi, z/(1 — z), donc z, est réel car quotient de deux imaginaires purs. Ceci termine la
preuve.

Le lien entre les séries W (t) et B(t) implique que W (t) possede également un prolongement
méromorphe sur C \ € et la méme frontiére naturelle. O
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3.3.3 Génération aléatoire

Nous présentons maintenant un algorithme pour la génération aléatoire des ponts faible-
ment dirigés dans le modele horizontal. Ce générateur est un générateur de Boltzmann
[24], ce qui signifie que la probabilité de tirer un chemin donné « est

Lol

Pla) = %7

ou C(x) est la série génératrice des chemins a engendrer et = est un parametre inférieur
au rayon de convergence de C'. La longueur moyenne d’un chemin ainsi engendré est

B(la) = "G5

Le parameétre x est ainsi choisi en fonction de la longueur désirée de la sortie.

Soit A et B deux classes de chemins et ' et I'g des générateurs de Boltzmann pour
ces classes. Si AN B = &, on peut obtenir un générateur pour A U B en appelant ['4
avec probabilité % et ' avec probabilité ﬁ. On peut également obtenir un
générateur pour A x B en prenant (I 4, 'g).

De plus, si B C A, on peut obtenir un générateur pour B grace a un algorithme de rejet :
on engendre des éléments de A jusqu’a en trouver un dans B. Enfin, si A = B x C, on
peut trouver un générateur pour B en engendrant un couple (b, ¢) et en oubliant c.

Pour engendrer les ponts faiblement dirigés, nous considérons les classes de chemins sui-

vantes :

— la classe £ des excursions NSE propres;;

— la classe Py des chemins positifs terminant par un pas N;

— la classe Z des ponts NSE irréductibles;

— la classe W des ponts faiblement dirigés.

Nous construisons successivement des générateurs de Boltzmann pour toutes ces classes,

de la maniére suivante.

— Pour engendrer les éléments de £, nous utilisons la construction de la preuve de la
proposition Soit D la classe des facteurs descendants (ou chemins SE propres non
vides) et soit D,, la sous-classe des chemins de hauteur n. On a

E=14 [J(EN)D,.

n=0

Le langage D est de plus donné par I'expression réguliere non ambigué
D=E+ES+E)E.

Considérons la famille
&' =1+E+E(ENS+E)'E.

A un réordonnement des facteurs pres, les classes € et £ sont identiques. On peut donc
tirer de cette identité un générateur de Boltzmann pour £.

— Soit « est un chemin de Py. Le chemin « finit par un N, donc n’est pas une excursion.
Il s’écrit donc SN+, ou (B est une excursion propre et v est soit vide soit un chemin de
Pn. On obtient

Pn =EN(1 + Py).

On en déduit un générateur de Boltzmann pour Py.
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— Pour engendrer les éléments de Z, on engendre un chemin de Py et on le décompose en
facteurs irréductibles. Soit R la classe des chemins de Py irréductibles qui ne sont pas
des ponts. En isolant le premier facteur irréductible des chemins de Py, on trouve

Pn=R+Z(1+Py).

En utilisant un algorithme de rejet pour éliminer les éléments de R, puis en ne gardant
que le premier facteur irréductible, on obtient un générateur de Boltzmann pour Z.

— Enfin, un pont faiblement dirigé est une suite de ponts partiellement dirigés irréduc-
tibles. Soit Zg 1’ensemble des ponts NSO irréductibles différents de N. On a

W=1+IW +IoW.

Un générateur de Boltzmann pour Zg est obtenu de la méme maniére que celui pour Z,
avec un rejet final pour éliminer le chemin N. On en déduit un générateur de Boltzmann
pour W.

Proposition 3.21. Soit ¢ > 0 fixé. Le générateur aléatoire décrit ci-dessus, avec le pa-
ramétre x choisi de sorte que xW'(z)/W (x) = n, renvoie un pont faiblement dirigé avec
une longueur comprise entre (1 —e)n et (1 + ¢)n en temps moyen O(n).

Preuve. Soit x un réel positif inférieur au rayon de convergence p de W donné par le
théoreme (3.16, Nous commencons par prouver que si l'algorithme renvoie un chemin de
longueur m, il a, en moyenne, tourné en temps O(m), et ce indépendamment du parameétre
x.

Soit Py(t) la série génératrice de la classe Py. Cette série a pour rayon de convergence
V2 — 1, qui est supérieur a p. La longueur moyenne d’un chemin de Py produit par notre
algorithme est donc inférieure a pPy(p)/Pn(p) [24, proposition 2.1], qui est indépendant
de . En particulier, engendrer un élément de Py selon le parametre x prend un temps
moyen constant et la longueur moyenne de la sortie est bornée.

Tester si un chemin est dans R ou non est effectué en temps linéaire. La probabilité de
tirer un chemin hors de R est
[(x)(l —I—PN(ZL‘)> . 1+ Py(z) 1 —z+ 2+ 23+ \/(1 —a*)(1 — 2z — 2?)

Pu(x) “ TR T 2
> V2 -1

Le nombre moyen d’essais nécessaires pour engendrer un élément de Z est donc borné par
une constante indépendante de z, ce qui assure qu’engendrer un élément de Z prend un
temps constant en moyenne. Enfin, le chemin N est engendré si le chemin de Py engendré
est dans N(1 + Py). La probabilité que cela arrive est inférieure a z(1 + Py(z))/Py(z),
qui est borné au voisinage de p. Tirer un élément de Zg prend donc également un temps
constant en moyenne, si le parametre x est assez grand.

Enfin, le nombre de facteurs irréductibles d’'un chemin de longueur m est inférieur a m,
ce qui montre qu'un pont faiblement dirigé de longueur m est engendré en temps O(m).

Fixons maintenant n et e, et choisissons le parametre x comme spécifié ci-dessus (ceci
est possible car xW'(z)/W (x) tend vers l'infini quand x tend vers p). Nous appelons
notre générateur jusqu’a obtenir un pont de longueur dans l'intervalle désiré. Le théo-
reme 6.3 de [24] montre que, en moyenne, le nombre d’essais nécessaires est borné. En
effet, la série W (t) est analytique dans un A-domaine, avec un exposant critique —1 (voir

théoréme [3.16]). O
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La figure [3.9) montre un pont engendré selon cet algorithfme.

FIGURE 3.9 — A gauche, un pont faiblement dirigé aléato e fongueur 1008. A

droite, un zoom sur une partie du chemin.

3.4 Une nouvelle classe de chemins

3.4.1 Définition

Nous définissons maintenant une nouvelle classe de chemins qui généralise les chemins
faiblement dirigés du modele horizontal. Ces chemins sont, comme les[chemins faiblement
dirigés, caractérisés par leurs facteurs irréductibles ; ces facteurs appa
qui elle-méme généralise les chemins partiellement dirigés. Nous comm
cette classe.

Si « est un chemin, nous notons r(«) le chemin a tourné d’un quart de to
des aiguilles d'une montre.

A= (N+Er(B))",

ou B est I’ensemble des chemins de A qui sont des ponts. De plus) tous les chemins de A

sont auto-évitants.

Un chemin de A est montré figure [3.10]
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« B Y 0

FIGURE 3.10 — De gauche & droite : un chemin « de la classe A, factorisé en pas N
et en facteurs de Er(f), ou 8 est un pont de A; le premier chemin [ intervenant
dans la factorisation de «, lui-méme factorisé de fagon analogue ; le premier facteur
~ intervenant dans la factorisation de ; le premier facteur § intervenant dans la
factorisation de . Le chemin § est un chemin NSE propre, donc dans A (voir ci-
dessous). En particulier, tous les chemins de .4 sont inscrits dans la bande verticale
déterminée par leurs extrémités.

Preuve. Commencons par montrer I'existence de la classe A. Posons Ay = & et, pour
n>=l1,
An = (N + ET(anl) ;

ou B,_; est 'ensemble des chemins de A,_; qui sont des ponts. Posons A 1'union des
classes A,, pour n > 0 et B ’ensemble des chemins de A qui sont des ponts.

Montrons que la classe A ainsi construite vérifie ’équation ({3.6)). La classe B,_; étant
incluse dans B par construction, on a

Ay =(N+Er(B,1) € (N+Er(B, 1)

La classe A étant 'union des A, elle est également incluse dans (N + Er(B))*. Récipro-
quement, soit o dans (N 4+ Er(B))*; montrons que « est dans A. Le nombre de facteurs
de Er(B) apparaissant dans « étant fini, ils sont tous dans B,, pour un certain n. On en
déduit .

a € <N + Er(Bn)> =A,11 CA

Prouvons maintenant I'unicité de la classe A. Supposons qu’il existe deux classes A et A’
vérifiant toutes deux 1’équation , avec A # A’. Soit @ un chemin de taille minimale
dans la différence symétrique (disons, o € A mais a ¢ A’). Comme « est dans (N+Er(B))*
mais pas dans (N+Er(B'))*, il existe un chemin /5 dans r(B) mais pas dans r(B’). Comme
EfS est un facteur de «, 8 est de longueur inférieure a o, ce qui contredit la minimalité de
a.

Prouvons enfin que les chemins de A sont auto-évitants. Procédons par récurrence sur
la longueur des chemins. Il est clair que le chemin vide est auto-évitant ; supposons donc
que tous les chemins de A de longueur k£ < n sont auto-évitants et soit o un chemin de
A de longueur n. Le chemin «a admet donc une décomposition en pas N et en facteurs de
type Er(/3), ou /3 est un pont de A. Les chemins 3 étant plus courts que «, ’hypothese
de récurrence montre qu’ils sont auto-évitants. De plus, les chemins g étant des ponts,
chaque facteur vit dans une bande verticale propre (figure . Le chemin « est donc
auto-évitant. m

Examinons les classes A,,, définies dans la preuve ci-dessus, pour les premieres valeurs de
n. La classe A est vide par définition. La classe A; est donc égale a N*. La classe A; est
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donc égale a (N + E)*, donc contient tous les chemins NE. Un chemin NE étant un pont
si et seulement si il est vide ou il finit par N, la classe A3 vaut
A; = (N+E+EE+S)E) .

On reconnait dans le terme E + E(E + S)*E P'expression réguliere donnant les chemins SE
propres (3.2). On en déduit que Aj est la classe des chemins NSE propres.

La classe A est donc une généralisation des chemins NSE propres, ce qui implique que la
classe définie ci-dessous est une généralisation des ponts faiblement dirigés. Si « est un
chemin, on note s(«) I'image de « par la symétrie par rapport a 'axe vertical.

Définition 3.23. On note W la classe des ponts dont les facteurs irréductibles sont dans

A ou dans s(A).

Les ponts de A et s(A) étant auto-évitants, les ponts de WV sont également auto-évitants.

Remarque. Les chemins NSE vérfient la propriété que, entre deux visites a la méme abs-
cisse, le chemin est dans N* ou dans S*. Une caractérisation similaire des chemins de
A existe, mais elle est plus difficile & énoncer et a démontrer. Elle apparaitra dans une
version ultérieure de la these.

3.4.2 Enumération

Nous cherchons maintenant a énumérer les éléments de WW. Ces chemins étant des suites de
ponts irréductibles de A et s(.A), nous énumérons tout d’abord les ponts de A, c’est-a-dire
la famille B.

Comme montré sur la figure [3.10] les chemins de A vivent dans la bande verticale dé-
terminée par leurs extrémités. Par conséquents, les chemins de B, qui sont des ponts,
sont inscrits dans le rectangle déterminé par leurs extrémités. Soit a un chemin de B; la
largeur de «, notée £(«), et la hauteur de «, notée h(«), sont la largeur et la hauteur de
ce rectangle. Nous notons B(t, u,v), ou simplement B(u,v), la série génératrice

B(u,v) = > tlodyHegh(@)

aeB

Nous noterons également By (u) le coefficient en v* de B(u,v), c’est-a-dire la série géné-
ratrice des ponts de B de hauteur k.

Théoréme 3.24. La série B(u,v) est l'unique série formelle en les variables t,u,v solu-
tion de l’équation

v 1
B o |1 = ,
(u,0) © ( +1—v+tuB(tv,u)> 1—tv

ol ®, note le produit de Hadamard selon la variable v.

Lemme 3.25. Tout chemin de A admet une unique factorisation compatible avec ([3.6))
ne comprenant pas deux facteurs descendants consécutifs.
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Preuve. Soit 8 et v deux chemins de B. Le chemin SN~ est encore un pont, et il est encore
dans A par définition ; il est donc dans B. Par conséquent, le chemin E () Er(v) est dans
Er(B). Si a est un chemin de A, on construit la factorisation voulue en regroupant tous
les facteurs descendants consécutifs. Cette construction est bien unique. m

Preuve. Le lemme [3.25 montre que les chemins de B peuvent étre vus comme des chemins
stricts de Lukasiewicz, dont les pas montants sont des pas N et les pas descendants sont
les facteurs de Er(B). De plus, I'image par r d'un chemin de longueur ¢ et de hauteur
h est un chemin de longueur h et de hauteur —¢. La série D(u,v) comptant les facteurs
descendants est donc

D(u,v) = tuB(v,u).
Soit B;(u) le coefficient en v? de la série B(u,v), ¢’est-a-dire la série génératrice des ponts
de hauteur j. Un pont de hauteur 5 > 1 étant un pseudo-pont de hauteur j — 1 suivi d'un
pas N, le théoréme [2.15 montre que

Biw) = 7 (3.7)

ou les G;(u) sont définis par
Gu,v) = Gj(u)’ = ! = ! :
’ ! 1—v+ D(u,tv) 1—v+tuB(tv,u)

Jj=0

Les équations B;(u)G;_1(u) =/ (et By(u) = 1) peuvent se réécrire sous la forme

1
—tv’

B(u,v) ®, (1 + vG(u,v)) =7

On en déduit que la série B(u,v) vérifie I’équation annoncée.

Pour montrer que la solution est unique, écrivons B(u, v) sous la forme
- - atayd
B(u,v) = > B;u'v’.
2%

Nous montrons, par récurrence sur ¢ + j, que le coefficient B; ; est uniquement déterminé
par I'équation du théoreme. Le coefficient By est nécessairement 1; I'équation ([3.7))
montre que le coefficient B;; est déterminé par les coefficients jusqu’a u’ de la série
G,—1(u). La définition de la série G(u,v) montre que ceci demande la connaissance
des coefficients de B(tv,u) jusqu'a u'~! et /7! il suffit donc de connaitre les By, pour
k+ ¢ < i+ j. Ceci termine la preuve. O]

Malheureusement, 1’équation gouvernant la série B(u,v) est tres difficile a résoudre. La
preuve du théoréeme donne une maniere algorithmique de calculer la série (calculer les
coefficients en u‘v? pour des valeurs croissantes de 7 + j), mais je n’ai pas pu donner
d’expression donnant B(u, v).

En utilisant les factorisations des chemins de A et de W, on obtient les deux formules
JR— 1 .
1—t—tB(1,1)

1

:1+t—%1—Bqug’

A(#)

W(t)
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le terme 1 — B(1,1)~! comptant les ponts irréductibles de A. Des arguments similaires a
ceux du théoreme montrent que le rayon de convergence de W (t) est environ 0,392,
ce qui donne une constante de croissance d’environ 2,549.



Chapitre 4
Animaux dirigés

Ce chapitre a pour but d’étudier les animaux dirigés sur les réseaux carré et triangulaire,
et en particulier de trois parametres de ces animaux. Nous renvoyons a l'introduction de
la these pour une présentation générale des animaux dirigés ; nous donnons également la
définition de ces animaux sur un graphe orienté quelconque.

Définition 4.1. Soit G un graphe orienté et S un ensemble fini de sommets de G. Un
animal dirigé (ou simplement animal, s’il n’y a pas d’ambiguité) de G' de source S est un
ensemble fini A de sommets de GG contenant S, tel que pour tout v € A il existe un s € S
et un chemin orienté de s a v ne passant que par des sites de A.

Un sommet de A sera appelé un site; le nombre de sites de A est appelé 'aire de A, et
noté |A|.

Les trois parameétres qui nous intéressent sont illustrés sur la figure [4.1] : le nombre de
paires de sites adjacents, le nombre de boucles, et le nombre de voisins (également appelé
périmetre de site ou simplement périmétre) d’un animal dirigé. Les définitions formelles
se trouvent dans la section [4.3]

D sites adjacents

& boucle

O  voisin

FIGURE 4.1 — Un animal dirigé marqué de deux sites adjacents, d’une boucle, et
d’un voisin.

Notant, par exemple, p(A) le périmetre de 'animal A, on peut définir la série génératrice
suivante, comptant les animaux dirigés selon 'aire et le périmetre :

AP(t,u) = Z 1AL p(A)
A

Cette série génératrice intervient dans certains problemes de percolation en probabili-
tés [51], mais n’est malheureusement pas connue et est supposée non D-finie [34]. Nous
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considérons a la place la série génératrice donnant le périmetre total des animaux d’aire
fixée :

aailj(t, 1) = Zp(A)t|A|.

En divisant le périmetre total des animaux dirigés d’aire n par le nombre de ces animaux,
on trouve le périmetre de site moyen des animaux d’aire donnée. La série ci-dessus peut
également étre interprétée comme la série génératrice des animaux marqués d’un voisin.

Cette série génératrice, et les séries analogues comptant le nombre total de sites adjacents
et de boucles des animaux d’aire fixée, sont plus faciles a calculer. Le nombre total de
boucles a été calculé par Bousquet-Mélou sur le réseau carré [5]. Le périmétre total sur
ce méme réseau fait 'objet d’une conjecture de Conway [I5] ; une autre conjecture a été
énoncée par Le Borgne sur les réseaux de largeur bornée [39].

Nous prouvons toutes ces conjectures dans la section .3 et calculons aussi la série analogue
donnant le nombre de sites adjacents. Nos résultats sont en fait plus généraux : ils sont
valables sur différents types de réseaux, définis dans la section 4.1}, et pour les animaux de
source S quelconque. Nous tirons également de ces résultats des corollaires asymptotiques.

Le chapitre est organisé comme suit. La section définit les réseaux que nous considé-
rons et explicite la bijection avec les empilements de dominos. La section énonce des
résultats classiques sur I’énumération des animaux dirigés selon l'aire seule. La section 4.3
contient les résultats généraux concernant les trois parameétres ci-dessus. La section [4.4]
donne quelques applications de ces résultats.

4.1 Deéfinitions

4.1.1 Réseaux carrés et triangulaires

Définition 4.2. Soit B un ensemble soit inclus dans Z, soit de la forme Z/kZ avec k
pair. Le réseau carré biaisé (s’il n’y a pas d’ambiguité, le réseau carré) de base B est le
graphe dont les sommets sont les points (¢, 7) de B X Z tels que i + j est pair, muni des
arcs de forme (i,7) = (i—1,7+1) et (¢,7) = (i+1,7+1). Le réseau triangulaire de base
B posséde de plus les arcs (¢,7) — (4,7 + 2).

Nous considérons dans ce chapitre quatre types de réseaux :

— le réseau complet, de base B = Z;

— le demi-réseau, de base B = N;

— le réseau cylindrique de largeur k, de base B = Z/kZ (pour k pair) ;

— le réseau rectangulaire de largeur k, de base B ={0,...,k— 1}.

Le réseau complet et le demi-réseau sont collectivement appelés les réseauzr non bornés,
et les réseaux cylindriques et rectangulaires sont appelés réseauz bornés (figure . Les
réseaux cylindriques sont nécessairement de largeur paire, pour que la condition « ¢ + 5
est pair » ait un sens.

Bien stir, le réseau carré complet peut étre plus simplement réalisé en prenant pour som-
mets I'ensemble Z2. La définition ci-dessus est motivée par le fait que le réseau carré biaisé
a une direction privilégiée vers le haut (tous les arcs pointent vers le haut); la direction
des arcs est importante pour les animaux dirigés.
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FIGURE 4.2 — A gauche, un animal dirigé du réseau carré cylindrique de largeur 6.
A droite, un animal dirigé du réseau triangulaire rectangulaire de largeur 5.

Une source S du réseau carré ou triangulaire de base B sera dite [inéaire si tous les
éléments de S sont de la forme (7,0) (ce qui implique que 7 est pair). Dans ce cas, nous
confondrons I’ensemble S avec I’ensemble des abscisses de ses points. Une source linéaire
peut donc étre vue comme un ensemble d’éléments pairs de B.

4.1.2 Empilements de dominos

Nous définissons maintenant 1’outil principal d’énumération des animaux que nous uti-
liserons dans ce chapitre et le suivant. Cet outil est une application qui transforme les
animaux en certains empilements de pieces, les empilements de dominos.

Définition 4.3. Soit B une partie ou un quotient de Z. On appelle modéle d’empilements
de dominos de base B le modele d’empilements dont les pieces sont les éléments de B et
tel que les piéces ¢ et i’ sont concurrentes si et seulement si |i — /| < 1.

Dans le cas ou B = Z, ce modele est équivalent aux empilements de dimeres définis dans
la section : le domino d’indice ¢ correspond au domino dont l'unique aréte est i.

Définition 4.4. Soit A un ensemble fini de sommets du réseau triangulaire de base B et
soit s = (i,7) un site de A. La projection du site s, notée m(s), est le domino d’indice 7;
la hauteur du site s est l'entier j. La projection de A, notée m(A), est 'empilement de
dominos obtenu en empilant les projections m(s) de tous les sites de A par ordre croissant
de hauteur.

Pour justifier cette définition, on remarque que deux sites distincts s = (i, ) et s’ = (7', j)
a la méme hauteur vérifient nécessairement |i — i'| > 2 a cause du fait que i+ j et i'+j sont
pairs. Les deux dominos 7(s) et 7(s’) ne sont donc pas concurrents. La projection m(A)
ne dépend donc pas de 'ordre dans lesquels sont empilés les dominos de méme hauteur.
Un animal du réseau carré étant, en particulier, un animal du réseau triangulaire, on peut
également définir sa projection 7(A).

Comme le montrent les résultats suivants, la projection fournit des bijections entre ani-
maux dirigés et empilements de dominos. Ces bijections sont illustrées figure [4.3

Lemme 4.5. Soit B une base et S une source linéaire. Il y a bijection entre les animaux
dirigés de source S et d’aire n du réseau triangulaire de base B et les empilements de
dominos dont les piéces minimales ont pour positions S et comptant n pieces.

Dans le cas ot S est une source ponctuelle, les animaux dirigés sont ainsi en bijection avec
les pyramides (ou empilements ayant une unique piéce minimale). Pour prouver ce lemme,
nous définissons, pour chaque domino d’un empilement, une hauteur a valeur dans N.
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FIGURE 4.3 — A gauche, un animal dirigé & deux sources sur le réseau carré et
I'empilement correspondant. A droite, un animal & une source sur le réseau trian-
gulaire et '’empilement correspondant. Dans les deux cas, ’empilement est obtenu
en remplacant chaque site par un domino 2x1.

Définition 4.6. Soit H un empilement de dominos et x un domino de H a position 1.

On définit inductivement la hauteur de x, notée h(z), de la maniére suivante.

— Si x est minimal dans H, h(x) = 0.

— Si & couvre un domino y a position i, soit j = h(y). On a alors h(z) = j + 2.

— Sinon, soit j la hauteur maximale d’'un domino y tel que = couvre y. On a alors h(z) =
Jj+1

La figure [4.3| montre des empilements dont chaque domino z est dessiné a la hauteur h(x).

Preuve du lemme[{.5 Soit H un empilement de dominos dont les piéces minimales sont
a position dans S. Pour construire I’animal correspondant a H, on calcule la hauteur
des dominos de H selon la définition [£.6 On fait correspondre a chaque domino de po-
sition 7 et de hauteur j le site (i,7), et on définit I'animal A comme I’ensemble des sites
correspondants aux dominos de H.

L’animal A ainsi construit est bien un animal dirigé de source S : chaque site x non
minimal est relié dans le réseau triangulaire a un site y tel que x couvre y. De proche en
proche, chaque site est donc relié a un site minimal.

Réciproquement, si A est un animal dirigé de source S, la construction précédente appli-
quée a la projection 7(A) redonne bien 'animal A, ce qui montre que la construction est
bijective. O]

Le lemme suivant, qui sera utile par la suite, se démontre facilement par récurrence grace
au fait que les positions de S sont paires.

Lemme 4.7. Soit S une source linéaire du réseau de base B. Soit H un empilement de
dominos dont les piéces minimales sont a positions dans S. Soit x un domino de H de
position i et de hauteur j. La somme 1+ j est paire.

Le lemme suivant permet de traiter également les animaux du réseau carré.

Lemme 4.8. Soit A un animal dirigé de source S du réseau triangulaire de base B.
L’animal A est un animal dirigé du réseau carré de base B si et seulement si la projection
7(A) est un empilement strict.

Preuve. Pour prouver ce lemme, on remarque que I’ensemble de sommets A est un animal
dirigé de source S du réseau carré si et seulement si pour tout site v de A hors de S, il
existe un site w dans A tel que w — v est un arc du réseau carré. Ceci est équivalent a
dire que, pour tout site v hors de S, le domino 7(v) ne couvre pas de domino a la méme
position, donc que 7m(A) est un empilement strict. ]



4.2. Enumération 95

4.2 Enumération

Ici, nous considérons 1'un quelconque des quatre types de réseaux décrits ci-dessus et
une source linéaire S. Nous notons Ag(t) et A5(t) les séries génératrices des animaux de
source S des réseaux carré et triangulaire, respectivement. Pour les énoncés valables sur
les deux réseaux, nous utiliserons la notation commune Ag(t). Nous noterons également
Arg)(t) la série génératrice des animaux dirigés de source incluse dans I’ensemble S.

Via la bijection du lemme les animaux de source incluse dans S correspondent aux
empilements dont les pieces minimales sont a positions incluses dans S. Les liens (|1.1)) et
(1.2)) se traduisent donc en

A(t) = > Ar(t); (4.1)

TCS

As(t) = (—1)|S|_|T‘A[T1 (t). (4.2)

TCS

De plus, d’apres le lemme [4.8] les animaux du réseau carré correspondent a des empile-
ments stricts. Les identités (1.7]) et (1.8) se traduisent donc en

a0 = a5 1 ) (43)

141

() = ﬁ( ! ) (4.4)

Les sections suivantes montrent comment calculer les séries ci-dessus dans les quatre types
de réseaux.

Nous utilisons des notations particulieres pour les séries Ag(t) ou S = {0}, comptant
des animaux dirigés de source ponctuelle. Ces animaux correspondent a des pyramides
de dominos, ou empilements n’ayant qu’'une seule piece minimale, a la position 0. Nous
notons :

— A(t) la série des animaux dirigés de source {0} sur le réseau complet ;

— D(t) la série des animaux dirigés de source {0} sur le demi-réseau;

— Ag(t) la série des animaux dirigés de source {0} sur le réseau cylindrique de largeur k;
— Dy(t) la série des animaux dirigés de source {0} sur le réseau rectangulaire de largeur k.
Les animaux comptés par les séries D(t) et Dy (t) seront également appelés des demi-
animauz de source ponctuelle.

4.2.1 Réseaux bornés

Nous commencons par les réseaux bornés, c¢’est-a-dire ceux dont la base B est finie. Le
modele d’empilements correspondant est donc également fini, ce qui permet d’utiliser le
théoreme d’inversion (théoréme [1.11]) pour calculer la série Ajg(t). On obtient le résultat
suivant.

Proposition 4.9. La série des animaux dirigés de source incluse dans S sur le réseau
triangulaire de base finie B est

Tip\s(t)
A t — [ \ ,
) Tig(t)

ot Tig)(t) est la série alternée des empilements triviaux dont les positions sont dans S.
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L’identité (4.2)) permet de déduire de cette formule la série Ag(t); I'identité (4.4]) permet
ensuite d’en déduire les séries correspondantes sur le réseau carré.

Nous sommes donc ramenés a calculer les séries alternées comptant les empilements tri-
viaux. Ce calcul est fait grace aux deux résultats suivants, qui expriment les séries Tig(t)
en fonction des polynomes de Fibonacci F(t), définis dans la définition [1.37} Nous défi-

nissons également, pour k > 2, des polynoémes notés Fj(t) par

A

Fii(t) = Fii(t) — tF-2(2). (4.5)

Lemme 4.10. Si B = {0,...,k — 1}, la série alternée Tip|(t) des empilements triviaux
est égale a Fiy1(t). Si B = Z/KZ, la série alternée Tip(t) des empilements triviauz est
égale a Fy(t).

Preuve. Si B = {0,...,k — 1}, il est déja montré dans la section que la série des
empilements triviaux est Fjiq(t). Soit donc 7" un empilement trivial inclus dans Z/kZ.
Nous distinguons deux cas.

1. Soit 0 n’est pas dans 7. L’empilement trivial 7" est donc inclus dans {1,...,k —1}.

2. Soit 0 est dans 7T'; on écrit dans ce cas T' = (0)7”. Les dominos 1 et k — 1 étant
concurrents a 0, ils ne sont pas dans 7”. L’empilement trivial 7" est donc inclus dans

2, k-2,

Les empilements dans le cas 1 sont comptés par Fi(t); le domino 0 ayant pour poids —t
dans les séries alternées, ceux dans le cas 2 sont comptés par —tFy_o(t). O

Lemme 4.11. Soit S un ensemble fini de positions. Ecrivons la décomposition S = S; U
U8y en intervalles maximauz de S. La série génératrice des empilements triviaux inclus
dans S est

Tis)(t) = Fisy1(t) - -+ Fis,41(1).

Preuve. Soit S; et S; deux intervalles maximaux de S avec 7 # j. Un élément de S; et
un élément de S; ne peuvent pas étre concurrents, sans quoi on pourrait fusionner les
intervalles S; et S;. On en déduit que la donnée d’un empilement trivial inclus dans S est
identique a la donnée d’empilements triviaux inclus respectivement dans Sy,...,S,. En
termes de séries génératrices, on a donc

Tis)(t) = Tisy (8) - - - Tisy (1)

Le lemme permet de conclure. O

A titre d’exemple, les résultats ci-dessus permettent de calculer les séries Ay(t) et Dy(t)
définies plus haut. On trouve

A _ Fk(t> 1.
AR(L) = 70 1; (4.6)
pe) = 0y (4.7)

Fia(2)
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4.2.2 Réseaux non bornés

97

Nous faisons maintenant le méme travail sur les réseaux non bornés. Les deux résultats

qui suivent ont déja été prouvés [20, [3], nous les citons donc sans preuve.

Proposition 4.12. Les séries A(t) et D(t) sont données par

vo-rta )

Drt) = 1—t— \/(12:—75)(1 —315)_

Traitons maintenant le cas des sources non ponctuelles. Nous dirons qu’'une source C' dans

le réseau complet est compacte si elle est constituée de £ sites consécutifs, de la forme

C={i,i+2,...,i+20—2}.

Dans le demi-réseau, nous imposons de plus que 0 soit dans C.

Proposition 4.13. Soit C' une source compacte comportant £ sites. La série génératrice

des animauzx de source C' sur le réseau complet est
Ac(t) = D(t) T A(t).

Sur le demi-réseau, cette série vaut

Nous pouvons enfin calculer la série Ag(t) pour une source S quelconque. Rappelons que,
si S est un ensemble de positions, le voisinage de S, noté v(.S), est égal a 'ensemble des

positions concurrentes a une position de S.

Proposition 4.14. Soit S une source linéaire du réseau complet ou du demi-réseau et soit
C' la plus petite source compacte contenant S. La série génératrice des animaux dirigés de

source S est, pour le réseau triangulaire

Ag(t) = IO ongsy (1) AS(E).

Preuve. Nous utilisons dans cette preuve plusieurs résultats de théorie des empilements
du chapitre |1} Nous commencgons par utiliser I'identité (1.9), qui permet de calculer les

séries Ag(t) et Ac(t) :

As(t) =t Ay
Ac(t) = t|C‘A[v(C)] .
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Nous utilisons ensuite le corollaire pour trouver un lien entre les séries Ap,g)(t) et
Apyey(t). Puisque S est inclus dans C, on a v(S) C v(C); puisque C' est la plus petite
source compacte contenant S, les positions du bord de v(C') (celles qui sont concurrentes
a une position hors de v(C)) sont dans v(.S). On trouve donc

Ap(s)(t) = Thepw(s) Apey (t)-

La proposition s’ensuit. O

4.2.3 Asymptotique

Nous utilisons maintenant les résultats d’énumération ci-dessus pour en déduire des équi-
valents asymptotiques. Pour commencer, nous étudions les racines des polynémes de Fi-
bonacci.

Lemme 4.15. Pour tout k > 1, les polynomes Fy,(t) et Fy(t) sont scindés et a racines
simples dans R. Soit p,. et py, respectivement, la plus petite racine de ces polynomes. On

a
1
— =4 cos? T ;
Pk k+1
1
— =4 cos? <W> .
Dk 2k

Preuve. On vérifie par récurrence sur k que les degrés des polynémes Fj(t) et Fk(t) sont
| k/2]. Nous utilisons ensuite les identités suivantes que vérifient les polynémes de Fibo-
nacci, d’'une maniere proche de ceux de Tchebycheff :

Fk< 1 >: sin[(k + 1)0]

4 cos?(0) (2cosf)ksing’
I 1 _ 2cos(k0)
"\dcos2(6) ) ~ (2cosO)*

Ces identités sont facilement vérifiées par récurrence sur k. En choisissant les valeurs
appropriées de 6 dans l'intervalle }0, 7/ 2[, ces identités permettent de trouver toutes les
racines. On en déduit les valeurs des plus petites racines. O

Nous sommes maintenant en mesure de calculer I’'asymptotique du nombre d’animaux
dirigés sur tous les réseaux.

Proposition 4.16. Soit S une source linéaire d’un réseau et ag(n) le nombre d’animauz
dirigés de source S et d’aire n. Quand n tend vers l'infini, on a un équivalent de la forme

as(n) ~ Asp"n’.

Dans le réseau triangulaire, les constantes p et v sont données par :
— dans le réseau complet, p* =4 et y* = —1/2;

— dans le demi-réseau, p* =4 et y* = =3/2;

— dans le réseau cylindrique de largeur k, u* = 1/py, et v* =0;
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— dans le réseau rectangulaire de largeur k, p* = 1/pg1 et v = 0.
Dans le réseau carré, les constantes p et v sont données par

pe=pt =1 7° =9

Preuve. Des formules de la proposition [4.12] nous déduisons les développements limités
suivants, quand ¢ tend vers 1/4 :

DA(t) =1 —2(1—4)"2 + O((1 - 4t)*?);
1

A% (t) = 51— 46)7Y2 1+ 0(1).
Les propositions et permettent d’obtenir des développements similaires pour les
séries A§(t) sur le demi-réseau et le réseau complet, sachant que les polynémes Fj () ont
leurs racines supérieures a 1/4. Les équivalents asymptotiques sont ensuite obtenus par
analyse de singularité. Le résultat que nous utilisons, qui est un cas particulier de [27,
théoréeme VI.4], affirme que si une série S(t) est analytique dans un A-domaine autour
du point 1/ et vérifie, au voisinage de t = 1/p,

S(t) ~ ML= put),

alors le coefficient de t" vérifie, quand n tend vers 'infini,
t"S(t) ~ ——p"nt.
5(0) ~ =

Ce résultat permet d’obtenir les valeurs de p et de v pour les réseaux non bornés : en effet,
les séries D*(t) et A*(t) admettent un prolongement analytique dans le plan complexe
privé de la demi-droite [1/4, +oo[, qui contient un A-domaine; les polynoémes Fj(t) sont
quant & eux analytiques dans un disque de rayon supérieur a 1/4.

Dans les réseaux bornés, la série Ag(t) est rationnelle, donc 'asymptotique est déterminée
par les racines du dénominateur F(t) ou Fi(t). Le lemme permet de conclure.

Enfin, pour le réseau carré, nous utilisons le lien (1.8)). La série S(t) ci-dessus, évaluée en
b véri
T vérifie

s(ﬁﬂ) ~ AL+ (1= (p—1)t)

Cet équivalent est valable quand 1%15 tend vers p, donc quand t tend vers %1 On en
"
déduit 1’équivalent
t A wo\°
tn57 ~ " _1n0c—1‘
v1( ) ~ ray (23 e 0
On en déduit la forme des coefficients de la série Ag(?). O

4.3 Sites adjacents, boucles et périmeéetre de site

4.3.1 Définitions

Nous nous intéressons maintenant aux parametres des animaux dirigés illustrés figure [£.1]
Toutes les définitions de cette section sont valables a la fois dans les réseaux carrés et
triangulaires.
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Définition 4.17. Soit A un animal dirigé du graphe G de source incluse dans S. Deux
sites de A sont dits adjacents §’ils sont de la forme (7, ) et (i + 2, 7). Un site de A de la
forme (i + 1,7 + 1) est une boucle si les sommets (7, j) et (i + 2, j) sont des sites de A.

Un S-voisin de A est un sommet v de G qui n’est pas dans A mais tel que AU {v} est
un animal dirigé de source incluse dans S.

Supposons que le graphe G est un sous-graphe du graphe G’. Un S-voisin interne de A
est un S-voisin de A vu comme animal dirigé du graphe G ; un S-voisin externe de A est
un S-voisin de A vu comme animal dirigé du graphe G’. Enfin, un sommet v de G est dit
sur le bord du graphe s’il existe un arc de G’ reliant v a un sommet hors de G.

Pour les besoins de cette définition, le demi-réseau et les réseaux rectangulaires seront
vus comme sous-graphe du réseau complet. Les réseaux complets et cylindriques sont
vus comme sous-graphe d’eux-mémes; pour eux, il n’y a pas de différence entre voisins
internes et externes.

Nous noterons j(A) et (A) le nombre de paires de sites adjacents et le nombre de boucles
de A, respectivement. Le nombre de S-voisins internes (resp. externes) de I’animal A sera
appelé le S-périmétre interne (resp. externe) de A. Nous noterons ces périmetres ps(A)
et p%(A). De plus, nous notons e(A) le nombre de sites de A sur le bord du réseau.

Nous définissons maintenant les quatre séries génératrices correspondant aux parametres
ci-dessus :

Jis () = > 3 (At
Lis)(t) = é:ﬁ(fl)t"";
Py (t) = EA:I?%(A)t'A';
Pig (t) = zAjpé(A)ﬂA'

(comme d’habitude, I'indice [S] signifie que les animaux comptés sont de source incluse
dans S).

Dans la suite, nous calculons toutes ces séries dans le réseau carré, et les séries Jig)(t) et
Lig)(t) dans le résaeu triangulaire. Pour cela, nous utilisons la correspondance de la sec-
tion avec les empilements de dominos. Deux dominos d’un empilement sont adjacents
s’ils sont & des positions i et i+ 2 et a la méme hauteur (voir définition [4.6| pour le sens de
la hauteur d’'un domino). Un domino est une boucle s’il couvre deux dominos adjacents.
Une position i est sur le bord du modele B si soit ¢ — 1 soit i + 1 n’est pas dans B. Ces
parametres sont bien les mémes que ceux décrits ci-dessus sur les animaux.

On se donne maintenant une source linéaire S, que 1'on peut voir comme un ensemble
de positions. Les animaux a source incluse dans S correspondent aux empilements de
dominos dont les pieces minimales sont a positions dans S. Une pieéce minimale d’un
empilement est dite illégale si elle n’est pas dans S. En 'absence d’indication explicite,
un empilement sera supposé sans piece minimale illégale.

Nous définissons les séries génératrices suivantes :
— Mig(t) la série génératrice des empilements marqués d’une piece a position 7 telle que
1+ 2 est dans B;
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— si i est dans S, W[(SZ]) (t) la série génératrice des empilements ayant une piéce minimale
a position ¢ et une picce minimale illégale a position ¢ + 2 :

— Wig(t) la somme des W[(g]) (t) pour toutes les positions ¢ dans S telles que i 4+ 2 n’est
pas dans S';

— Ejg(t) la série génératrice des empilements marqués d'une piece sur le bord du modele.

Nous notons également Mg(t) et Eg(t) les séries similaires comptant les empilements dont

I'ensemble des positions des pieces minimales est S. De plus, si ¢ est dans S mais pas ¢+ 2,

nous notons Wé(f) (t) la série Agugitoy(t) et Wg(t) la somme des séries Wél) (t).

Montrons que ces séries sont toutes facilement calculables. La série Wig(t), tout d’abord,
est donnée par

Wisi(t) = > D Arugira(t) (4.8)

€S TCS
i+2¢S ieT

Elle se calcule en utilisant les résultats de la section . Ensuite, les séries Mg (t) et
Eig)(t) valent, par définition,

Mg)(t) = tAlg (t) — - M) (4.9)
i+2¢B
Egt)= > Mo, (4.10)

i—1¢B ou i+1¢B

ou M, [5]( ) désigne la série génératrice des empilements marqués d’une piece a position i.
Ces séries sont calculables grace au lemme [1.29]

4.3.2 Réseau carré

Nous traitons maintenant le réseau carré, ce qui signifie que tous les empilements consi-
dérés dans cette section sont stricts.

Théoréme 4.18. Les séries génératrices donnant le nombre total de sites adjacents,
boucles et voisins des animauz dirigés du réseau carré de source incluse dans S sont
données par

tMig (1) = Wi (t)

T (1) = Ly (4.11)
[5(t) = t(1 + 1) Jg(t ) (4.12)
[S] (1) = |S|Ajg (1) + ARG (1) — Jig(t) ; (4.13)
Pg(t) = Pg(t) — E[S}( )- (4.14)

Les mémes séries traitant des animauz de source S sont

tM(t) +5(S)A(t) — Wis(t) |

J5(t) = I ; (4.15)
Lg(t) =t(1+1¢)Jg(t); (4.16)
Pg°(t) = [S|AG(t) + tAG(t) — J5(t) ; (4.17)
Pg(t) = P$(t) — B3(t). (4.18)
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Les séries Mg)(t), Wig(t) et Eig(t) étant calculables grace aux remarques ci-dessus, le
théoreme permet bien de trouver des formules explicites pour les séries cherchées. Des
exemples de calculs sont donnés dans la section [4.4]

ur prouver coreme, NoOus auron in rtains résu intermédiaires.
Po ouver le théoréme, nous aurons besoin de certains résultats intermédiaires. Le
premier d’entre eux concerne les périmetres externe et interne.

Lemme 4.19. Soit A un animal du réseau carré de source incluse dans S. Les périmétres
externe et interne de A sont donnés par

ps(A) = [S] +[A] = 5(A);
ps(A) = p5(A) —e(A).

En sommant ces identités pour tous les animaux de source incluse dans S ou de source S,
on prouve les équations (4.13)), (4.14]), (4.17)) et (4.18]).

Preuve. Traitons tout d’abord le cas du périmetre externe. Nous pouvons donc considérer
que A est un animal dirigé du réseau complet ou d’un réseau cylindrique. Soit Z le nombre
de couples (v, w), ot v est un site de A et w est tel que v — w est un arc du réseau. Tous
les sommets du réseau ayant pour degré sortant 2, on a

Z =2|A|.

L’ensemble A étant un animal dirigé, le sommet w est soit un site de A, soit un S-voisin
externe de A. Les seuls sites de A non comptés sont ceux de S'; de plus, deux sites pointent
vers le méme sommet si et seulement s’ils sont adjacents. On a donc

Z = Al +ps(A) +5(A) = [S],
qui donne la formule annoncée pour pg(A).

Les sites ayant un voisin non interne étant exactement les sites au bord du réseau, on a
de plus

ps(t) = ps(t) + e(A). 0

Pour prouver les équations restantes du théoréme [4.18 nous commencerons par prouver

(4.11)) et (4.12), puis nous passerons aux équations (4.15)) et (4.16|) en utilisant un ar-

gument d’inclusion-exclusion. Nous aurons pour cela besoin du lemme suivant (valable
également dans le réseau triangulaire).

Lemme 4.20. Les séries Wig)(t) et Ws(t) sont lices de la maniére suivante :

Wi (t) = 3° (Wa(t) — §(T) Ar(t)).

TCS

Preuve. Considérons la série

> Wr(t).

TCS
Ecrivons Wp(t) comme la somme des WT(i) (t) pour tous les i dans T tels que i 4 2 n’est
pas dans T'. Nous séparons la somme selon que i + 2 est dans S ou non :

S W) =3 ( > wm)) + > ( > W§“<t>).
TCS TCS €T TCS €T
i+2¢S i+2¢T
1+2€S
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Nous reconnaissons la série Wig)(t) dans le premier terme du coté droit de I'équation. Nous

réécrivons le deuxiéme terme en utilisant le fait que W}i) (t) = Arugipay(t) et en posant
T"=TU{i+2}:

£ )= it + (5 AT/u))
TC T'CS T’

i+2€eT’

= Wig(t) + Z J(T")Ap (t

T'CS

Le lemme s’ensuit. O

Pour prouver les équations restantes du théoreme [4.18| nous introduisons de nouvelles sé-
ries génératrices. On rappelle qu'un empilement marqué presque strict est un empilement
dont aucune piece non marquée n’est couverte par une piece a la méme position (défini-
tion . On rappelle également que deux dominos sont indépendants si aucun n’est au
dessus de 'autre. On définit les ensembles suivants, dont les éléments sont a priori des
empilements de dominos dont les pieces minimales sont a positions dans S :
- I I’ensemble des empilements presque stricts marqués de deux dominos adjacents ;
E* I’ensemble des empilements presque stricts marqués d’une boucle ;
M[S] I’ensemble des empilements presque stricts marqués d’une piece a une position 2
telle que 7 4 2 est dans B ;
- ng} I’ensemble des empilements presque stricts marqués d’une piece minimale a une
position 7 et possédant une piece minimale illégale a la position 7 + 2 :
I[S] (resp. IFS*]) I’ensemble des empilements presque stricts marqués de deux pieces
indépendantes a des positions de type i et i + 2 (resp. i et i + 3);
— X[QS*] (resp. X[s}) I’ensemble des empilements marqués d’une piece x a une position ¢ et
possédant une piece minimale illégale & position ¢ + 2 (resp. i + 3) indépendante de z.
L’astérisque est la pour indiquer que les empilements de ces ensembles sont presque stricts.
On remarque qu’on a les inclusions \7[:;] - I[ZS*] et W[’g] - X[S]

Soient Jjg (1), KS] (t), M (1), W[Zj]( ) I[S]( ), 1[3*]( ), X[S}( ) et X[S]( ) les séries\génér.atrices
des ensembles ci-dessus. Un empilement presque strict pouvant étre obtenu a partir d'un
empilement strict en dupliquant éventuellement chaque piece marquée, on a les liens

Tl (t) = (1 +1)*Jig (1) (4.19)

(5(t) = (L +1)Lig(t); (4.20)
M[S](t) (1+ t)M[%( ); (4.21)
W[S](t) =(1+ t)W[fg (t). (4.22)

Les équations (4.11)) et (4.12)) sont donc équivalentes a des identités entre ces séries géné-
ratrices. Ces identités sont prouvées grace aux quatre lemmes suivants, qui utilisent des
bijections entre les différents ensembles d’empilements presque stricts.

Lemme 4.21. La série Lig(t) vaut
Preuve. Nous prouvons ce résultat en utilisant une bijection qui agit en retirant une piece,

Qb(]: ;CE(S] — ‘7[2}
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Pour définir ¢, nous utilisons le lemme [I.28] Ce lemme affirme 'existence de la bijection
F? 1 qui consiste a factoriser un empllement marqué presque strict en tirant les pieces
marquées vers le bas.

Soit (H,{z}) un empilement de L. L'image F}(H, {z}) est une paire d’empilements
(Hy, Hy) tels que les pieces minimales de HyHs sont incluses dans S et la boucle x est
l'unique piéce maximale de Hy. Ecrivons H; = Hlx et H' = H|H, : empilement H/ a
donc deux piéces minimales, qui sont adjacentes (figure gauche). Appelons les y et
z. De plus, comme les empilements H; et H{ ont les mémes pieces minimales et méme
voisinage, le lemme implique que les empilements HyHy et H|Hs ont mémes pieces

minimales. On pose donc
do(H.{z}) = (H' {y. 2}).
L’opération est facilement réversible en remettant en place la piece x. O

Lemme 4.22. L’identité suivante est vérifiée :
I (t) — Jig(t) = tIig (1),
Preuve. Nous utilisons une deuxieme bijection qui agit en retirant une piece,

o1: I \ Ti5) — Lis

Soit (H, {z,y}) un empilement de Z#%; \ Jj5- Posons (Hl, Hy) = F}(H,{z,y}) (on tire les
pieces x et y vers le bas).

Les pieces x et y n’étant pas adjacentes, I'une d’elles, disons z, est plus haute que l'autre.
Posons H; = H{xz et H' = H{H,. L’empilement H; étant strict, H; doit avoir une seconde

piéce maximale, z, a une position a distance 3 par rapport a celle de y (figure milieu).
Les empilements H; et H] ayant mémes pieces minimales et méme voisinage, on pose

¢1 (H7 {x7y}) = (Hla {y,Z})

Cette opération est réversible : soit (H',{y, 2}) un empilement de Zi et soit (H], Hy)
son image par F'. Les positions des picces y et z étant a distance 3, le lemme interdit
qu’elles soient a la méme hauteur; disons que z est plus haute. On pose Hy = Hjz, tel
que les pieces maximales de H; sont x et y et leurs positions a distance 2, et H = H{ H,.
On a alors ¢1(H, {z,y}) = (H',{y,2}). O

Lemme 4.23. L’identité suivante est vérifiée :
Xig(t) — Wig(t) = tX75(t).

Preuve. Nous utilisons une troisieme bijection qui agit en retirant une piece,
G2 X5 \ Wis) = g,

Soit (H,{x}) un empilement de X7 \ W5 tel que x est & position i et soit y la pisce
minimale illégale de H. On pose (Hy, Hy) = F{(H,{z,y}), tirant les pieces = et y vers le
bas. La piece z n’étant pas minimale, elle couvre une piece z a position ¢ — 1 (figure ,
droite). Ecrivons Hy = Hlx et H' = H|H,. A nouveau, retirer la picce 2 n’affecte pas les
picces minimales de H’, ce qui permet de poser

¢2(H {x}) = (H',{z}).

Cette opération est réversible en reposant la piece x. O
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IQ* \ j*
* 9] [S] * *
fs) . X5 \ Wiy

5 m m
/

H; \ H,y \ / H,y th

- =l -
= \ /-
N O / H1 o
Tisy e s

FIGURE 4.4 — A gauche, la bijection ¢ : retirer la picce = réveéle deux pitces adja-
centes y et z. Au milieu, la bijection ¢ : retirer la piéce x révele une piece z, plus
haute que y et de position & distance 3. A droite, la bijection ¢y (la piece minimale
illégale y est grisée). Retirer la piece = révele une piéce z a une position a distance 3
de y.

Lemme 4.24. L’identité suivante est vérifiée :
500 + XE(0) = t(Mig(0) + 15(0) + X5 0).

Preuve. Nous utilisons une quatrieme et derniere bijection agissant en retirant une piece,
¢3: Tfg U Xg) — Mig Ui U X5,

Dans cette preuve, si z est une piece, nous notons z™ la piece la plus haute de la pile de
x et z~ la piéce la plus basse de la pile (voir section [1.4.2)).

Soit H un empilement de Z7g; ou A Dans le premier cas, on note x la piece marquée de
gauche et y la piece marquée de droite ; dans le deuxieme, on note x la piece marquée et
y la piece minimale illégale (figure . Dans les deux cas, nous notons ¢ la position de
v et (Hy, Hy) = F{(H,{x,y}), poussant cette fois les pieces 2 et y™ vers le haut. Soit
également Hy = y* H) et H' = H;H}. Nous distinguons trois cas, illustrés sur la figure .

1. La piéce =T est la seule piece minimale de H) : 'empilement (H', {z}) est dans
8-
2. L’empilement H) posséde une piece minimale z & position i + 3, qui n’est pas une
piece minimale illégale de H' : 'empilement (H',{x, z}) est dans I[S}
3. L’empilement H) possede une piece minimale z a position ¢ + 3, qui est une piece
minimale illégale de H' : 'empilement (H’,{z}) est dans X[S]

Cette opération est réversible en remettant en place la piece y* et en séparant les cas
selon si y* est une picéce minimale illégale de H ou non. Si H' est dans ME‘S], replacer la
piece y* est possible car la position i + 2 est dans B. O

Nous sommes maintenant en mesure de prouver le théoréme.
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2% D%
Iis) As]

NN
|

N TN

i - Ea )
* 3% 3%
Mis) Iig Xs)

FIGURE 4.5 — La bijection ¢3 ; les pieces minimales illégales sont grisées. Apres avoir
retiré la piece yT, une piece minimale z de H) peut ou non étre découverte. Si oui,
Pempilement H' est dans If’s’f] ou X[‘riq’i selon si z est une piece minimale illégale de
H' ou non. Si non, I'empilement H’' est dans ME‘S].

Preuve du théoréme[].18. Nous commengons par prouver les équations (4.11)) et (4.12)).
En combinant les lemmes [4.21] .22] [.23] et [£.24], on trouve les identités

(5(t) = Jjg(t);

Les identités (4.19)), (4.20)), (4.21)) et (4.22) permettent de conclure. Pour en déduire (|4.15))
et (4.16)), on utilise un argument d’inclusion-exclusion, qui permet d’écrire

J5(t) = > (=)L (0);

TCS
L3(t) = TZCS(—U'S'TL?T] (t);
Mg(t) = %(—1)'5'”1\4&] (2).

Le lemme [£.20] implique également
W§(t) = 3(9)AL(1) = Y- (=1) 7w @),

TCS
Les équations (4.15) et (4.16)) découlent donc de (4.11) et (4.12). Enfin, les équations
(£.13), (.14), (4.17) et (4.18) sont des conséquences directes du lemme [4.19] O

4.3.3 Réseau triangulaire

Nous obtenons également des résultats valables sur le réseau triangulaire traitant du
nombre de sites adjacents et de boucles. Notons que Bousquet-Mélou [5] étudie également
le nombre de boucles des animaux sur le réseau triangulaire, mais utilise une définition
différente des boucles, qui donne une série plus difficile a calculer. Nos méthodes ne per-
mettent en revanche pas d’obtenir de résultat sur le périmetre ; on pense par ailleurs que
la série donnant le périmetre total des animaux d’aire fixée est transcendante [15], ce qui
laisse penser qu’une telle approche ne peut fonctionner.
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Théoréme 4.25. Les séries donnant le nombre total de sites adjacents et de boucles des
animauz de source incluse dans S et d’aire fixée sont

tMg(t) — Wg (1)
iy (t) = — T S Ay (4.23)

Lig(t) = tJig(t). (4.24)

Les mémes séries comptant des animaux de source S sont

_ tMg(t) + 5 (5)As(t) — Ws ()
1+t

: (4.25)

Nous n’avons cette fois besoin que de deux lemmes, un certain nombre de résultats sur le
réseau carré se traduisant directement sur le réseau triangulaire.

Lemme 4.26. L’identité suivante est vérifiée :
Lig(t) = tJ(g(1).

Preuve. La preuve de ce lemme est identique a celle du lemme 4.20, a ceci pres que
nous utilisons la bijection F| plutot que F}, a cause du fait que nous travaillons sur des
empilements généraux plutot que presque stricts. O

Comme pour le réseau carré, nous définissons les ensembles suivants, dont les éléments

sont des empilements généraux dont les pieces minimales sont a positions dans S :

- j[g] I’ensemble des empilements marqués de deux pieces adjacentes;

- I[ZSA] (resp. Iﬁgﬂ]) I’ensemble des empilements marqués de deux pieces indépendantes de
positions i et i + 2 (resp. i et i + 3).

Nous notons 17 (t) et I (t) les séries génératrices des ensembles Z7g et Z7g.

Lemme 4.27. L’identité suivante est vérifiée :

t
I4(t) - Ty () = — <2J[AS] () + % (t)).

Preuve. Nous utilisons une nouvelle bijection,
o T\ T~ (I + Tn) VTS

ou + désigne 'union disjointe. Cette bijection est similaire & ¢; (voir lemme et
illustrée figure [1.6] Soit (H, {z,y}) un élément de Iig \ Jjs)- Soit (Hy, Hy) son image par
F|, obtenue en tirant les picces = et y vers le bas. Les pieces x et y ne sont pas adjacentes,
donc pas a la méme hauteur; supposons que = est la plus haute. Soit Hj I'empilement
obtenu en retirant de H; toutes les pieces de la pile de x qui sont strictement plus hautes

que y (figure [1.6) et H' = H{H,.

L’empilement H{ a nécessairement une deuxiéme piece maximale, que nous appelons z.
On pose ¢f(H,{z,y}) = (H',{y, z}). Deux cas sont possibles :

1. les piéces y et z sont adjacentes : ’empilement marqué (H', {y, z}) est dans N[k
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2. les pieces y et z sont de positions a distance 3 : 'empilement marqué (H', {y, z})
est dans Iﬁg].

La bijection inverse est obtenue en replacant la pile de la piece x sur la piece z. Dans le
cas 2, les pieces y et z ne peuvent étre a la méme hauteur par le lemme [4.7] La piece z est
donc déterminée sans ambiguité comme la plus haute des deux pieces maximales de Hj.
En revanche, dans le cas 1, la piéce z peut étre indifféremment celle de gauche ou celle de
droite, menant au facteur 2 devant la série \7@}. O

0~ I

T x

S m m
moo o

% \
: 1 T

[ 2]
ERNE m ks
Hl H) NS H, / Hj
iy (®) Jraem Jis (1)

FIGURE 4.6 — La bijection ¢{ : nous retirons toutes les piéces de la pile de = qui
sont strictement plus hautes que y. Ceci découvre une pieéce maximale z de H{, qui
est soit adjacente a y, soit plus haute que y et a une position a distance 3.

Preuve du théoréme[].25 Nous commencons par I'équation ([£.23)). Soit (H,{z} un em-
pilement compté par M[AAg] (). Nous utilisons la bijection F| pour tirer la piece marquée
vers le bas. Nous remarquons ensuite qu'une paire (H;, Hy) d’empilements peut étre ob-
tenue en remplagant chaque domino d'une paire d’empilements stricts par une pile de
dominos ; les paires d’empilements stricts sont en bijection avec les empilements presque

stricts (lemme [1.28). On a donc

t
A o *
Mg (8) = Mg, <1_t>

Les séries [ [251 (t) et [, ﬁg}(t) vérifient des liens similaires. Enfin, la série Wg(t) vérifie

t ot
Wig () = Wi, <H> = (1 =t)Wy <H>

a cause du lien (4.22). En combinant les identités des lemmes et et en faisant la

substitution ﬁ, on trouve donc

t
I () + Wi (0 = (M[g} () + 1% (t)).
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Le lemme m permet ensuite d’obtenir . Le lemme m, quant a lui, prouve (4.24)).
Les deux identités manquantes sont prouvées par le méme argument d’inclusion-exclusion
que pour le théoréme [1.18, notant que le lemme est également valable sur le réseau
triangulaire. O

4.3.4 Asymptotique

Nous tirons maintenant des théorémes et des résultats asymptotiques. Soit n > 0
et S une source linéaire. Nous notons js(n), £s(n), p&(n) et ps(n) les valeurs moyennes
du nombre de sites adjacents, nombre de boucles, périmetre externe et périmetre interne
des animaux dirigés de source S et d’aire n.

Corollaire 4.28. Plagons nous dans le réseau complet, dans le demi-réseau, ou dans un
réseau cylindrique. Dans le réseau carré, on a les équivalents suivants quand n tend vers
l'infini :

n
pe+ 1

n

027
(1)

<&

uen
pe+1

Js(n) ~

ls(n) ~

ps (n) ~ p§(n) ~

Sur le réseau triangulaire, on a, de plus :

S )

Les constantes ;¢ et x4 sont données par la proposition [£.16] Dans les réseaux non bornés,
ces constantes valent pu® = 3 et u® = 4. On a donc

. n n ; . 3n
Js(n) ~ ls(n) ~ 5 ps(n) ~pg'(n) ~ =
Sur le réseau triangulaire, on a
N n A n

Preuve. Soit ag(n) le nombre d’animaux de source S. Nous commencgons par utiliser les
équations et qui donnent la série Js(t) en fonction des séries Mg(t), As(t) et
Ws(t). En utilisant I'identité (£.8) et la proposition [4.16, on remarque que le coefficient
d’ordre n de Ag(t) et Wg(t) est O(ag(n)).

De plus, dans les réseaux considérés, la position i + 2 est toujours dans l'ensemble B
deés que i est dans B. On en déduit que la série Mg(t) compte les animaux de source
S marqués d'un domino quelconque. Le coefficient d’ordre n de Mg(t) est donc nag(n),
ce qui montre que les contributions de Ag(t) et Ws(t) sont négligeables. Le terme -t

T+t
tendant vers ﬁ quand ¢ tend vers 1/u, on trouve donc

nag(n)

[t"]Js(t) ~ 1
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Ce coefficient étant égal a ag(n)js(n), on en déduit 'équivalent de jg(n). Les équivalents
de ls(n) et p&(n) sont calculés de la méme maniére. Pour prouver celui de p%(n), il suffit
de voir que la contribution de la série Eg(t) est négligeable. Cette série est nulle dans les
réseaux complet et cylindriques. Dans le demi-réseau, le lemme montre que

4() (t) Lo <t)
o o [S] {0}
Fit) < Eig(t) < ——————,
5(t) [S]( ) 1+ ¢

La série Afg(f) a une singularité en (1 — 3t)1/2 (voir proposition [.16]), tandis que la
série Afy, (1) = D°(t) vaut 1+ O((1 — 3t)1/%). Leur produit a donc aussi une singularité
en (1 —3t)!/2 et le coefficient d’ordre n est bien négligeable devant nag(n). O

4.4 Exemples

Nous donnons maintenant quelques exemples d’utilisation des théoremes |4.18| et
donnant le nombre total de sites adjacents, de boucles et de voisins des animaux dirigés
dans divers réseaux et pour diverses sources.

4.4.1 Animaux de source ponctuelle

Nous commencons par le cas le plus simple, celui des animaux de source ponctuelle sur le
réseau complet.

Corollaire 4.29. Les séries génératrices du nombre total de sites adjacents, boucles, et
voisins des animaux dirigés de source ponctuelle du réseau carré complet sont

7o) = 1 1 — 4t + 12 4 48°
C2t(141) VI t(1—3t)32)°
L<>(t)—1 1 —4t 12 4 46°
2 VI+t(1=3t)32)°
1 1—3t+ 26 +¢° — 3t
Po(t) = —1+t+8*).
=5 +t)< VITE(L= 33 e

Sur le réseau triangulaire, les séries du nombre total de sites adjacents et boucles sont

1 1—7t+12t2 — 23
JAt) = —— (1 —-t— -
(*) 2t(1+t)< (1 — 4t)3/2 )
1 1—7t+12t2 — 213
LAt) = ——|1—t— Ly
2(1 + 1) (1 — 4t)3/2

Parmi ces valeurs, celle de P°(t) a été conjecturée par Conway [15] et celle de L°(t) a été
prouvée par Bousquet-Mélou [5], en utilisant des modeles de gaz.

Preuve. Pour calculer les séries J(t) = Jyoy(t), nous utilisons les deux identités (4.15) et
(4.25), qui donnent
_ Mg (t) + ({0} Agy (1) — Wioy (8)

Jioy(t) = Tt :
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La série Moy (t) est égale a tA'(t), la valeur j({0}) est nulle, et la série Wygy(t) est égale a
Ao23(t), elle-méme égale & D(t)A(t) d’apres la proposition [f.13} On en déduit les valeurs
des séries J°(t) et J2(t) grace aux formules de la proposition Les autres séries sont
ensuite calculées de la méme maniére. O

4.4.2 Animaux de source compacte

Pour illustrer la méthode pour traiter les animaux de source non ponctuelle, nous consi-
dérons les animaux a source compacte. Rappelons que la source compacte de largeur ¢,
notée Cy, est ’ensemble de positions

C,={0,2,...,20—2).

On note A.(t) la série

AC(t) = Z Ace (t)

1

Rappelons également que le nombre d’animaux a source compacte d’aire n est 3"~ ! sur
le réseau carré et 4"~! sur le réseau triangulaire [29]. La série ci-dessus vaut donc

! Ay ="

T 13t

Par souci de simplicité, nous ne donnons pas ici les séries traitant le nombre de boucles et
le périmetre ; ces séries peuvent étre facilement obtenues grace aux formules des théoremes

IR et €251

Corollaire 4.30. Les séries donnant le nombre total de sites adjacents dans les animauz
a source compacte d’aire n sont

Jorg) = & 1—2t 1—3t—2t \
(1) = 2<\/1—+t(1—3t)3/2 EE —3t)2>’

a1 1 -3t 1 — 5t + ¢
Je (t)_2(1+t)<(1—4t)3/2_ (1—4t)? )

Preuve. Nous utilisons de méme les équations et (4.25)). Plagons nous dans le cas
de la source compacte Cy. Dans ce cas, la série Mc,(t) vaut tAg, (t), la valeur j(Cy) est
(—1, et la série We, (t) vaut Ac,,, (t), donc D(t) A¢,(t). En sommant pour ¢ de 1 a I'infini,
on trouve donc

0) = 1 (P00 + X - e - DAL

14t =
La série Ac,(t) valant D(t)*"1A(t), on a donc

1

Ju(t) = —— <t2A’C(t) ¢ 2040

o) - D(t)Ac(t)>.

La proposition permet de conclure. O

T 14t
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4.4.3 Demi-animaux dans les réseaux rectangulaires
Notre dernier exemple concerne les réseaux rectangulaires de largeur k. Nous étudierons
les périmetres externe et interne des animaux dirigés de source {0} sur le réseau carré.

Corollaire 4.31. Les séries donnant le nombre total de voisins externes et internes des
demi-animaux du réseau rectangulaire de largeur k valent

t 1
Pe(t) = DS(t) + ——DP°(t) — ——D2(t)?;
% (1) k()+1+t w (1) 111 R(1)7
. t t 1
Pl() — D<> Dl<> _ DO(DO _ < )
() = T D) + T DE(®) = 7 Di (D20 - D)),

ou la série Dy(t) est donnée par (4.7)).

Le Borgne [39] a proposé une conjecture au sujet des séries comptant le périmetre externe
de ces animaux. Nos formules permettent de prouver cette conjecture.

Preuve. Plagons nous dans le modele B = {0,...,k — 1}. Par symétrie, nous étudions
les animaux de source {k — 1} a la place de {0}. Les deux séries P°(t) = Py_,(t) et
P(t) = P{iz_l}(t) sont calculées par et (4.18), qui demandent de calculer la série
(r—1y(?). La valeur j({k —1}) est nulle de plus, la pOSlthH k41 n’étant pas dans B, la
série Wi, _ 1, (t) est nulle egalement Il ne nous reste donc qu’a calculer les séries M, - 1}(15)

et B¢, _1y(t). Les identités et (4.10) donnent
o © k—=1)o k—2)o
M{H}(t) = D) = MGy (0) = MG (0

0 k—1)¢o
Efpy(t) = MEP L (8) + MG ().

Enfin, nous calculons les séries de la forme M {(k) 1}(75) en utilisant le lemme |1 Une
pyramide marquée ne pouvant étre vide, cette série est égale a M[({Z; 1}]( ). On remarque
ensuite que :

~ les séries H, (1) et Hip, (t) valent toutes deux Dj(t) par symétrie;

— le seul empilement dont les piéces minimales sont & positions dans {k — 1} qui évite

k — 2 est I’empilement vide, de sorte que la série V{,f 12})8(75) vaut 1;

— une pyramide stricte de piece minimale k — 1 est soit réduite a une piece, soit est
une piece surmontée d’une pyramide stricte de piece minimale k — 2, de sorte que
Hiy (1) = 28 —1;

— une pyramlde de piece minimale k — 1 qui évite 0 vit dans le modele {2, .. — 1}, de
sorte que V{k 1y =1+ Dp (1)

On en déduit enfin

(Dg(t) = Do (1)) Di(t)

M(O)Q t) = .
Dot
o DAO(E2 1)
M{kﬂ} (t) = 1+¢ )
A0y (1+D2(t))DZ(t)

Les formules annoncées sont déduites en injectant ces identités dans (4.15), (4.17)) et
(4.18]). O



Chapitre 5

Animaux de Klarner

Ce chapitre présente un travail en vue de I’énumération des animaux de Klarner, présentés
dans I'introduction de la these. Nous suivons ici I'approche de Bousquet-Mélou et Rech-
nitzer qui utilise une bijection avec des empilements de dimeres pour étudier les animaux
de Klarner (ou animaux multi-dirigés) sur les réseaux triangulaire et carré biaisé [10].
Nous étendons cette bijection au réseau carré droit en utilisant cette fois des empilements
de segments.

Nous présentons en réalité une légere variante des animaux de Klarner, qui n’affecte pas
leur énumération. Le travail présenté ici est encore largement en cours, ce qui explique
que les résultats ne sont pas aussi aboutis que ceux des autres chapitres.

Le chapitre est organisé comme suit. La section donne une définition nouvelle des
animaux de Klarner utilisant des empilements de segments. La section étudie le pro-
bleme de I’énumération de ces animaux, et donne des résultats asymptotiques. Enfin, la
section donne une bijection entre les animaux de Klarner et certains chemins de Dyck,
et en explore les conséquences possibles.

Note. Stricto sensu, les animaux de Klarner sont définis sur les réseaux carré droit et
triangulaire, alors que les animaux multi-dirigés de Bousquet-Mélou et Rechnitzer sont
définis sur les réseaux triangulaire et carré biaisé (les définitions coincident sur le ré-
seau triangulaire). Nous utiliserons ici indifféremment les deux termes pour désigner les
animaux sur les trois réseaux.

5.1 Définitions

5.1.1 Animaux et empilements de segments

Comme annoncé précédemment, nous introduisons un troisieme réseau sur lequel nous
étudierons les animaux, le réseau carré droit.

Définition 5.1. Le réseau carré droit est le graphe de sommets Z?, avec les arétes (i, j) —

(i+1,7) et (4,5) — (4,5 + 1) pour tous entiers ¢, j.

En apparence, le réseau carré droit est plus simple que le réseau carré biaisé ; en réalité,
la définition et I’énumération des animaux multi-dirigés sur ce réseau sont plus difficiles.
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L’étude des animaux dirigés du chapitre précédent repose sur la projection qui associe a
chaque animal du réseau triangulaire ou carré un empilement de dominos. Nous définissons
de méme la projection d’'un animal du réseau carré droit, qui sera un empilement de
segments plutdt que de dominos (le modele des empilements de segments est défini dans

la section [1.5.1)).

Définition 5.2. Soit A un sous-ensemble fini de Z2. On appelle segment de A un sous-
ensemble s de A de la forme {(7,j),..., (i + ¢ —1,7)}, maximal pour I'inclusion (donc ni
(1 —1,7) ni (i + ¢, 7) ne sont dans A).

On appelle projection de s, et on note 7(s), le segment dont les arétes sont {i,...,i+¢—1}
et hauteur de s l'entier j. La projection de A, encore notée m(A), est obtenue en empilant
les projections 7(s) de tous les segments s de A par ordre croissant de hauteur.

A cause de la condition de maximalité d'un segment de A, deux segments & la méme
hauteur ne sont jamais concurrents, ce qui implique que I'ordre dans lequel ils sont empilés
n’a pas d’importance. Ceci justifie la définition.

Un exemple de projection d’un animal est donné figure [5.1l Pour dessiner les segments,
nous adoptons une convention graphique similaire a celle du chapitre précédent : un
segment est représenté par un rectangle. Pour plus de clarté, ¢ points sont représentés
dans un segment de longueur ¢. En accord avec cette convention, nous parlerons de sites
d’un segment plutot que d’arétes.

FIGURE 5.1 — A gauche, un animal du réseau carré droit. A droite, le résultat de la
projection : chaque segment de I'animal comptant ¢ sites est remplacé par un seg-
ment de longueur ¢, représenté par un rectangle contenant ¢ points. Ici, I’empilement
qui résulte a deux adjacences a gauche.

Si A est un animal du réseau triangulaire ou carré biaisé, le fait que tous les sites (i, j)
sont tels que 7+ est pair assure que tous les segments de A ne contiennent qu'un seul site.
La projection de A est donc un empilement de dominos. Ainsi, cette définition généralise
la projection définie sur les réseaux triangulaire et carré biaisé.

Comme sur les deux autres réseaux, la projection des animaux du réseau carré n’est pas
injective. Nous nous intéresserons a des sous-classes d’animaux, sur les trois réseaux, pour
lesquelles la projection est injective. Les animaux dirigés forment une telle sous-classe sur
les réseaux triangulaire et carré biaisé, dont I'image par la projection est ’ensemble des
pyramides. Les animaux multi-dirigés forment une classe plus grande.

5.1.2 Pyramides de Klarner

Les pyramides de Klarner sont 1’équivalent sur le réseau carré droit des animaux dirigés.
Notre but est, en partant d’'une pyramide de segments H, de construire un animal ¢ (H)
tel que mo)(H) = H.
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Sur le réseau triangulaire, un tel animal est obtenu en faisant correspondre a chaque
domino a position ¢ un site (4,7), ot j est la hauteur du domino. Nous faisons de méme
pour les pyramides de segments : nous attribuons a I'unique segment minimal la hauteur 0
et a tout autre segment la hauteur 7 + 1, ou j est la hauteur maximale d’un segment en
dessous de lui. Si = est un segment d’arétes i,...,7 + ¢ — 1 et de hauteur j, nous lui
faisons correspondre les sites (i,7),...,(i +¢ — 1, 7). Nous notons ¢(H) 'ensemble des
sites correspondant aux segments de H.

L’ensemble 1(H) n’est pas nécessairement un animal du réseau carré droit. En effet, il
peut arriver que, bien qu'un segment y repose sur un autre segment x, les sites de ¢(H)
correspondant a x et y ne sont pas reliés. Ce phénomene se produit quand les sites de
x et de y sont consécutifs, i.e., les segments = et y sont adjacents (voir définition .
Ce phénomene peut étre observé sur I'empilement de la figure 5.1 On a, en revanche, le
résultat suivant.

Lemme 5.3. Supposons que la pyramide H n’a d’adjacence ni a droite, ni a gauche.
L’ensemble 1p(H) est un animal du réseau carré.

Preuve. Soit y un segment non minimal de la pyramide H et z un segment sur lequel y
repose. Le segment y couvre donc x, ce qui signifie que y et x ne sont pas adjacents; les
sites de ¥(H) qui correspondent a ces segments sont donc connectés dans le réseau carré.
De proche en proche, chaque site est donc connecté au segment minimal, ce qui prouve
que ¥ (H) est connexe. O

Les animaux ayant la forme ¢ (H) ou H est une pyramide de segments sans adjacence
seront appelés pyramides de Klarner. Comme pour les pyramides de dominos, nous ap-
pellerons demi-pyramide de Klarner une pyramide de Klarner dont le segment minimal
contient le site 0 et dont aucun segment ne contient de site négatif.

Comme le montre la figure 5.1}, la réciproque du lemme n’est pas vraie. Il existe ainsi
des pyramides de segments H telles que 1(H) est un animal du réseau carré droit, mais
pas une pyramide de Klarner.

5.1.3 Empilements connexes et animaux de Klarner

Le chapitre {4 et la section précédente définissent trois familles d’animaux; chacune en

bijection, via une application 1), avec une famille d’empilements :

— les animaux dirigés de source ponctuelle sur le réseau triangulaire, en bijection avec les
pyramides de dominos;

— les animaux dirigés de source ponctuelle sur le réseau carré biaisé, en bijection avec les
pyramides strictes de dominos;

— les pyramides de Klarner, en bijection avec les pyramides de segments sans adjacence.

Nous définissons a présent les animaux multi-dirigés en étendant dans chaque cas 'ap-

plication ¢ a une classe d’empilements plus large que les pyramides. Dans la suite, le

terme « empilement » désignera indifféremment un empilement de dominos, un empile-

ment strict de dominos ou un empilement de segments sans adjacence, selon le réseau

auquel on s’intéresse.

Définition 5.4. Un empilement non vide H est connexe si pour tous segments x et y
de H, il existe des segments © = xg,...,x, = y tels que les segments x; et z;,; sont
concurrents pour tout .
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Il est clair, en particulier, que toute pyramide est un empilement connexe. Alternative-
ment, un empilement est connexe si et seulement si les sites occupés par ses segments sont
consécutifs (figure ) Tout empilement se décompose en outre de maniére unique en
composantes connexes.

Soit H un empilement connexe. Nous définissons inductivement un animal ¢(H ), qui coin-
cide avec la construction précédente si H est une pyramide et est défini a une translation
verticale pres, de la maniére suivante.

Définition 5.5. Soit H un empilement connexe et soit s un segment maximal de H ;
écrivons H = H's. Soient Hy, ..., H, les composantes connexes de H' et Ay, ..., A, leurs
images par v, construites inductivement.

Pour construire ’animal ¢(H ), on commence par placer le segment s treés haut ; ensuite,
on remonte chaque animal A; assez haut pour qu’il soit en contact avec s.

Dans le cas ou H' est lui-méme connexe, la construction revient a déposer le segment s
sur animal ¢(H"). En particulier, si H est une pyramide, 'empilement H’ est encore une
pyramide, donc connexe. Ceci montre que l'application 1 est identique a celle donnant
les animaux dirigés et les pyramides de Klarner.

Cette définition est justifiée par le résultat suivant. Elle est illustrée figure [5.2]

Lemme 5.6. L’animal ¥(H) est, a une translation verticale prés, le méme quel que soit
le choix du segment mazimal s.

Preuve. Soit H un empilement connexe et soient s; et s, deux segments maximaux de
H, pris de gauche a droite. Ecrivons H = H's;s, et soient Hy, ..., H, les composantes
connexes de H’, de gauche a droite; soient Ay, ..., A, leurs images par .

Les segments s; et sy n’étant pas concurrents, une seule des composantes H; peut étre
concurrente a la fois a s; et a s,. De plus, il doit exister une telle composante, sans quoi H
ne serait pas connexe. Appelons donc H,, I'unique composante connexe de H' concurrente
a s1 et so.

On constate que, quel que soit I'ordre dans lequel les segments s; et sy sont ajoutés,
I'animal ¢(H) est construit en déposant les segments s; et so sur animal A,,, puis en

translatant ’animal tres haut; les animaux Aq,...,A,,_1 sont ensuite remontés assez
haut pour qu’ils touchent s;, puis les animaux A,,11,..., A, sont remontés assez haut
pour qu’ils touchent ss. Ceci termine la preuve. O

Nous appellerons multi-dirigés les animaux de la forme ¥(H), avec H un empilement
connexe. L’application ¢ est bien une bijection & cause de 'identité 7w o ¢)(H) = H.

La classe des animaux multi-dirigés ainsi construite est légerement différente de celles
décrites dans [35, [10] ; un avantage de cette définition est que la classe des animaux multi-
dirigés est, par construction, symétrique selon ’axe vertical. Bien siir, ce changement de
définition n’a pas d’incidence sur I’énumération, puisque les animaux multi-dirigés restent
en bijection avec les empilements connexes.



5.2. Enumération 117

.

(d) (e)

FIGURE 5.2 — La construction de ’animal image par 1) d’un empilement de segments
connexe et sans adjacence (a). L’animal est construit segment par segment dans un
ordre compatible avec celui de 'empilement. Les premiers segments forment deux
composantes connexes (b). Le segment ajouté en (c) réunit ces deux composantes en
remontant celle de gauche. Les derniers segments sont ensuite ajoutés (d). L’animal
final est représenté en (e), et est indépendant de l'ordre dans lequel on empile les
segments ; sa projection est bien 'empilement de départ (a).

5.2 Enumération

Dans l'article définissant ses animaux, Klarner a donné une équation que vérifie leur série
génératrice, mais n’a pas pu résoudre cette équation [35]. Le lien entre les animaux de
Klarner et les empilements de dominos a ensuite permis a Bousquet-Mélou et Rechnitzer
[T0] de donner une formule exacte pour ’énumération des animaux multi-dirigés dans les
réseaux triangulaire et carré biaisé. Cette formule a ensuite été prouvée plus combina-
toirement par Viennot [53]. Dans ce méme article, Viennot montre également l'existence
d’un lien entre les empilements connexes de dominos et certains modeles de physique
statistique, par exemple étudiés dans [21].

Nous présentons ces travaux et montrons pourquoi la méthode de Bousquet-Mélou et
Rechnitzer ne fonctionne pas pour le réseau carré droit.

5.2.1 Empilements connexes et empilements généraux

Soit k > 1 un entier. Nous considérons les animaux de Klarner de largeur k, c¢’est-a-dire
occupant k colonnes consécutives. Nous attribuons le poids u aux sites situés dans la
premiere colonne et le poids ¢t aux autres sites.

Ceci permet d’écrire la série génératrice, notée Cy(t,u), des animaux de Klarner de lar-
geur k. Notons C(t,u, z) la série génératrice

Cltiu,z) =Y Cyl(t,u)2".

k>1
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La spécialisation C'(¢, ¢, 1) donne ainsi la série génératrice des animaux de Klarner comptés
selon l'aire.

Nous notons également Hy(,u) la série génératrice des empilements du modele borné de
largeur k, ou les sites de la premiere colonne portent le poids u et ceux des autres colonnes
le poids ¢. Notons enfin H(t, u, z) la série

H(t,u,z) =Y Hi(t,u)z".

k=0

Nous utiliserons les notations ci-dessus pour les énoncés valables indifféremment dans les
trois modeles. Pour ceux concernant un modele particulier, nous noterons, par exemple,
CEH(t,u), Co(t,u) et CP(t,u) pour désigner la série C (¢, u) dans les modeles triangulaire,
carré biaisé et carré droit, respectivement.

Le lien habituel entre empilements de dominos et empilements stricts de dominos donne

t U
HA(t =Hf— —— : Nl
( 7u’z) <1—t’ 1_u7z>) (5 )

t U
C2(t =C° —, —— 5.2

(7uﬂz) (1_t71_u’2>7 ( )
ou alternativement

t U
He(t =H —— —— : .
(t,u,2) (Ht,lﬂ,z), (53)

o P t U
C°(t,u,z) =C <1+t’1+u’z . (5.4)

Dans la suite, nous nous concentrerons donc sur les réseaux triangulaire et carré droit.

Le résultat suivant, valable dans les trois modeles, permet de calculer la série C(t,u, z) a
partir de la série H(t, u, z).

Proposition 5.7. La série C(t,u, z) des empilements connezes vaut

H(t,u,z)
¢ T\~
Clt,u 2) 1+ zH(t,t, 2)

Le calcul de la série C(t,u, z) se déduit donc de celui de H(t,u, z). En revanche, il est
impossible de faire la substitution z = 1 directement dans cette formule : en effet, nous
allons voir que la série H (¢, u, z) ne converge pas au voisinage de z = 1.

Cette identité apparait dans [I0] pour le cas des empilements de dominos.

Preuve. Ce résultat repose sur le fait qu'un empilement peut se voir comme une suite
d’empilements connexes séparés par une ou plusieurs colonnes vides. En d’autres termes,
un empilement est une suite de colonnes vides éventuellement suivies d'un empilement
connexe; a gauche de la premiere colonne vide se trouve également éventuellement un
empilement connexe. On trouve donc le lien

1+ C(t,u, 2)
Ht = .
(t,u.2) 1—2z—2C(t,t,2)
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En posant u =t dans cette équation, on trouve

1+ C(t,t,z)
H(t t z) = .
( ) 1 —2z—20(tt,2)
Ensemble, ces deux équations impliquent 1’identité de la proposition. O

Plagons nous maintenant dans le cas particulier ou ¢ = u, c’est a dire qu’on n’attache pas
d’importance particuliere aux sites situés dans la premiere colonne. Dans le cas du réseau
triangulaire, les séries Hy(t,t) sont calculées dans la section . elles valent

1
Freqa(t)’

ou les polynomes de Fibonacci F(t) sont définis par

Z Fk(t)Zk

k>0

HE(t,1) = (5.5)

B 1
1 — 24 t2?

On déduit de cette identité une expression des polynémes Fy(t) :

1 — DH!
(1— D)(1+ D)*

Fi(t) =

ou D est la série D*(t) des nombres de Catalan. Ceci permet de calculer la série H*(t,t, 2),
et donc d’en déduire la série C*(t,t, 1) des empilements connexes. Le détail du calcul est
donné dans [10]. Le résultat final, valable pour les réseaux triangulaire et carré biaisé, est

D

C(tt,1) = P
(1- D)(l — Xk 1Dk(1+D)>

(5.6)

ou D vaut la série D(t) appropriée selon le réseau. Une preuve plus directe et combinatoire
de ce résultat est donnée dans [53].

En revanche, dans le réseau carré droit, il n’est pas possible de mener le méme calcul. Le
calcul de la série HZ(t) comptant les empilements de segments sans adjacence est discuté
dans la section [1.5.2] (cette série est alors notée H 94(1)). Le lemme montre qu’il est
impossible d’appliquer le théoréme d’inversion (théoreme , qui était la base du calcul
de HE(t).

Soit Q(t) la série définie par

Q1) = lim x50

lim (5.7)

Dans le réseau triangulaire, cette série est 1+ D(t). Dans le réseau carré, la limite semble
exister et avoir des coefficients positifs, mais est différente de D"(t). Cette série pourrait
étre le parametre naturel permettant d’exprimer la série C%(¢,¢,1), mais je n’ai pu ni
trouver un équivalent de l'identité , ni méme prouver U'existence de la série Q"(t) ou
la calculer.

L’examen des premiers termes de la série Q7 (¢) par Gfun [46] semble montrer qu’elle n’est
pas D-finie.
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5.2.2 Construction colonne par colonne

Nous présentons ici une autre méthode pour calculer la série des empilements connexes, qui
est essentiellement celle envisagée par Klarner. Nous nous concentrons, comme indiqué
précédemment, sur les réseaux triangulaire et carré droit. La encore, nous montrerons
en quoi cette méthode permet d’aboutir pour le réseau triangulaire, mais rencontre des
difficultés pour le réseau carré droit.

Nous calculons également avec cette méthode la série, notée Dy (¢, u), des demi-pyramides
de largeur au plus k, ou la variable u compte les sites dans la premiére colonne et ¢ les
autres sites. S'intéresser aux demi-pyramides est naturel pour deux raisons. Tout d’abord,
les demi-pyramides de dominos sont plus faciles a énumérer que les empilements connexes ;
ensuite, la formule donnant la série génératrice des animaux multi-dirigés dans le
réseau triangulaire fait intervenir la série D(t) des demi-pyramides. Il est a espérer qu’il
en soit de méme sur le réseau carré droit.

Soient A(v) = Y0 Axv® et B(k) = Ypso Bev® des séries génératrices. Notons A(v) ®,
B(v) le produit de Hadamard des séries A(v) et B(v), défini comme

A(v) ® B(v) =Y ApByo".

k>0

Lemme 5.8. Sur les réseauz triangulaire et carré droit, les séries Hy(t,u) sont données

par
Hl(tau) - 1—u ;
Hy(t,u) = [Hya(t,0) ©y Ha(v,u)] k> 1.
De plus, les séries Cy(t,u) sont données par
Cl(tvu) - 1—u ;
Cilt,w) = [Cha(t,0) @y Co(v,0)] k> 1.

Enfin, les séries Dy(t,u) sont données par

u

)

Di(t,u) = —— + [Dy_a(t,v) ©, Dofv,u)] _, k> 1.

1—wu =t

Ces identités se traduisent en équations définissant les séries H (t,u, z) et C(t,u, z) :

H(t,u,z) =1+ Z{H(t, v,2) ©, Ha(v, u)}

v=t’

+ z[C’(t, v, 2) Oy Ca(v, u)]vzt

C(t,u,z) =

— U

Preuve. Commengons par le cas de la série Hy(t,u). L'expression de Hi(t,u) est claire.
Soit H un empilement de largeur k avec k > 2, possédant 7 sites dans la premiere colonne
et j sites dans la deuxieme.
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Soit x un segment de H. Notons x5 le segment constitué des sites de z dans les deux
premiéres colonnes (ce segment n’est défini que si  posseéde au moins un tel site). Notons
Hjy o) empilement constitué de tous les segments de la forme wp; 5. De la méme maniere,
notons Hpp ) 'empilement constitué de tous les sites des segments de H dans toutes les
colonnes sauf la premiere.

Les sites des colonnes a distance au moins 2 n’interagissant pas, ’empilement H est
entierement déterminé par Hyy o) et Hig ). Ecrivons maintenant la série génératrice, notée
Hy(t,u,v), des empilements de largeur k avec une variable u comptant les sites dans la
premiere colonne, une variable v pour les sites dans la deuxieme colonne et une variable
t pour les autres sites. On trouve

Hi(t,u,0) = > [V Hy 1 (t,0)[u'v?| Hy(v, w).

120,520

Ceci est équivalent a

Hy(t,u,v) = Hp_1(t,v) ®y Ha(v,u).
La série Hy(t,u) s’obtient ensuite en remplagant v par t.

Pour calculer la série Cy(t,u), on remarque que 'empilement H posséde un site dans
chaque colonne si et seulement si Hy g et Hppy possedent un site dans toutes les leurs.
Le raisonnement est donc identique. Enfin, pour calculer la série Di(t,u), on remarque
que l'empilement H est une demi-pyramide si soit il n’a de sites que dans la premiere
colonne, soit les empilements Hj; o et Hpj) sont des demi-pyramides. La formule annoncée
s’ensuit. O

Le résultat suivant donne les valeurs des séries Hy(v, u), Co(v,u) et Do(v,u) apparaissant
dans les formules ci-dessus.

Lemme 5.9. Les séries comptant les trois types d’empilements sur deuzx colonnes dans le
réseau triangulaire sont

1
H3 (v,u) = l—u—v’
1 U v
A _ _ _ 1
2 (v, ) l-u—v 1—-u 1-w ’
u
Dy (v, u) = 57— —-

Dans le réseau carré, ces séries valent

1 —wv
a _ .
Hy (v, u) = 1 —u—v+u2e?’
1 —wv U v
a] _ _ _ _ 1
2 (v,0) l—u—v+u?? 1—u 1—w ’
1—
D3 (v,u) = v -1

1—u—v+u20?

Certaines de ces formules apparaissent dans [35].
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Preuve. Commencons par le réseau triangulaire. Dans ce réseau, le modele d’empilements
sur deux colonnes posseéde deux pieces concurrentes, que nous noterons g (le domino de la
colonne de gauche) et d (celui de la colonne de droite). Les poids respectifs de ces dominos
sont u et v.

Un empilement peut étre vu comme n’importe quel mot sur I'alphabet {g,d}, d’ou la
formule pour HZ (v, u). Cet empilement est connexe s’il ne contient ni seulement des g, ni
seulement des d ; cela oblige & retrancher les termes correspondant au langage 1+ g™ +d*
pour trouver la série C5 (v, u). Enfin, 'empilement est une demi-pyramide s’il commence
par un g. On en déduit la formule pour D5 (v, u).

Pour le réseau carré, le modele des empilements de segments sur deux colonnes compte
trois pieces, toutes concurrentes entre elles : le segment comptant un site a gauche (que
nous noterons ¢), le segment comptant un site a droite (que nous noterons d) et le segment
comptant un site dans chacune des deux colonnes (que nous noterons b).

La condition de non adjacence interdit les motifs gd et dg; ceci équivaut a dire qu’entre
deux pieces b consécutives, il se trouve soit uniquement des pieces g, soit uniquement des
pieces d. Les empilements sur deux colonnes sont donc reconnus par ’expression réguliere
non ambigué

(1+g"+dH)[p(1+g"+dh)]".
En remarquant que la piece g a pour poids u, la piece d pour poids v et la piece b pour
poids uw, on en déduit I'expression

L4 %+ o

1—v

1—uv(1+1ﬁfu+ﬁ).

HP (v,u) =

Cette expression se simplifie en la forme annoncée. La série CF (v, u) est calculée de la
méme maniere que dans le réseau triangulaire. Enfin, un empilement non vide est une
demi-pyramide si et seulement si il ne commence pas par un d. L’expression réguliere des
demi-pyramides éventuellement vides est donc

*

g b1+ g* +d")]
On en déduit expression de D5 (v, u). O

Les lemmes et nous permettent d’écrire le résultat suivant. Les équations sur le
réseau triangulaire apparaissent dans [10].

Théoréme 5.10. Soit k > 2. Dans le réseau triangulaire, les séries Hy(t,u), Cr(t,u) et
Dy(t,u) obéissent aux équations de récurrence

1 t
() = o (1)

1—wu

1 t
Gi) = 110 (1) - i

U U t
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Dans le réseau carré, ces mémes séries vérifient

HE(tu) = DD o (1 o) — DG o (1, 8) ;

CF (tu) = HHEEE=NOR L (¢ o) — HHEEEEROR L (1:46) — CFL4 (1.1) ¢
u a+p g 5
Tt o gl ~ DDAt te) = (8- DDEL(148)],
ot o = a(u) et = [(u) sont les séries
1+ \/1 —4u?(1 — u)
a(u) = :
2(1 —u)

D] (t,u) =

1— /1 —du2(1 —w)
h 2(1— )

B(u)

(5.8)

Preuve. Le résultat repose sur une décomposition en éléments simples des séries calculées
dans le lemme [5.9 vues comme des fractions rationnelles en la variable v. Nous trouvons,
pour le réseau triangulaire
1 1
l—ul—0
—Uu
1 U
A _ A
02 (Uvu) - H2 (U>u) o
A _ A
D3 (v,u) = uHy (v, u).
Ceci permet d’extraire le coefficient de v/ de la série HS (v, u) :

e = 1 (1 )

1l—ul\l—u

Hf (v,u) =

l1—-v 1-—u

Y

On fait de méme pour les deux autres séries, en remarquant que les séries Cf (v, u) et
D¢ (v,u) ont un coefficient constant en w nul si k& > 1. Par conséquent, pour calculer le
produit de Hadamard, on peut se contenter d’extraire le coefficient en v/ pour j > 1. On

trouve dans ce cas
. 1 1’
(]G (v, ) = ( ) 1,

l1—u\l—u

D8 = 1 (2 )

l—u\l—u

Par définition du produit de Hadamard, on écrit I'identité du lemme donnant, par
exemple, Hp(t,u) sous la forme

HE(t ) = Y (W1 (4 0) [ 1H (0,0) ).
i>1
En injectant la formule donnant les coefficients de HZ(v,u), on trouve la formule du
théoréme. On fait de méme pour les séries Cp (¢, u) et Dy (t, u).

Le réseau carré droit est traité de la méme maniere. On trouve les décompositions en
éléments simples suivantes :

° 1+ (@+f)a=-1) 1 14(a+BB-1) 1

Hy (v,u) = a—pf8 1—av a—f 1— v’
1

OF(v,u) = H (v,0) = 7= = 7

o _a+p a—l_ﬂ—l B
DQ(U,U)_Q’—B<1—OW 1—51)) 1.
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Ainsi, on extrait les coefficients de v/ :

_lt(atfe-1 ; 1+@+AE-1

(VIHF (0,0 — —

BjJ

et pour 7 > 1:

[v]C3 (v, u) = W] Hy (v, u) — 15

O o« + ﬂ . .
(V)05 (v u) = T3 [(a = Do’ = (8- 1)8).
On en déduit les formules annoncées. O

Notant que la série C(t,u) des empilements connexes est la somme des séries Cy(, u)
pour k > 1, tandis que la série D(¢,u) des demi-pyramides est la limite des séries Dy(t, u)
quand k tend vers l'infini, on déduit du théoreme les équations

U 1 t
C*(t,u) = ot 1—uCA<t’ I _u> — C*(t,1); (5.9)

D(tu) = —— 4 1 DA<t ! ) (5.10)

l—u 1—u "1—u

et pour le réseau carré

CO(tu) = 7+ HHatDD 00 (t, tor) — HHEDEZNCO (1, 48) — CU(t,1); (5.11)
DO(t,u) = 5 f -+ ng (@ = 1)D(t, ta) — (B — 1)D(t,15)]. (5.12)

Comme attendu, 1’équation gouvernant la série DY (¢, u) est plus simple que celle gouver-
nant la série C7(t,u), a cause de I’absence de terme en D"(¢,t). Le calcul des premiers
termes de la série D(¢,t) montre également que, contrairement au cas du réseau trian-
gulaire, cette série est différente de la série Q7 (¢) définie par (5.7)).

En utilisant les formules du théoréeme [5.10] il est facile de vérifier par récurrence les
formules suivantes :

) B 1 :
Hy (t,u) = Fr(t) — uFyp_1(t)’

_ qu_l(t)
Fk(t) — UFk_l(t) ’

Dy (t,u)

ou les Fy(t) sont les polynomes de Fibonacci. On retrouve ainsi ’expression quand
t = u. Il n’y a pas de formule aussi simple pour la série C¢ (¢, u), mais la formule ci-dessus
permet d’évaluer la série H(t,u, z), qui a son tour permet de calculer la série C*(t, u, 2)
grace a la proposition Tous ces calculs sont effectués dans [10].

Sur le réseau carré, les équations sont plus difficiles a résoudre. L’observation des séries
HZ(t,u) et DY(t,u) pour les petites valeurs de k ne m’a pas permis de trouver un analogue
des identités ci-dessus, qui est le point de départ de la résolution du modele triangulaire.
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5.2.3 Résultats asymptotiques

A présent, nous cherchons & tirer des équations précédentes des conséquences asympto-
tiques. Le résultat suivant se trouve dans [10] et s’obtient & partir de I’expression (5.6)).

Théoréme 5.11. Les séries C*(t,t,1) et C°(t,t,1) des animauzr multi-dirigés sur les
réseaur triangulaire et carré biaisé ne sont pas D-finies. De plus, le nombre d’animauz
d’aire n est équivalent a Au™, pour une constante A, sur ces deux réseaur avec ut =
4,5878... et u° = 3,5878....

Il n’existe pas de résultat aussi précis sur le réseau carré, mais Klarner [35] a donné,
en utilisant des matrices de transfert, un encadrement de la constante de croissance qui
donne p" = 3,7227....

Nous cherchons maintenant a obtenir des résultats impliquant le nombre de sites dans la
premiere colonne. Nous nous servirons pour cela des équations trouvées ci-dessus.

Théoréme 5.12. Soit t. le rayon de convergence de la série C(t,t). Pour t < t., soit
p(t) le rayon de convergence de la série C(t,u) vue comme une série en la variable u. Le
rayon p(t) vaut, selon le réseau,

(8 = (1+D%(1))
p°(t) = D°(t) ",
PO(t) = (1 + ¢ - \/(1 —t)(1 =3t —12 — t3)>‘1 |

2t

De plus, la valeur t. vérifie, selon le réseau,
tcA < 1/4, to < 1/3, th < to,

ot ty est la solution réelle de
1-3t—1*—t=0.

Les mémes résultats valent pour la série D(t,u), avec une valeur différente de t..

Dans les réseaux triangulaire et carré biaisé, le rayon de convergence de D(t,t) est en fait
exactement 1/4 et 1/3 respectivement, tandis que celui de C(¢,t) est strictement inférieur.
Dans le réseau carré droit, le théoreme montre que les constantes de croissance (égales
a l'inverse du rayon de convergence) des deux séries sont supérieures a 1/ty, qui vaut
3,3829.... Les constantes de croissance expérimentales des séries C(t,t) et D"(¢,t) sont
respectivement 3,7227... et 3,4165... ; en particulier, le rayon de convergence de D(t,t) est
strictement inférieur a tq, ce qui illustre la complexité du réseau carré droit par rapport
au triangulaire.

Soit P(t) la série qui intervient dans le calcul de p"(¢) :

2 _ _ 2 42 _ 43
§_ L+ — /(-1 -3t — 12—t )'
2t
Cette série est déja connue en combinatoire, et porte le numéro A082582 dans I’Online
Encyclopedia of Integer Sequences de Sloane [48]. Elle compte les chemins de Dyck n’ayant
pas de grand pic, ou facteur uudd [47]. Un lien possible entre les animaux de Klarner et
ces chemins de Dyck est exploré dans la section [5.3.2]

(5.13)

Les fonctions donnant la valeur de p(t) pour ¢ inférieur a ¢, sont montrées figure [5.3|
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Pt ()Y ) PT(E)

0 1/4t01/3

FIGURE 5.3 — Les graphes des fonctions donnant le rayon p(t) dans les trois réseaux.
En réalité, ce rayon n’est défini que pour ¢ < t., avec t. inférieur a 1/4, 1/3 ou t.

Preuve. Soit t < t, fixé. Le fait que la série C(¢,t) converge montre que le rayon p(t)
existe (i.e., le coefficient de u”* de la série C(¢,u) converge pour tout k) et n’est pas nul.
La série C'(t,u) étant a coefficients positifs, la fonction p est décroissante pour ¢ < t.;
de plus, le théoréme de Pringsheim [27), théoreme IV.6] montre que, si p(t) est fini, cette
série est singuliere au point u = p(t).

Dans le réseau triangulaire, la série C'(t,u) obéit a I’équation . Le terme - assure
que p(t) est inférieur & 1; de plus, le terme en C(¢, 1) domine celui en C(t,t) pour u < 1.
Faisons tendre u vers p(t). Le terme de gauche devient singulier, donc le terme de droite
aussi. Il résulte que 7 tend vers p(t). On en déduit I'équation

t A
= () = p"(1).

Cette équation n’a de solution réelle que si ¢t < 1/4, ce qui montre I'inégalité 5 < 1/4.
De plus, la seule solution qui rende la fonction p(t) décroissante est

po L4 /T
p (t)—f,

qui est bien I'inverse de 1+ D*(t).

Dans le réseau carré droit, la série C'(t,u) obéit a I’équation (5.11)). La encore, le terme
- montre que le rayon p(t) est inférieur a 1. Les séries a(u) et 3(u) ont également pour
rayon de convergence 1. Enfin, comme montré figure , la quantité a(u) est toujours
supérieure a 1 et a f(u) pour 0 < u < 1, ce qui montre que le terme dominant est celui en
C(t,ta). Répétant le méme raisonnement que ci-dessus, nous obtenons l'identité, valable

pour ¢t < i, :
2 (0) = to (1)
En utilisant "équation (1 — u)a(u)? — a(u) + u? = 0, on en déduit
2
(1= p°M) (t°(0) —t°(1) + 07 (1) = 0.

La solution p"”(t) = 0 ne convenant pas, on obtient finalement

PP — (1 +1)p"(t) +t = 0.
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0 1

FIGURE 5.4 — Les graphes des fonctions « et 8 pour u entre 0 et 1.

Cette équation n’a de solution réelle que si t < gy, ce qui montre l'inégalité t7 < ty; de
plus, la seule solution qui rend p(t) décroissante est p(t) = P(t)~1.

Enfin, pour traiter le réseau carré biaisé, nous utilisons le lien (5.4]). On obtient I’équation

p°(t) _ A<t>
1+po() P \1+¢)

qui montre bien que 2 < 1/3 et que p°(t) est 'inverse de D°(t).

Le méme raisonnement s’applique a la série D(¢,u), donnée par les équations (5.10) et
(5.12). [

5.3 Bijections avec les chemins de Dyck

Dans cette derniere section, nous développons une approche bijective pour traiter les ani-
maux multi-dirigés. Cette approche repose sur les bijections de le chapitre 2] qui trans-
forment les empilements de dominos et de segments en chemins de Dyck.

Dans la suite, nous considérerons les chemins de Dyck comme des mots sur 'alphabet
{u,d}, ot u est le pas montant et d le pas descendant. De plus, si a est un mot a; - - - ay,
nous notons & son image miroir a, - - - a;.

5.3.1 Animaux multi-dirigés et chemins culminants irréductibles

Dans la section [2.2.3] il est montré que certains empilements de dimeres sont en bijection
avec certains chemins. En utilisant en plus la bijection entre animaux et empilements, on
obtient le résultat suivant.

La définition suivante, qui est utilisée dans [9], est calquée sur la définition des ponts
auto-évitants (voir chapitre |3)).

Définition 5.13. On appelle culminant un chemin prenant des pas u et d et joignant les
sommets vy et vy, tel que la hauteur de tout sommet v # vy vérifie h(vyg) < h(v) < h(vy).
Un chemin culminant non vide « est dit irréductible s’il ne s’écrit pas o = By ou 3 et
sont culminants non vides.
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Proposition 5.14. Soitn > 1. Il y a bijection entre les animauz multi-dirigés d’aire n sur
le réseau triangulaire et les chemins culminants irréductibles comptant n pas descendants.
1l y a également bijection entre les demi-animaux dirigés d’aire n et les chemins de Dyck
de longueur 2n.

Preuve. Pour construire cette bijection, nous utilisons la bijection f décrite dans la dé-
finition 2.2 Soit w un chemin culminant de hauteur k, possédant n pas descendants et
n+ k pas montants. La bijection f transforme w en une paire (1, H), ou 7 est composé de
k pas montants et H est un empilement de dimeres de largeur au plus £ — 1 comptant n
pieces.

Le chemin w est irréductible si et seulement si, a toute hauteur, il posseéde au moins un pas
descendant. Ceci équivaut a dire que ’empilement H posseéde au moins un dimere dans
chaque colonne, c¢’est-a-dire qu’il est connexe. Par construction, les animaux multi-dirigés
d’aire n sont en bijection avec les empilements connexes de dimeres ayant n pieces, ce qui
conclut la preuve.

Les chemins (excursions) de Dyck sont traités de la méme maniere. Si w est un chemin
de Dyck non vide, f(w) est de la forme (g9, H), ou g est le chemin vide au point 0
et H un empilement dont les pieces minimales touchent la colonne 0, c’est-a-dire une
demi-pyramide. O]

La section[2.2.3|montre que les chemins de Dyck peuvent se voir comme des chemins stricts
de Y ukasiewicz, en groupant les pas descendants consécutifs. Nous utilisons la bijection f
sur ces chemins de Lukasiewicz, ce qui donne des empilements de segments ; le lemme
montre de plus que les empilements de segments obtenus sont sans adjacence a droite.

Les empilements de Klarner étant, en particulier, sans adjacence a droite, ils peuvent donc
aussi se voir comme des chemins de Dyck. Pour décrire ces chemins, nous devons trouver
comment se traduisent les adjacences a gauche.

Définition 5.15. On appelle motif d’adjacence d'un mot de Dyck un facteur de la forme
udauufdu, ou a et 8 sont des mots de Dyck.

Un tel motif, ainsi que I'adjacence gauche auquel il correspond, est illustré figure [5.5]

Proposition 5.16. Soitn > 1. Il y a bijection entre les animaux multi-dirigés d’aire n sur
le réseau carré droit et les chemins culminants irréductibles sans motif d’adjacence comp-
tant n pas descendants. Il y a également bijection entre les demi-pyramides de Klarner
d’aire n et les chemins de Dyck sans motif d’adjacence de longueur 2n.

Preuve. Soit w un chemin culminant de hauteur k, vu comme un chemin strict de Lukasie-
wicz. Ainsi qu’expliqué ci-dessus, la bijection consiste a utiliser la bijection f décrite dans
la définition pour transformer w en un couple (n, H), ou 7 est le chemin auto-évitant
composé de k pas montants et H est un empilement de segments de largeur k£ — 1. Le
chemin w est irréductible si et seulement si 'empilement H est connexe.

Le chemin w étant strict, le lemme montre que 'empilement H n’a pas d’adjacence
a droite. Il reste a montrer que H possede une adjacence gauche si et seulement si w
contient un motif d’adjacence.
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Soient 7, et 7, deux segments adjacents a gauche de H, et soient a et b les pas descendants
de w correspondants. Les pas a et b sont donc de la forme 7 — i et k — j, respectivement.
Le chemin w étant strict, le pas a est précédé d'un pas montant j — 1 — j et le pas b
suivi d’'un pas montant j — j + 1. Intéressons-nous au facteur situé entre ces deux pas
montants inclus : il est de la forme udddu ; le chemin § commence a hauteur j — 1 et finit

a hauteur j + 1 (figure[5.5).

Soit ¢ un pas descendant situé entre a et b et 7. le segment correspondant. Comme 7,
couvre 7, le segment 7. ne peut étre a la fois concurrent a v, et a v,. Ceci signifie que
le pas ¢ ne peut pas passer par la hauteur j. Le chemin 6 ne peut donc traverser qu’en
montant la ligne de hauteur 7, ce qui montre qu’il est de la forme auuf.

Réciproquement, soit 6 = udauufdu un motif d’adjacence commencgant a la hauteur j — 1
et finissant en 7+ 1. Soit a et b les pas descendants contenant le premier et le dernier d de
0, respectivement ; soit v, et 7, les segments correspondants. Aucun pas descendant de
ne passant par la hauteur j, le segment ~, couvre v, donc ces deux segments constituent
une adjacence a gauche.

Le cas des demi-pyramides est traité de maniere identique. O
g
o]
J+1
) a B
jg—1
[[o
j—17 j+1

FIGURE 5.5 — A gauche, un motif d’adjacence contenant les deux facteurs @ et .
A droite, I'image par la bijection f de ce motif vu comme un chemin strict de
Lukasiewicz : les pas descendants au début de & et a la fin de 8 deviennent deux
segments adjacents a gauche.

5.3.2 Chemins de Dyck sans grand pic ou vallée profonde

Pour conclure ce chapitre, nous nous intéressons aux demi-pyramides de Klarner, donc
aux chemins de Dyck sans motif d’adjacence. Nous comparons ces chemins a deux autres
familles de chemins de Dyck : les chemins n’ayant pas de facteur uudd (ou grand pic) et
les chemins n’ayant pas de facteur dduu (ou vallée profonde). Ces chemins ont été étudiés
dans [40, [47] ; les suites les énumérant portent respectivement les numéros A082582 et
A086581 dans I'OEIS [48]. Nous noterons P(t) et V(t) les séries génératrices comptant
respectivement les chemins de Dyck sans grand pic et sans vallée profonde.

Comme nous I'avons constaté plus haut, la série P(t), donnée par (5.13), est I'inverse
du rayon de convergence en u de la série C7(¢,u) (voir théoreme [5.12)). En combinant les
équations vérifiées par les séries P(t) et a(u), donnée par ([5.8), on trouve de plus l'identité

P(t) = a(tP(t)).

La série V (t) est, quant a elle, donnée par

P(t) = 14tV (t).
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Le rayon de convergence des séries P(t) et V(t) est la valeur ¢y du théoreme [5.12]
De plus, si on compare les coefficients de la série P(t) et de Q"(t), donnée par (5.7)), on

trouve
P(t) =1+t +t* + 2t + 5t* + 13t° + 35¢° + O(¢");
QU(t) =1+t + 1>+ 3t> + 6t + 16t° + 41t° + O(¢").
Ce développement suggere que les coefficients de Q7 () sont supérieurs a ceux de P(t), ce
qui semble se confirmer aux ordres supérieurs.

Enfin, si on compare cette fois les coefficients de la série V(t) a ceux de 1+ D"(t), on
trouve

V() = 1+t +26" +56* + 13" + 35¢° + 97t° + O(t");
14 DY(t) = 14 + 262 + 56> + 13t + 361° + 1045 + O(t").

La encore, les coefficients d’ordre supérieur de D" (¢) semblent rester supérieurs a ceux de
V(t). Ceci est cohérent avec le théoreme qui affirme que le rayon de convergence de
DP(t) est inférieur a celui de V/(t).

Au vu de l'inégalité coefficient par coefficient apparente V(t) < 1+ D"(t), il semble in-
téressant de chercher une sous-classe des demi-pyramides de Klarner qui soit énumérée
par V(t), ce qui fournirait une nouvelle classe algébrique d’animaux. Une telle sous-classe
pourrait également servir de base a une sous-classe des animaux de Klarner que I'on sache
énumérer ; 'analogie avec le réseau triangulaire, ou la série Q(t) est identique a 'inverse
du rayon de convergence de la série C(t,u), suggere que la série jouant le role de QU(¢)
pourrait étre égale a P(t). Le travail qui suit est effectué en vue de cet objectif.

Définition 5.17. Soit § = udduuSdu un motif d’adjacence. On définit ¢(J) comme le
chemin uaufdduu. Soit w un chemin ayant un motif d’adjacence § marqué. On note ¢(w)
le chemin w ol on a appliqué ¢ au facteur J et marqué la vallée profonde ainsi construite.

Le chemin ¢(§), pour § un motif d’adjacence, est illustré figure .

B p
A o A
¢
Q

FIGURE 5.6 — La transformation ¢ : un motif d’adjacence est transformé en vallée
profonde. La longueur du chemin est préservée.

Proposition 5.18. L’application ¢ est une injection de l’ensemble des chemins de Dyck
marqués d’un motif d’adjacence vers celui des chemins de Dyck marqués d’une vallée
profonde. Cette injection préserve la longueur des chemins.

Pour déduire de ce résultat I'injection cherchée des chemins sans vallée profonde vers les
chemins sans motifs d’adjacence, il faudrait appliquer répétitivement la fonction ¢ a un
chemin sans vallée profonde, en choisissant chaque fois le motif d’adjacence a transformer.
Ce choix doit étre fait de sorte que 'opération soit réversible, c’est-a-dire que ’on puisse
savoir a chaque étape quelle vallée profonde vient d’étre créée. Je n’ai pas pu pour I'instant
décrire de telle injection.
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Preuve. Tout d’abord, on note que, le chemin « étant un chemin de Dyck, le facteur ¢(9)
ne peut jamais descendre en dessous de la ligne de hauteur 0. Le chemin ¢(w) est donc
un chemin de Dyck si w 'est.

Soit maintenant w un chemin de Dyck marqué d’un motif d’adjacence. Montrons que,
étant donné son image ¢(w), on peut retrouver le chemin w. Pour cela, soit ¢ le point
situé avant la vallée profonde marquée, et supposons que le point ¢ se trouve a hauteur j.
Soit b le point de dernier passage a la hauteur 7 — 1 avant ¢, et a le point de dernier
passage a la hauteur j — 2 avant b. On constate (figure que le facteur situé entre b et
c est uf, et le facteur situé entre a et b est ua. Connaissant o et (3, on peut reconstituer
le chemin de départ w. O
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